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When determining interrater reliability for scoring the Rorschach Comprehensive
System (Exner, 1993), researchers often report coding agreement for response seg-
ments (i.e., Location, Developmental Quality, Determinants, etc.). Currently, how-
ever, it is difficult to calculate kappa coefficients for these segments because it is te-
dious to generate the chance agreement rates required for kappa computations. This
study facilitated kappa calculations for response segments by developing and validat-
ing formulas to estimate chance agreement. Formulas were developed for 11 seg-
ments using 400 samples, cross-validated on 100 samples, and applied to the data
from 5 reliability studies. On cross-validation, the validity of the prediction formulas
ranged from .93 to 1.0 (M = .98). In the 5 reliability studies, the average difference be-
tween estimated and actual chance agreement rates was .00048 and the average differ-
ence between estimated and actual kappa values was .00011 (maximum = .0052).
Thus, the regression formulas quite accurately predicted chance agreement rates and
kappa coefficients for response segments.

Since Weiner (1991) published editorial guidelines for this journal, researchers
have become more attentive to the interrater reliability of Rorschach scoring. Re-
cently, the reliability of the Comprehensive System (CS; Exner, 1993) has been ad-
dressed in several reports (Erdberg & Cooper, 1998; Janson, 1998; McDowell &
Acklin, 1996; Meyer, 1997a, 1997c; Meyer et al., 1999). When calculating reliabil-
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ity, researchers face choices regarding the type of statistic to use and the level at
which the analyses should focus. Potential statistics include: (a) percentage of exact
agreement; (b) percentage of exact agreement determined only when at least one
rater assigns a score (i.e., not counting agreement on the absence of a score); (c)
measures of association, such as the Pearson correlation; (d) measures of
“chance-corrected” agreement, such as kappa or the intraclass correlation; and (e)
measures of deviation. Deviations measures are rarely discussed in psychology, al-
though they are frequently used in medical research (cf. Bland & Altman, 1995).

Historically, Rorschach research has focused on either percentage agreement
statistics or simple measures of association. These approaches can be criticized for
not being sufficiently stringent and chance-corrected measures of agreement can
be employed instead. Although it is conceptually appealing to correct agreement
for chance, there are several ways to define chance and alternative definitions can
have dramatic influences on the resulting reliability coefficients (Brennan &
Prediger, 1981; Finn, 1970, 1972; Meyer, 1997a; Whitehurst, 1984). Furthermore,
some chance-corrected reliability statistics are quite sensitive to a variable’s distri-
bution (Meyer, 1997a; Meyer et al., 1999) and may produce misleading results if
they are not employed properly.

With respect to the level of data analysis, researchers can focus on (a) specific
scores assigned to each response (e.g., agreement onS across all responses in a
sample), (b) segments of scores assigned to each response (e.g., agreement on all
location and space scores across all responses in a sample), or (c) summary scores
that are aggregated across all responses in a protocol (e.g., agreement on the num-
ber ofSresponses across all the protocols in a sample). Based on the purpose of a
study, Meyer et al. (1999) provided suggestions for when each level of analysis
may be optimal. If the goal is to conduct a stringent analysis of a scoring system’s
clarity, it would be reasonable to focus on specific scores assigned to each and ev-
ery response (i.e., Option a). For instance, if one wished to know the intrinsic reli-
ability of the CS, chance-corrected reliability statistics could be calculated for the
more than 90 score options that can be assigned to each response (assuming the
scores are statistically stable). Alternatively, if the goal is to examine the reliability
of scores as they are typically used in research or applied clinical practice, it would
be appropriate to focus on the summary scores from a protocol (i.e., Option c). For
instance, to examine the reliability of all CS scores as they are typically used, the
researcher could generate coefficients for the 154 variables contained in a Struc-
tural Summary and evaluate them across patients (assuming the variables are sta-
tistically stable; see Meyer, 1997a; Meyer et al., 1999).

Either of the preceding options is a major undertaking that requires consider-
able time and many participants to be completed appropriately (Meyer et al.,
1999). However, for many studies, a detailed examination of reliability is not a pri-
mary consideration. Rather, researchers often wish to document scoring reliability
simply as a precursor to their main analyses that are focused on questions of Ror-
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schach validity. Given this, a less intensive overview of scoring reliability may fre-
quently be sufficient. In fact, the historical recommendation for examining CS
reliability has been for researchers to report the general reliability of scores con-
tained within the primary segments of a response (Exner, 1991; Weiner, 1991).
These primary segments include: Location and Space, Developmental Quality,
Determinants, Form Quality, Pairs, Content, Populars,Z Scores,1 Cognitive Spe-
cial Scores (e.g.,FAB1, DR2), and Other Special Scores (e.g.,MOR, PER). At
times, the last two may be combined to form a segment of All Special Scores.

Calculating the percentage of exact agreement for these response segments is a
simple and quick procedure. The researcher only needs to compare the sequence of
scores from Rater 1 and Rater 2, noting each instance when any score in a response
segment differs between the two raters. For instance, if Rater 1 scored a response
asWv ma.YFo Fi, Id MOR, DR1,and Rater 2 scored the same response asWv
ma.Yu Fi MOR, DR2,then there is agreement on the segments for Location, Devel-
opmental Quality, Pair (for its absence), Popular (for its absence),Z Frequency
(for its absence), and Other Special Scores. There is disagreement on the segments
for Determinants, Form Quality, Content, and Cognitive Special Scores (and the
All Special Scores segment if it is used). Similar determinations are then made for
all the other responses included in the reliability analyses. After all responses have
been evaluated for segment agreement, the researcher simply counts the number of
times there was complete agreement for each segment and then divides by the total
number of responses evaluated to determine the percentage of exact agreement for
each segment. (When raters differ on how many responses were contained in the
sample, the average number of responses should be used as the denominator.)

Although it is easy to calculate exact agreement rates for a response segment, it
is much more difficult to calculate Cohen’s (1960) kappa for a segment. This is be-
cause Cohen’s kappa defines chance agreement by the relative frequency (i.e.,
base rate) with which each rater assigns each score option. For instance, if two rat-
ers independently code 100 responses and Rater 1 assigns anS27 times, then his or
her base rate for assigningSis p(S1) = 27/100 = .27, and his or her base rate for not
assigningS is p(not-S1) = 73/100 = .73. Similarly, if Rater 2 assignsS30 times to

232 MEYER

1For each of the 10 inkblots, distinctZ score values are assigned for whole responses (ZW), synthe-
sized adjacent details (ZA), synthesized distant details (ZD), and synthesized white space (ZS). How-
ever,Z values are never tallied on a card-by-card basis according to these four categories, so it is
currently impossible to determine the relative frequency forZW, ZA, ZD,andZSon each card from ex-
isting CS information. In turn, it is not possible to calculate estimates of chance agreement for specific
Z values. Consequently, this article focuses on interrater agreement for assigning anyZ value (i.e.,Zf
vs. not-Zf). Researchers wishing more precise reliability data onZ scores can either calculate exact
kappa values from their sample information (either using the categoriesZW, ZA, ZD,andZSor catego-
ries for each possibleZ value; i.e., 2.0, 2.5, etc.) or they can generate protocol-level intraclass correla-
tions forZf andZSum.
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the same 100 responses, his or her base rate for assigningSis p(S2) = 30/100 = .30,
and his or her relative frequency for not assigningS is p(not-S2) = 70/100 = .70.

Following Cohen’s definition of chance for kappa, chance agreement is deter-
mined by multiplying each rater’s base rate for a score option and summing the
product across all options in a score category. In this example, there are two score
options in the Space category:S and not-S. Thus, chance agreement = [p(S1) ×
p(S2)] + [p(not-S1) × p(not-S2)], where p(i1) indicates Rater 1’s base rate for Option
i and p(i2) indicates Rater 2’s base rate for Optioni. Using the appropriate num-
bers, chance agreement = [.27 × .30] + [.73 × .70] = .081 + .511 = .592. Thus, in
this sample of 100 responses, agreement is expected by chance alone on 59.2% of
the responses.

With this information, kappa can be calculated. The formula isκ = (observed
agreement – chance agreement)/(1 – chance agreement). If the raters had 95%
agreement onS for these 100 responses, thenκ = (.95 – .592)/(1.0 – .592) =
.358/.408 = .87745. In contrast, if the raters only agreed 80% of the time, thenκ =
(.80 – .592)/(1.0 – .592) = .208/.408 = .5098.

Although it is relatively straightforward to calculate kappa for any particular
score, the formula becomes much more complex when applied to response seg-
ments that contain many independent scores. Consider the Determinant segment.
Table 1 lists the 10 mutually exclusive and exhaustive determinant categories in
this segment, using the determinantF as the default score when no other determi-
nants are present.2 Using the same notation as before, Table 1 also provides the ap-
propriate formula to calculate chance agreement for this segment.

Because a formula like this is so cumbersome, it is time consuming to use and
prone to calculation errors. Thus, it would be useful to have a simple means for esti-
mating chance agreement rates for CS response segments. I (1997a) offered sam-
ple-basedestimates for thispurpose.Basedonseverityofdisturbance, the frequency
of certain scores fluctuates from sample to sample. As a result, chance agreement
rates also fluctuate across samples, so I provided estimates for five different types of
samples.Althoughtheseestimatesproduceaccurateresultswhentheyareemployed
correctly (Meyeretal., 1999), it isnotalwayseasy todecidewhichsampleshouldbe
used to generate estimates of chance. For instance, when examining a sample of pa-
tients diagnosed with borderline personality disorder, a sample of patients with psy-
chosomaticconditions,orasampleofoutpatientsdiagnosedwithschizophrenia, the
researcherwouldhavetoguesswhichof thefivereferencesamplesprovidedthebest
approximation.
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2Theoretically, it is possible to assignF in a blend with some other determinant. However, the in-
stances when this is appropriate are remarkably few. Furthermore, ifF were treated as an independent
score in its own right (i.e., one that could be assigned in combination with any other score), it would
lead to dramatic underestimates of chance agreement. Thus, for the purpose of estimating chance agree-
ment, it is best to treatF as the default score when no other determinant scores are assigned.
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To rectify this limitation, simple procedures for calculating segment chance
agreement rates are presented. The procedures use information that should be
readily available from a CS reliability study, and they can be employed with any
sample of participants. Furthermore, as shown, the procedures are quite accurate.

METHOD

Four steps were taken to develop and validate chance agreement estimates. First, a
large number of CS protocols were used to generate chance agreement rates. To
generalize, the protocols used at this stage were selected to encompass the data
likely to be found in virtually all samples and settings. Second, multiple regression
was used to predict the chance agreement rates observed in Step 1 from a subset of
CS scores. Third, the regression formulas were cross-validated in new samples.
Finally, the cross-validated estimates of chance agreement were applied to five
samples of actual reliability data and their accuracy was evaluated.

Because chance agreement rates depend on the base rate of score options in a
sample, to generate chance rates that would match those in a typical reliability
study, base rate variability was obtained from 400 samples of CS protocols. Each
of these samples was randomly selected from two larger “populations” of CS data.
The first population consisted of 443 psychiatric inpatients and outpatients (cf.
Meyer, 1997b), and the second consisted of 190 nonpatients from the CS norma-
tive pool (Exner, 1993). Within each population, two sets of random draws were
completed. In the first set, 10 records were randomly selected 100 times from the
psychiatric population and then from the nonpatient population. In the second set,
20 records were randomly selected 100 times from each population. Thus, a total
of 400 samples were produced from the two populations; 200 contained 20 re-
cords, and 200 contained 10 records. Because the populations contained individu-
als who ranged from quite healthy to quite impaired, repeatedly selecting a small
number of protocols from within them ensured that the base rate for all score op-
tions would encompass those likely to be encountered in virtually all reliability
studies. Also, it should be noted that random samples of 10 protocols were used for
these analyses so that the final set of 400 samples would have considerable vari-
ability in base rates, not because this reflects a “good” number of protocols to in-
clude in a reliability study.

For each of the 400 samples, chance agreement rates were calculated for the
11 response segments. This was accomplished by using appropriate variations of
the determinant formula presented in Table 1, with one modification. Rather than
using base rates from two independent raters, it was assumed that each rater as-
signed each score option at the same relative frequency.3 Although this will al-

CS RESPONSE SEGMENT RELIABILITY 235

3This procedure is also equivalent to using the average base rate across raters, which Zwick (1988)
noted is actually the definition of chance agreement for Scott’s (1955)π coefficient.
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most never happen in practice, making this assumption has a trivial impact on
realistic segment data from a CS interrater reliability study. Furthermore, to the
extent that this assumption makes a difference, it leads to an overestimate of
chance agreement and an underestimate of kappa (Zwick, 1988). Thus, it is a
conservative assumption.

The next step entailed selecting CS variables that would accurately predict the
segment chance agreement rates for each of the 400 samples. In several instances
the “segment” consisted of a single dichotomous decision in which the score was
either present or absent (i.e., Pair, Popular, and Z Frequency), so the choice of a
predictor was obvious. For the other more complex segments, the choice of a suit-
able predictor was less clear, so different alternatives were tested using curve esti-
mation regression procedures. The most optimal predictor was selected based on
precision and ease of calculation. A significant consideration in this regard was my
desire to have a single, relatively simple predictor variable that could be calculated
from the CS data, as this allowed scattergrams to be generated that would visually
convert the CS predictor to its corresponding chance agreement rate. Once the op-
timal predictor variable was selected, scattergrams and regression equations were
developed.

To test the adequacy of each prediction equation, three validation steps were
taken. First, each regression formula was cross-validated by using a new popula-
tion of 320 Rorschach protocols to generate 100 randomly selected subsamples,
each of which contained 20 patients. Using the same procedures as before, seg-
ment chance agreement rates were calculated for each of these 100 samples. Sub-
sequently, estimated chance agreement rates were produced using the regression
formulas. The actual and estimated chance agreement rates were then correlated to
assess the validity of the regression formulas. The population of 320 protocols
from which these 100 random samples were drawn came from archived records at
Rorschach Workshops. The population included records from schizophrenic pa-
tients (n= 80), patients who ultimately committed suicide (n= 80), outpatients (n=
80), and nonpatients (n = 80).

The second set of analyses evaluated the extent of formula bias that may result
from assuming each rater had a common base rate. As noted earlier, actual raters
would almost never have equivalent base rates. To test the extent of bias introduced
by this assumption, two sets of “rater samples” were created, with each sample hav-
ing a distinct base rate. Specifically, the 100 subsamples used in the prior analysis
were treated as the data generated by Rater 1. Each sample was then paired with a
randomly selected alternative sample, which was treated as the data from Rater 2.
Thus, thedatasetmimics100 instanceswhen20protocolswere independently rated
by two people, yet each rater assigned wildly different scores to each sample. To ex-
emplify,onesampleof20protocolshad507 total responsesand thiswaspairedwith
a randomly selected alternative sample that contained only 389 responses. Another
sample containing 190 pureF responses was paired with a sample containing 99

236 MEYER
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pureF responses, and a sample containing 62 cognitive special scores was paired
with a sample containing 137. As would be expected, CS variables were
uncorrelated across these 100 pairs of subsamples. For instance, the correlations be-
tween “Rater 1” and “Rater 2” forR, F, Sum6, Pair, Popular,andZfwere –.09, –.05,
–.05, –.05, .00, and –.04, respectively (allp> .60,N= 100). Clearly, by pairing each
sample with a randomly selected second sample, the data are very unrealistic. How-
ever, they provide an extreme test of how well the prediction formulas work when
each rater employs a very different base rate.

Finally, the regression formulas were tested in five large reliability samples.
These samples were analyzed in detail for interrater agreement, with a focus on
intraclass correlations calculated on summary scores (see Meyer et al., 1999).
Sample 1 contained 51 protocols (R = 1,047) that were independently scored by
two predominantly novice coders. Sample 2 contained 55 protocols (R = 1,125)
rated by two experienced clinicians. Sample 3 was a survey sample containing 19
protocols (R= 388), each of which were scored five times by a total of 95 different
clinicians. For the current analysis, only two randomly selected ratings were used
for each protocol. Sample 4 contained 69 protocols (R= 1,667) that were initially
scored as part of clinical practice and then rescored by researchers. Finally, Sam-
ple 5 contained 57 protocols (R = 1,378). The original scoring for these records
was compared to experimentally manipulated scoring in which 20% of all the
scores in each record had been replaced with randomly generated erroneous
scores. Across these samples, the reliability of 118 to 123 statistically stable CS
Structural Summary scores was excellent, with median intraclass correlations of
.95, .97, .97, .95, and .89, respectively.

In this study, estimates of chance agreement for each segment in each sample
were compared to the exact chance agreement rates calculated from the interrater
data. In addition, because the sole purpose of chance agreement rates is to generate
kappa coefficients, in each sample, the exact kappa values for each response seg-
ment were compared to kappa values derived from the estimated chance agree-
ment rates.

RESULTS

Listed in the initial columns of Table 2 are the 11 response segments, the CS predic-
tor variables, the regression formulas toestimatechanceagreement fromthepredic-
tor variables, the adjustedR2 between the predicted and observed chance agreement
rates in the400developmentsamples,and thecorrelationbetweenpredictedandob-
served chance agreement rates in the 100 cross-validation samples. The validity co-
efficients obtained on cross-validation ranged from a low of .93 to a high of 1.0 (M =
.98). The cross-validation sample produced 1,100 comparisons between observed
and estimated chance agreement rates (i.e., 100 samples × 11 segments). The aver-
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agedifferencebetweenobservedandpredictedvalueswas.00072andthe largestab-
solutedifferencewas±.0373.Thus, thedatasuggest thateachprediction formulaal-
lows one to calculate chance agreement rates with a high degree of accuracy.

Figures 1 through 11 provide scatterplots that correspond to the Table 2 equa-
tions. Each plot contains the line of best fit between the predictor variable and the
chance agreement rate. These figures allow researchers to quickly determine ap-
proximate chance agreement rates for the 11 segments. Although the regression
equations provide the most specific estimates, the precision of these figures can be
enhanced by using a copy machine to enlarge each graph.

Figures 5, 7, and 8 reveal that a quadratic formula perfectly predicts the ob-
served chance agreement rates, and Figures 9, 10, and 11 indicate that a cubic for-
mula achieves perfect prediction. These figures are slightly misleading in that they
were generated from data in which both raters were assumed to have the same base
rates. Plots of realistic interrater data (in which equivalence would be rare) would
reveal slight dispersion below the best fit lines. For instance, using either theZf
formula in Table 2 or Figure 8, it can be seen that chance agreement will be .50
when both raters assignZf scores 50% of the time. Using the exact chance agree-
ment formula presented earlier, where chance agreement = [p(Zf1) × p(Zf2)] +
[p(not-Zf1) × p(not-Zf2)] = [.50 × .50] + [.50 × .50] = .50, we can see that this esti-
mate is entirely accurate. However, as previously noted, when the raters do not
have equivalent base rates, the formula from Table 2 (or Figure 8) slightly overes-
timates chance agreement. If Rater 1 assignedZf to 55% of the responses in a reli-
ability sample and Rater 2 assignedZf to 45% of the responses, actual chance
agreement would be (.55 × .45) + (.45 × .55) = .4950, even though the estimated
value would still be .5000.

The differences become larger as the base rates for Rater 1 and Rater 2 become
increasingly discrepant. For example, across the 400 samples containing 10 to 20
protocols that were used to generate Figure 8, the lowest base rate observed forZf
was about .425, whereas the highest rate was about .755. Although it is extremely
unlikely that two raters scoring the same records in an actual reliability study
would generate such marked discrepancies (and if they did, estimating chance
agreement should be the least of anyone’s worries), these two values can be used to
examine a “worst case” scenario for the prediction equation. Assuming Rater 1 had
the base rate of .425 and Rater 2 had the rate of .755, theZf prediction value that
should be used to estimate chance agreement is .59.4 The value of .59 produces an
estimated chance agreement rate of approximately .52 from Figure 8 and a more
specific value of .5162 from the formula in Table 2. However, the true chance
agreement rate would be (.425 × .755) + (.575 × .245) = .46175. Thus, the estimate
of chance agreement is too large by a magnitude of .05445. As a result, kappa val-
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4The average base rate (i.e., [.455 + .755]/2) is equivalent to the sum ofZfacross both raters divided
by the sum ofRacross both raters.
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ues based on this estimate will be too low by a small margin. For instance, assum-
ing an observed agreement rate of .65, the actual kappa coefficient should be .3497
but the estimated value would be .2766. Thus, under the worst of plausible circum-
stances, when one rater obtains aZfbase rate that is the lowest observed across 400
samples containing 10 to 20 records and the other rater obtains aZfbase rate that is
the highest seen in 400 samples of records, the estimation formula will cause the fi-
nal kappa value to be too low by a magnitude of .0731.

In general, it is unlikely one will see such extreme differences in rater base
rates. Nonetheless, the final column in Table 2 presents data on the validity of the
prediction formulas using the similarly stringent test imposed when each of the
100 cross-validation samples were paired with another randomly selected sample.
Again, this data set evaluates what happens across 100 reliability studies (i.e., the
100 samples from Rater 1 paired with the 100 samples from Rater 2) when one
rater produces base rates (and scores) that have no meaningful relation to those
produced by the other rater. Even under these highly unusual circumstances, the
formulas are still quite accurate. The validity correlations between observed and
predicted chance agreement rates range from .940 to .998 (M = .98). Furthermore,
across the 1,100 comparisons in this analysis, the average difference between ob-
served and expected chance rates was –.0012 and the largest absolute difference
was –.0236. Thus, even when rater base rates diverge substantially across a reason-
able range of values, the prediction formulas remain accurate.

Turning to actual interrater data, Table 3 provides validity results from the five
genuine samples. The average difference between the predicted and observed
chance agreement rate was .00048 across the 55 calculations. More important, in
terms of final kappa values, the average difference between the predicted and ob-
served coefficients was only .00011. Across the 55 comparisons, at no time did the
predicted and actual kappa values differ by more than .0052. Thus, not only do the
regression formulas accurately predict chance agreement rates for genuine reli-
ability samples, but they also quite accurately predict kappa coefficients for re-
sponse segments.

DISCUSSION

This article is designed for researchers who wish to calculate kappa for traditional
CS response segments. Segment reliability coefficients tend to produce conserva-
tive estimates of interrater agreement because no credit is given to partial agree-
ment (Janson, 1998). However, because they summarize agreement for global seg-
ments of CS scores, they cannot simultaneously provide differentiated information
on individual scores. If the latter is required, alternative procedures should be used.
Nonetheless, unlike kappa or intraclass correlations calculated on individual
scores, a virtue of the segment coefficients is their stability in relatively small sam-
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ples. This makes segment-level analyses suitable when researchers wish to docu-
ment their general reliability as a precursor to reporting validity findings.

To generate kappa for a response segment, four steps must be followed. First,
one must determine the extent to which two raters agree exactly on the scoring for
a segment.5 Second, one must generate the CS predictor variable that will be used
to estimate chance agreement. This is a matter of simply computing the scores
specified in the second column of Table 2. Third, one must use the predictor vari-
able with either the regression formulas or Figures 1 through 11 to determine the
chance agreement rate. Finally, one must calculate kappa for the response seg-
ment. This is accomplished by inserting the percentage of observed agreement
(from Step 1) and the percentage of chance agreement (from Step 3) into the kappa
formula. Table 4 illustrates these steps with a hypothetical example. Given that re-
searchers frequently report percentage agreement for response segments, they
should now also be able to quickly and accurately estimate kappa.

The results from these analyses should readily generalize to reliability samples
containing 20 or more protocols. Statistical modeling not detailed here indicated
that the results hold with only minor decrements in accuracy for reliability samples

CS RESPONSE SEGMENT RELIABILITY 253

TABLE 4
Illustration of the Estimation Procedures to Calculate Kappa for the Location Segment

1. Two raters independently score 23 protocols containing 500 responses. The raters unanimously
agree on the exact location and space scoring for 481 responses. Thus, observed agreement is
481/500 = .9620.

2. Rater 1 assigns 66Dd scores and 58Sscores. Rater 2 assigns 67Dd and 63Sscores. Using Table
2, the chance agreement Comprehensive System predictor variable is computed as the sum for
both raters of (Dd + S)/R= (66 + 67 + 58 + 63)/(500 + 500) = 254/1000 = .254.

3. Using the formula from Table 2 (or Figure 1), the predictor variable produces an estimated chance
agreement rate of .51 – .92(.254) + .66(.2542) = .51 – .23368 + .04258056 = .3189.

4. Because6 is defined as (observed agreement – chance agreement)/(1 – chance agreement),6 for
the Location and Space segment in this reliability sample is (.9620 – .3189)/(1 – .3189) =
.6431/.6811 = .9442.

5. Common interpretive guidelines (Cicchetti, 1994) for kappa are as follows:

Values Interpretation

< .40 Poor
.40–.59 Fair
.60–.74 Good
> .74 Excellent

Consequently, in this example, the raters demonstrated “excellent” chance-corrected interrater
agreement.

5Agreement for theZfsegment is unlike the others. ForZf,agreement is counted whenever both rat-
ers assign anyZ value or whenever they both agree noZ value is warranted. A disagreement is counted
whenever one rater assigns aZ score and the other does not.
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as small as 5 or 10 protocols, so long as the protocols are randomly selected from
the study population. However, the estimation formulas start to break down when
a reliability sample contains less than five protocols because very small samples
may contain unusual base rates for some score options. For example, it is more
possible that a sample of two records will have almost 100% animal contents or
0% special scores. Under these circumstances, the estimation formulas for the
Content and Special Score segments may be less accurate. This problem is recti-
fied by following Weiner’s (1991) recommendation to select at least 20 records for
a reliability study.
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