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Decision support systems are a key to gaining competitive advantage. Many 

corporations have built or are building unified decision-support databases called data 

warehouses on which decision makers can carry out their analysis. A data warehouse is a 

very large data base that integrates information extracted from multiple, independent, 

heterogeneous data sources to support business analysis activities and decision-making 

tasks. The data that is likely to be in demand is generally pre-computed and stored ahead 

of time at the data warehouse in the form of materialized views. This dramatically 

reduces execution time of decision support queries from hours or days to minutes or even 

seconds.  
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There are many architectural issues concerning the efficient design of a data 

warehouse. This dissertation studies in depth three important issues. The first issue 

addressed is the Materialized View Selection (MVS) problem, which is the problem of 

choosing an optimal set of views to materialize under resource constraints. We have 

formulated interesting bottleneck versions of this problem and presented the 0-1 Integer 

Programming models as well as the heuristic procedures.  Performance analysis of the 

heuristic procedures is also presented. 

Formulation of the MVS problem requires knowledge of the number of rows in 

each view in a given lattice structure, which refers to views and their interrelationships 

for a given set of dimensions. Counting actual number of rows present in each view takes 

considerable time. The second issue addressed in this dissertation focuses on the 

statistical sampling techniques applied to data warehouses to estimate number of rows in 

each view in a given lattice structure. We have shown that the application of sampling 

techniques results in significant time savings without compromising on accuracy.  

 The third issue deals with modeling the behavior and performance of a data 

warehouse system using simulation. We implemented the model in ARENA. The model 

enables a data warehouse manager to walk through various scenarios to investigate the 

synergy among various system components and to identify areas of inefficiencies in the 

system. This could also help improve overall performance of the data warehouse system. 
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CHAPTER 1: INTRODUCTION 
 
 

 In today’s fast-paced, ever-changing, wants-driven economy, information is seen 

as a key business resource to gain competitive advantage (Haag et al. 2005). To compete 

in today’s turbulent market, businesses need to do considerable market research to find 

out what exactly people “want” rather than what they “need.” The last three decades have 

seen an exponential growth in the area of information technology catering to the 

information processing needs of businesses in the form of capturing, storing, conveying, 

analyzing, and transferring data that will help knowledge workers and decision makers 

make sound business decisions.  

With the widespread availability and ever-decreasing cost of computers, 

telecommunications technologies, and the Internet access, most of the businesses have 

collected a wealth of data. As a result, companies are becoming data rich though they 

remain information poor (Gray & Watson 1998, Grover 1998, Han & Kamber 2001). 

Valuable information gets lost in the shuffle and many companies struggle to get the right 

information, to the right person, and at the right time. This accentuates the need for 

turning the vast amount of data that is locked away in operational databases and other 

data sources into useful information that will help knowledge workers and decision 

makers gain access to the hidden knowledge and make the right decisions at the right 

time. One needs sound decision support systems to analyze this vast amount of data and 

to find solutions to business problems that are by nature often complex and unstructured. 
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This is exactly where data warehousing comes into the picture. With the competition 

mounting, most corporations have recognized that the data warehouse is a must-have 

strategic weapon to unearth the hidden business patterns, to recognize what exactly 

customers “want,” and to understand the market competition.  

Today, virtually all big corporations have built or are building unified data 

warehouses to support business analysis activities and decision-making tasks. The Palo 

Alto Management Group provides figures about the size and growth of the data 

warehousing market. They estimate that the sale of systems, software, services, and in-

house expenditures will grow from a US $ 8.8 billion market in 1996 to a US $ 113.5 

billion market in 2002 – a 51% compounded annual growth rate (Hillard et al. 1999, 

Walton et al. 2002). 

In a typical organization, information is spread over many different multiple, 

independent, heterogeneous, and remote data sources. Acting as a decision support 

system, a data warehouse extracts, integrates and stores the “relevant” information from 

these data sources into one centralized data repository to support the information needs of 

knowledge workers and decision makers in the form of Online Analytical Processing 

(OLAP). Figure 1.1 depicts the general three-tier architecture for a typical data 

warehouse (Han & Kamber 2001).  

 The bottom tier is a warehouse database server that is almost always a relational 

database system. Data from the operational databases and other external sources are 

extracted using different application program interfaces.  
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The middle tier is the materialized views that store the aggregated and 

summarized data. This tier is typically implemented using either a relational OLAP 

(ROLAP) model or a multidimensional OLAP (MOLAP) model. The ROLAP is an 

extended relational DBMS that maps operations on multidimensional data to standard 

relational operations and the MOLAP is a special-purpose server that directly implements 

multidimensional data and operations. The top tier is a client interface, which contains 

query-and-reporting tools, multidimensional analysis tools, statistical analysis tools, 

and/or data mining tools.  

Business analysts run business queries over this centralized data repository to gain 

the insights into the vast data and to mine for hidden knowledge. Results of such queries 

are generally pre-computed and stored ahead of time at the data warehouse in the form of 

materialized views. Such materialization of views reduces the query execution time to 

minutes or seconds which may otherwise take hours or even days to complete.  

There are several architectural issues concerned with the design of a data 

warehouse. One such important design issue is to select the appropriate set of views to be 

materialized in the data warehouse. This is referred to as the Materialized View Selection 

(MVS) problem. We have formulated interesting bottleneck versions of this problem and 

proposed two heuristic procedures to solve the resulting MVS problem. We have also 

proposed exact solution techniques for reasonable sized problem instances. 

The formulation requires data on the number of rows associated with each view in 

a given lattice structure. Querying to find the number of rows present in each view for a 

large lattice structure may not be practical as it takes considerable time. We have 
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explored the use of sampling techniques to estimate the actual number of rows present in 

each view under consideration in a give lattice structure.  

Data warehouses are considered to be large complex systems with many nonlinear 

interacting components. The performance of data warehouse systems is often 

unpredictable. Small changes in one part of the system could lead to large deterioration in 

performance. We have developed a simulation model to simulate the behavior and 

performance of a data warehouse system given its overall design.  

In the remainder of this section, we briefly summarize the various problems 

addressed in this doctoral dissertation and present the contributions made. 

 

 

1.1 Selection of Views to Materialize 

 

Selecting the right set of views to be materialized is a non-trivial task. One cannot 

materialize all the views in a given lattice structure as such materialization is constrained 

by the availability of storage space, view maintenance cost, and computational time. On 

the other extreme, if one does not materialize any view then business queries have to be 

run over the source data, a process which would take considerable time. Such delay 

cannot be tolerated in today’s decision support environment with its incredible demand 

on speed. Between these two extremes, one needs to find the optimum number of views 

to be materialized that will give reasonably good query response time while satisfying all 

the constraints. The MVS problem has been shown to be NP-Complete in the data 

warehouse literature (Harinarayan et al. 1999). 
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Given a set of queries to be supported, the conventional MVS problem is defined 

as follows: Given the resource constraints, select the set of views to be materialized so as 

to minimize the query response time. In this work, we have focused on the bottleneck 

version of the MVS problem, which changes the objective while leaving the rest 

unaltered. The objective is to minimize the maximum weighted number of rows to be 

retrieved, as opposed to the traditional objective of minimizing the total number of rows 

to be retrieved. We have also developed the 0-1 Integer Programming models for four 

different versions of the MVS problem and compared the results obtained from the 

heuristic procedures with that obtained from the 0-1 integer programming models. 

 

 

1.2 Statistical Sampling to Instantiate MVS Problem Instances 

 

Instantiation of an MVS problem for a given lattice structure requires the 

knowledge of the actual number of rows present in each view in a given lattice structure. 

Clearly this is needed for implementing the heuristic procedures or the exact solution 

techniques. This actually requires processing many complex queries to find the number 

of rows in all views in a given lattice structure. This would require considerable amount 

of time and such delays may be unacceptable in today’s decision support environments 

where time plays a crucial role in the decision making process. 

Hence, we have explored the use of statistical sampling techniques to address this 

issue. We have created two large realistic data warehouses and employed three estimators 

from the database sampling literature to estimate the number of rows present in each view 
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in a given lattice structure using these two data warehouses. These estimators are the 

Shlosser Estimator (Shlosser 1981, Hass et al. 1995), the Guaranteed-Error Estimator 

(Charikar et al. 2000) and the Adaptive Estimator (Charikar et al. 2000). The next 

question is the sensitivity of the heuristics to the estimated instantiations as compared to 

the exact instantiations and their overall comparison to exact solutions. We addressed this 

by employing the 0-1 Integer Programming model to the exact instantiations and the 

heuristics developed by Harinarayan et al. (1999) to both the instantiations i.e. exact as 

well as estimated, and compared the results. Our findings suggest a good amount of 

savings in terms of computation time without compromising on accuracy. 

 

 

1.3 Simulation Model and Analysis of a Data Warehouse 

 

A data warehouse is a long term commitment for many organizations that 

promises high rewards, with potentially high risks. Data warehouses are large complex 

systems with many nonlinear interacting components. The data warehouse environment 

is considered to be very sensitive and dynamic. A small change in any one component 

may produce dramatically different changes somewhere else in the system. Often it is 

difficult for the data warehouse manager to predict the system’s performance. Data 

warehouse managers need to experiment with the real system components to optimize the 

data warehouse design, which is an often tedious and risky endeavor.  
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We have developed a simulation model using the ARENA simulation package that 

will simulate the behavior and performance of a data warehouse system given its overall 

design. We had to overcome some challenges in building such a model which adequately 

represents a multitasking processor environment within the constraints posed by the 

model building tool. Given such a model, a data warehouse manager can walk through 

various what-if scenarios and can pinpoint the areas of inefficiencies in the system. This 

could result in improved data warehouse system performance. 

 

 

1.4  Dissertation Organization 

 

The rest of the dissertation is organized as follows. In Chapter 2, we address the 

problem of selecting the set of views to materialize in the data warehouse given two 

different resource constraints. Chapter 3 deals with statistical sampling techniques 

employed to formulate the MVS problem instances. In Chapter 4, we address the issues 

concerned with the simulation of the data warehouse system environment. We end with 

conclusions and future directions in Chapter 5. 
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CHAPTER 2: SELECTION OF VIEWS TO MATERIALIZE 

 

2.1 Introduction 

 

Decision support systems (DSS) are rapidly becoming a key to gaining 

competitive advantage for businesses. DSS allow businesses to get at the vast amount of 

data that is locked away in operational databases and other data sources and to turn that 

data into useful information. Many corporations have built or are building unified 

decision-support databases called data warehouses on which users can carry out their 

data analysis. A typical data warehouse extracts, integrates, and stores the relevant 

information from multiple, independent, and heterogeneous data sources into one 

centralized data repository to support the decision making information needs of 

knowledge workers and decision makers in the form of Online Analytical processing 

(OLAP) (Han & Kamber 2001, Harinarayan et al. 1999). 

While operational databases maintain current information, data warehouses 

typically maintain information from a historical perspective.  Hence, data warehouses 

tend to be very large and grow over time. Also, users of DSS are more interested in 

identifying hidden trends rather than looking at individual records in isolation. As a 

result, decision support queries are more complex than Online Transaction Processing 

(OLTP) queries and call for heavy use of aggregations. 
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The size of the data warehouse and the complexity of queries can cause decision 

support queries to take a very long time to complete. This delay is unacceptable in most 

DSS environments as it severely limits productivity. The usual requirement is that most 

query execution times be a few seconds or at most a few minutes (Gupta 1999, 

Harinarayan et al. 1996, 1999). 

Many techniques have been discussed in the literature to improve the query 

response time performance goals. Query optimization and query evaluation techniques 

can be enhanced to handle the aggregations better (Chaudhuri & Shim 1994, Gupta et al. 

1995).  Also different indexing strategies like bit-mapped indexes and join indexes could 

be used to handle group-by(s) better (O’Neil & Graefe 1995).  

One such commonly used technique is to materialize (pre-compute and store) the 

results of frequently asked queries. But picking the “right” set of queries to materialize is 

a nontrivial task. One may want to materialize a relatively infrequently asked query if it 

helps in answering many other frequent queries faster. 

In this chapter, we formulate the 0-1 Integer Programming models that determine 

the optimal set of views to be materialized for four different versions of the MVS 

problem. Of these, two are bottleneck versions of the MVS problem.  The objective in 

two of the four versions is to minimize the total weighted number of pages to be 

retrieved, and the objective in the other two versions is to minimize the maximum 

weighted number of pages to be retrieved.  The former objective attempts to reduce the 

processing burden on the system while the later attempts to establish a ceiling on the 

amount of time a user will have to wait to obtain the required data.  We also develop and 

present the heuristics for the bottleneck versions of the MVS problem. 



11 

   

The next section briefly discusses the conceptual background of the materialized 

view selection (MVS) problem. The MVS problem is defined and discussed briefly in 

Section 2.3. Section 2.4 discusses the 0-1 Integer Programming models for four different 

versions of the MVS problem. The heuristic procedures developed for the MVS problem 

are presented in Section 2.5. In Section 2.6, we present the performance of the 0-1 Integer 

Programming models and the heuristic procedures on typical problem sets. We end the 

chapter in Section 2.7 with the concluding remarks and future research directions. 

 

 

2.2 Conceptual Background and Related Work 

 

A data cube is a multi-dimensional modeling construct. For a detailed discussion 

of data cubes and cuboids the readers may refer to Han and Kamber (2001) and Microsoft 

SQLServer 2000 Analysis Services (Jacobson, R. 2000). A data cube contains many 

cuboids. A cuboid is also commonly known as a “view.”  In this context, a view is a set 

of aggregated data for a particular set of dimensions.  Essentially, a view is the result of a 

“GROUP BY” query.  

In a given data cube, the following implementation alternatives are possible: 

1. Physically materialize the whole data cube. This is known as 100% materialization of 

a data cube. This approach will give the best possible query response time. 

Obviously, 100% materialization may be infeasible for a large data cube because it 

will require an excessive amount of disk space.  Also, the time required to materialize 

a view is considerable. So 100% view materialization might take a long time to 
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accomplish, which might not be affordable in today’s decision support environment. 

Also one needs to maintain indices, if any, which will further add to overall cost. 

Once views are materialized, they need to be maintained to reflect the current or the 

latest updates in the source data. Hence, as more views are materialized, the view 

maintenance costs will also increase.  

2. Do not materialize any view. In this case, one needs to access the raw data and 

answer each query. This approach will result in long retrieval times due to high CPU 

and disk load. But it does not need any extra storage space for the view 

materialization. 

3. The third alternative is to materialize only a part of the data cube. But selecting the 

right set of views to materialize is the challenge. In a data cube, many views could be 

derived from other views. Consequently, one may want to materialize a relatively 

infrequently accessed view if it helps in obtaining many other views quickly.  We will 

refer to this problem as the Materialized View Selection (MVS) problem. The MVS 

problem has been shown to be NP-Complete problem (Harinarayan et al. 1999). 

In the1980s, materialized views were investigated to speed up the data retrieval 

process for running queries on views in very large databases (Adiba & Lindsay 1980). 

Subsequently, further research studies were reported in view and index maintenance 

along with comparative evaluations of materialized views on the performance of queries 

(Blakeley & Martin 1990, Qian & Wiederhold 1991, Segev & Fang 1991).   

Gray et al. (1997) proposed the data cube as a relational aggregation operator 

generalizing group-by, cross-tabs, and subtotals. Harinarayan, Rajaraman and Ullman 

(1996, 1999) have discussed the major features of the MVS problem elaborately. They 



13 

   

have employed a lattice framework to capture the dependencies among views. This lattice 

framework was then used to develop a greedy algorithm (this will be referred to as the 

HRU Heuristic 1 in the rest of the dissertation) for a special case of Problem 1 (refer 

Section 2.3). The details of the heuristic and the underlying assumptions are reproduced 

here for the case of reference. 

   

Assumptions behind the HRU Heuristic 1 

1. The cost of constructing a view from its materialized ancestor is a linear function of 

the number of rows in its materialized ancestor.  

2. If view i is materialized, its storage cost will be ri, where ri is the number of rows in 

view i.    

3. Whenever a user (or an application) requests a view, the request is always for the 

entire view and not for any part of it. For example, if someone requests the annual 

sales, he/she requests the annual sales for each year, and not for a specific year. 

4. The views are either stored or created from relational database tables. 

 

HRU Heuristic 1: 

Consider a data-cube lattice with space costs associated with each view. Here the 

space cost is the number of rows in the view. Let C(v) be the cost of view v. The set of 

views to be materialized should always include the top view (base cuboid), as there is no 

other view that can be used to answer the query corresponding to that view. Suppose 

there is a limit k on the number of views, in addition to the top view, to be selected for 
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materialization. After selecting some set S of views, the benefit of view v relative to S, 

denoted by B(v,S), is defined as follows. 

1. For each view w ≤ v (i.e. w can be totally obtained from v), define the quantity Bw by: 

a. Let u be the view of least cost in S such that w ≤ u. Note that since the top 

view is in S, there must be at least one such view in S. 

b. If C(v) < C(u), then Bw = C(v) – C(u). Otherwise, Bw = 0. 

2. Define B(v,S) = ∑ ≤vw wB . 

 
Here, the benefit of v is computed by considering how it can improve the cost of 

evaluating views, including itself. For each view w that v covers, the cost of evaluating w 

using v is compared, and using whatever view from S offered the cheapest way of 

evaluating w. If v helps, i.e., if the cost of v is less than the cost of its competitor, then the 

difference represents part of the benefit of selecting v as a materialized view. The total 

benefit B(v,S) is the sum over all views w of the benefit of using v to evaluate w, provided 

that benefit is positive.  

The Greedy Algorithm for selecting a set of k views to materialize is given below: 

S = {top view}; 

for i = 1 to k do begin 

 select that view v not in S such that B(v,S) is maximized; 

 S = S union {v}; 

end; 

resulting S is the greedy selection; 
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As seen from the above description, the HRU Heuristic 1 attempts to minimize 

the average time taken to evaluate the set of queries that are identical to the views in a 

given data cube. This algorithm first finds the benefit for each view in the data cube if it 

were to be materialized and then materializes the one with the highest benefit.  It 

continues this process until the given number of views to be materialized constraint is 

satisfied. 

Instead of asking for some fixed number of views to be materialized, one might 

instead allocate a fixed amount of storage space to views (other than the top view, which 

must always be materialized). Harinarayan et al. (1999) pointed out that in this case one 

needs to consider the benefit of each view per unit space used by a materialization of that 

view. All the assumptions underlined HRU Heuristic 1 applies in this case as well. One 

can easily modify HRU Heuristic 1 to address the storage space constraint. We will refer 

to this as HRU Heuristic 2, which is the heuristic for a special case of Problem 2 (refer 

Section 2.3) in the rest of dissertation. The stepwise procedure for HRU Heuristic 2 is 

outlined below: 

 

HRU Heuristic 2: 

Let TS is the total space available for materialization of views and let SC is the 

space consumed by the materialized views. Initially SC will be equal to the space 

consumed by the top view, which is always materialized.  

The Greedy Algorithm for selecting a set of views to materialize while satisfying 

the storage space constraint is given below: 
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S = {top view}; 

while SC < TS  begin 

 select that view v not in S such that B(v,S)/C(v)*  is maximized; 

 S = S union {v}; 

 SC = SC + C(v) 

end; 

resulting S is the greedy selection; 

* please refer to HRU Heuristic 1 for steps for calculating B(v,S) and for C(v) 

 

Harinarayan et al. (1999) have developed heuristics for the basic versions of the 

MVS problem i.e. Problem 1 with equal weights and Problem 2 with equal weights (refer 

to Section 2.3). In their paper they have identified a number of issues that required further 

investigation. Some of these major issues are: 

1. The views in a lattice are unlikely to have the same probability of being requested 

in a query. Rather, one might be able to associate some probability (weight) with 

each view, representing the frequency with which it is queried and/or the 

importance of the person accessing the view. 

2. In case of the storage space constraint, the greedy algorithm again seems 

appropriate, but there is additional complication that one might have a very small 

view with a very high benefit per unit space, and a very large view with almost 

the same benefit per unit space. Choosing the small view excludes the large view, 

because there is not enough space available for the large view after one chooses 

the small. However, they further pointed out that if one ignores “boundary cases” 
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like the one above, the performance guarantee of the greedy algorithm is the same 

as in the simple case. 

3. HRU heuristics (HRU Heuristic 1 and HRU Heuristic 2) as well as the heuristics 

detailed in here (refer to Section 2.5) require prior knowledge of the number of 

rows present in each view in a given lattice structure. One could use sampling 

techniques to estimate the size of the other views by drawing a sample from the 

root view.  

 

In this work, we have extended the work done by Harinarayan et al. (1999). We 

have provided extensive experimental evaluations by considering all of the above 

important issues. We have also developed two bottleneck versions of the MVS problem 

(refer to Section 2.5) that attempts to minimize the maximum weighted time taken to 

evaluate the set of queries that are identical to the views in a given data cube. We have 

also used three different sampling techniques (refer to Chapter 3) to estimate the size of 

all the other views by drawing samples from the root view. 

In the next section, we define some variants of the MVS problem. 
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2.3 Materialized View Selection Problem 

 

Figure 2.1 presents a hypothetical data cube and the associated cuboids in a 

hypothetical data warehouse.  Each node represents a required view (cuboid) and the 

numbers inside each node represent the number of pages that must be retrieved to 

respond to the underlying query and the weight associated with each view, which is a 

function of frequency of access and/or the importance of the user accessing the view.  We 

are using pages rather than rows as a surrogate for estimating the time it will take to 

obtain the required views.  This is because most database software retrieve blocks of 

rows called pages during each physical access of the database.  The page is then stored in 

cache or RAM from where rows can be retrieved quickly.  Consequently, the number of 

pages is a better estimator of the time needed to obtain a required view. 

View A (at the root) contains the lowest level of aggregated data, and it is 

assumed to be always materialized.  The links in the lattice indicate parent-child 

relationships.  Hence view B, for example, can be obtained from view A by processing 

100 pages of data.  If view B is materialized, it will contain 50 pages of data, and a query 

on view B will involve retrieving 50 pages.  In general, for a given node, an ancestor 

node is defined as any node from which the given node may be reached by traversing 

only directed arrows.  A query on a view may be answered by materializing the 

corresponding view or from any of its materialized ancestor views but not from any other 

materialized views. For example, obtaining view E from view A will require retrieving 

100 pages while it will require retrieving 50 pages to obtain it from view B.  View E 

cannot be obtained from view C or view D. 
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Based upon this type of configuration, we would like to know the specific set of 

views that must be materialized to achieve some predetermined objectives and 

constraints.  We consider two types of objectives i.e. minimizing the total weighted 

number of pages to be retrieved, and minimizing the maximum weighted number of 

pages to be retrieved.  We also consider two types of constraints – the maximum number 

of views that may be materialized and the total amount of storage space available to store 

the materialized views. 

 

A

n=100

w=1

B

n=50

w=10

C

n=70

w=2

D

n=60

w=3

E

n=30

w=20

F

n=40

w=15

G

n=50

w=10

H

n=40

w=5
 

Figure 2.1: A Graphical Representation of a Data Cube with Associated Cuboids 

 

Minimizing the total weighted number of pages to be retrieved is a commonly 

used objective.  In practice this represents the amount of computing effort required to 

obtain all of the required views given either the frequency with which each view is 

accessed or the relative importance of the various views.  If one assumes that all of the 

required views in a data cube are equally important, or that we do not have any 

information about the relative importance of the various required views in a data cube, 

we get a special case of this objective wherein all weights are equal. 
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Minimizing the maximum weighted number of pages to be retrieved attempts to 

limit the amount of time it will take to obtain any of the views.  This is a bottleneck 

objective as it tries to minimize the maximum value. This measure also takes into account 

the relative importance of the various views.  This objective will help improve the 

response time of the system. 

Limiting the number of views that may be materialized is a commonly used 

constraint and attempts to limit the complexity of the data warehouse (Harinarayan et al. 

1996, 1999).  The storage of too many views will make the data warehouse more 

complex, increase the amount of time and effort required to both compute and maintain 

the various views.  In addition, there may be a limit on the amount of space available to 

store the materialized views.  Hence, from a practical point of view, a more realistic 

constraint might be to compute the storage requirement of the views and limit this to the 

amount of space available. 

The discussions above lead us to define the following four problems: 

Problem 1. Given a data cube, the maximum number of views that can be materialized, 

the weight associated with each required view, and the list of required 

views, determine the set of views to be materialized so as to minimize the 

weighted total number of pages to be retrieved in order to obtain each 

required view in the data cube. This reduces to the standard MVS problem 

with the maximum number of views to be materialized constraint when all 

weights are equal.  
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Problem 2. Given a data cube, the weight associated with each required view, the list of 

required views, and the maximum number of pages that can be stored, 

determine the set of views to be materialized so as to minimize the total 

weighted number of pages to be retrieved in order to obtain each of the 

required view in the data cube. Again, this reduces to the MVS problem 

with maximum number of pages constraint when all weights are equal. 

Problem 3. Given a data cube, the maximum number of views that can be materialized, 

the weight associated with each required view, and the list of required 

views, determine the set of views to be materialized in order to minimize 

the maximum weighted number of pages to be retrieved so as to obtain each 

required view in the data cube.  

Problem 4. Given a data cube, the weight associated with each required view, the list of 

required views, and the maximum number of pages that can be stored, 

determine the set of views to be materialized so as to minimize the 

maximum weighted number of pages to be retrieved in order to obtain each 

required view in the data cube. 

 

In the next section, we present the 0-1 Integer Programming models for four 

different versions of the MVS problem discussed in this section. 
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2.4 Integer Programming Models for the MVS Problem 

 

Below, we have presented Integer Programming models for each problem defined 

in the last section. Since the MVS problem is NP-complete (Harinarayan et al. 1999), it 

will not be practical to solve very large problems using these formulations. 

 

Problem 1: 

 

∑∑
i j

ijijj PxwMin :   (1) 

 
Such that: 
 

jx
i

ij ∀=∑ ,1  (2) 

 

jixx iiij ≠∀≤ ,  (3) 

 

Tx
i

ii ≤∑  (4) 

 

01 orxij =  (5) 

 
 
Where: 
 

 },,3,2,1{ totalTN K=  

 
Nji ∈,  

 

jw   = Weight assigned to view j 

 

 ijP   = Number of pages associated with view i, if view i is an ancestor of j   

        = M otherwise 
 
 T     = Maximum number of views that can be materialized 
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totalT = Total number of required views in a given data cube 

 
          

 

Explanation: 

For a given materialization scheme, (1) gives the minimum total weighted number 

of pages to be retrieved to generate all the required views in a data cube.  The constraints 

in (2) ensure that every required view can be obtained, and each is obtained from exactly 

one source.  The constraints in (3) ensure that a view j can be obtained from some view i 

only and only if view i is materialized.  The constraint in (4) ensures that a maximum of 

‘T’ views will be materialized. The constraints in (5) make sure that queries requiring 

view j is answered by using the appropriate materialized view. If xij = 1, it implies that 

queries on view j is answered using view i and 0 otherwise. xii = 1 implies that view i is 

materialized and 0 implies that it is not materialized.  A special case of this formulation is 

obtained when all the weights are equal, and without loss of generality are set equal to 1, 

i.e., jw  = 1.   

 

 

Example 1: 

For the data cube shown in Figure 2.1 (except that wj = 1 for Nj∈ ), and the 

associated required views described in it, the Pij matrix is shown in Table 2.1.  The matrix 

shows that all views can potentially be obtained from view A upon reading 100 pages.  

Furthermore, views E and F can be obtained from view B upon reading 50 pages if view 
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B is materialized, and so on. Let T = 5.  Solve this problem using the formulation given in 

Problem 1.  

 

 

 A B C D E F G H 

A 100 100 100 100 100 100 100 100 

B 10000 50 10000 10000 50 50 10000 10000 

C 10000 10000 70 10000 10000 70 70 10000 

D 10000 10000 10000 60 10000 10000 10000 60 

E 10000 10000 10000 10000 30 10000 10000 10000 

F 10000 10000 10000 10000 10000 40 10000 10000 

G 10000 10000 10000 10000 10000 10000 50 10000 

H 10000 10000 10000 10000 10000 10000 10000 40 

 

Table 2.1: The Pij Matrix for Example 1 
 

 

 A B C D E F G H 

A 1 1 0 1 0 0 0 0 

B 0 0 0 0 0 0 0 0 

C 0 0 1 0 0 0 1 0 

D 0 0 0 0 0 0 0 0 

E 0 0 0 0 1 0 0 0 

F 0 0 0 0 0 1 0 0 

G 0 0 0 0 0 0 0 0 

H 0 0 0 0 0 0 0 1 

 

Table 2.2: The Xij Solution Matrix for Example 1 

 

 

Example 1 was solved using MS Excel and obtained the solution shown in Table 

2.2.  The solution indicates that views A, C, E, F, and H should be chosen for 

materialization to minimize the total weighted number of pages to be retrieved.  The 

objective function value for this solution is 490.  In addition the solution specifies that 
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queries based on views B, D and G should be answered respectively using views A, A 

and C which are the most economical views among all views materialized by the 

solution.  This accounts for all of the required views in the data cube.  It is important to 

note that alternate optimal solutions also exist.  For example, a solution where views A, 

B, C, D, E are materialized with view F obtained from view B, view G obtained from 

view C, and view H obtained from view D also gives an objective function value of 490. 

 

Problem 2: 

 

∑∑
i j

ijijj PxwMin :  (6) 

 
Such that: 
 

jx
i

ij ∀=∑ ,1  (7) 

 

jixx iiij ≠∀≤ ,  (8) 

 

SPx
i

iiii ≤∑   (9) 

 

01 orxij =  (10) 

 
 
Where: 
 

},,3,2,1{ totalTN K=  

Nji ∈,  

jw   = Weight assigned to view j 

 

 ijP   = Number of pages associated with view i, if view i is an ancestor of j   

        = M otherwise 
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 S     = Maximum number of pages that can be stored 
  

totalT = Total number of required views in a given data cube 

 

Explanation: 

For a given materialization scheme, (6) gives the minimum total weighted number 

of pages to be retrieved to obtain all the views in a data cube.  The constraints in (7) 

ensure that every required view can be obtained, and each is obtained from exactly one 

source.  The constraints in (8) ensure that a view j can be obtained from some view i only 

and only if view i is materialized.  The constraint in (9) ensures that the number of pages 

that can be stored does not exceed ‘S’.  The constraints in (10) make sure that queries 

requiring view j is answered by using the appropriate materialized view. If xij = 1, it 

implies that queries on view j is answered using view i and 0 otherwise. xii = 1 implies 

that view i is materialized and 0 implies that it is not materialized.  A special case of this 

formulation arises when all the weights are equal, and without loss of generality are set 

equal to 1, i.e., jw  = 1. 

 

Problem 3: 

 

ZMin :  (11) 
 
Such that: 
 

jx
i

ij ∀=∑ ,1  (12) 

 

jixx iiij ≠∀≤ ,  (13) 

 



27 

   

Tx
i

ii ≤∑  (14) 

 

jZPxw jij

i

ijj ∀=∑ ,  (15) 

 

jZZ j ∀≥ ,  (16) 

 

01 orxij =  (17) 

 
 
Where: 
 

},,3,2,1{ totalTN K=  

Nji ∈,  

jw   = Weight assigned to view j 

 

 ijP   = Number of pages associated with view i, if view i is an ancestor of j   

        = M otherwise 
 
 T  = Maximum number of views that can be materialized 

 

 totalT  = Total number of required views in a given data cube 

 

 jw  = Weight of view j 

 

 jZ  = Weighted number of pages that must be retrieved to obtain view j 

 
 Z = Maximum weighted number of pages that must be retrieved to obtain any 

of the required views in a given data cube 
 

 

Explanation: 

The objective function in (11) minimizes the maximum weighted number of 

pages to be retrieved to obtain all the required views in the data cube.  Equations in (12) 

ensure that every required view can be obtained, and each is obtained from exactly one 

source.  This will in general be the most economical view.  However, if there are 
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alternate solutions, this view may be any of the views materialized by the solution.  

Equations in (13) ensure that view j can be obtained from view i only and only if view i is 

materialized.  Equation (14) ensures that a maximum of ‘T’ views will be materialized. 

Equations in (15) compute the weighted number of pages retrieved to obtain each view j.  

Equations in (16) ensure that the optimal Z is greater than equal to all weighted number 

of pages retrieved for all of the views. The constraints in (17) make sure that queries 

requiring view j is answered by using the appropriate materialized view. If xij = 1, it 

implies that queries on view j is answered using view i and 0 otherwise. xii = 1 implies 

that view i is materialized and 0 implies that it is not materialized. 

 

Example 2: 

For the data cube shown in Figure 2.1, and the associated required views 

described in it, the Pij matrix is shown in Table 2.1.  Let T = 5.  Solve this example using 

the formulation given in Problem 3.  

 

 

 A B C D E F G H 

A 1 0 1 1 0 0 0 1 

B 0 1 0 0 0 0 0 0 

C 0 0 0 0 0 0 0 0 

D 0 0 0 0 0 0 0 0 

E 0 0 0 0 1 0 0 0 

F 0 0 0 0 0 1 0 0 

G 0 0 0 0 0 0 1 0 

H 0 0 0 0 0 0 0 0 

 
Table 2.3: The Xij Solution Matrix for Example 2 
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Example 2 is solved using MS Excel and obtained the solution shown in Table 

2.3. The solution indicates that views A, B, E, F, and G should be chosen for 

materialization to minimize the maximum weighted number of pages to be retrieved.  The 

objective function value for this solution is 600.  In addition it tells us that views C, D, 

and H should be obtained from view A.  This accounts for all of the ‘T’ views to be 

materialized.  This problem typically has alternate optimal solutions. 

 

Problem 4: 

 

ZMin :  (18) 
 
Such that: 
 

jx
i

ij ∀=∑ ,1  (19) 

 

jixx iiij ≠∀≤ ,  (20) 

 

SPx
i

iiii ≤∑  (21) 

 

jZPxw jij

i

ijj ∀=∑ ,  (22) 

 

jZZ j ∀≥ ,  (23) 

 

01 orxij =  (24) 

 
Where: 
 

},,3,2,1{ totalTN K=  

Nji ∈,  

 ijP    = Number of pages associated with view i, if view i is an ancestor of j   

         = M otherwise 
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 S  = Maximum number of pages that can be stored 
 

 jw  = Weight of view j 

 

 jZ  = Weighted number of pages that must be retrieved to obtain view j 

 
 Z = Maximum weighted number of pages that must be retrieved to obtain any 

of the required views in a given data cube 
 

totalT = Total number of required views in a given data cube 

 

Explanation: 

The objective function in (18) requires the minimization of the maximum 

weighted number of pages to be retrieved to obtain all the views in the data cube.  

Equations in (19) ensure that every required view can be obtained, and each is obtained 

from exactly one source.  This will in general be the most economical view.  However, if 

there are alternate solutions, this view may be any of the views materialized by the 

solution.  Equations in (20) ensure that view j can be created from view i only when view 

i is materialized.  Equation (21) ensures that the number of pages that can be stored does 

not exceed ‘S’.  Equations in (22) compute the weighted number of pages retrieved to 

obtain each view.  Equations in (23) ensure that the optimal Z is greater than equal to all 

weighted number of pages retrieved for all of the views.  The constraints in (24) make 

sure that queries requiring view j is answered by using the appropriate materialized view. 

If xij = 1, it implies that queries on view j is answered using view i and 0 otherwise. xii = 1 

implies that view i is materialized and 0 implies that it is not materialized. 

In the next section, we present the heuristic procedures developed for various 

versions of the MVS problem. 
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2.5 Heuristic Procedures for the MVS Problem 

 

In this section, we present the heuristic procedures for Problem 3 and Problem 4 

defined in Section 2.3. 

 

2.5.1 Selection of Views Under the Number of Views to be 

Materialized Constraint 

 

We have employed the lattice framework (as used by the HRU heuristic) to 

capture the dependencies among the views to formulate our heuristic procedures for 

various versions the MVS problem. Below, we present a heuristic procedure for Problem 

3 defined in Section 2.3: 

 

Bottleneck Heuristic 1: 

Step 1. Let k be the maximum number of views that may be materialized. Let |N| 

denote the cardinality of the set N. Let set N be the set of all views under 

consideration, which will initially be all views except the root view A. Let M be 

the set of views to be materialized. Initially, let M = {A} where view A is the 

root view which is required to be materialized. Let wj be the weight associated 

with view j and let nj be the number of pages required to represent 

materialization of view j. For each view j, calculate fj = wj * (minimum number 

of pages to be retrieved to answer queries related to view j in the current 



32 

   

solution which has materialized all views in M). Let the objective function value  

Z = Max (fj for MNj U∈ ).  

Step 2. For each view Nj∈ , calculate Zj for Nj∈ , where Zj is the objective function 

value if view j were to be materialized in addition to all the views in M. Let 

view Nj ∈′ be such that it maximizes (Z- Zj) for Nj∈  and (Z- Zj) >0.  If there 

is no such j′ , go to Step 3. Otherwise, let jMM ′= U , jNN ′−= . Set jZZ ′= . 

If |M| = k go to Step 3 else repeat Step 2.  

Step 3. Views to be materialized are given by the set M. Z gives the objective function. 

 

Example 3: 

Applying Algorithm 1 to the problem whose lattice diagram is shown in Figure 

2.1, we get the following: 

 

Step 1. Let M = {A} and N = {B, C, D, E, F, G, H}. The set of weights associated with 

views A through H be {1, 10, 2, 3, 20, 15, 10, 5}. Initial value of the objective 

function Z = Max{1*100, 10*100, 2*100, 3*100, 20*100, 15*100, 10*100, 

5*100} = 2000. 

Step 2. For each node j calculate Zj. Next, details of the calculation of ZB corresponding 

to materializing view B is given by ZB = Max{1*100, 10*50, 2*100,3*100, 

20*50, 15*50, 10*100,5*100} = 1000. Similarly, Zj for nodes C through H is 

given by {2000, 2000, 1500, 2000, 2000, 2000}. So j′  will be B. So M = {A, 

B}. N = {C, D, E, F, G, H}. Z = 1000.   
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Repeat Step 2. Calculate Zj for nodes C through H = {1000, 1000, 1000, 1000, 

1000, 1000}. Since there is no such node j that satisfies (Z- Zj) >0 for    

Nj∈ , we go to Step 3. 

Step 3. Applying Step 3, the solution is: M = {A, B}, and Z = 1000.  

 

 

2.5.2 Selection of Views Under the Storage Space Constraint 

 

Below, we present the stepwise procedure for Bottleneck Heuristic 2 for Problem 

4 defined in Section 2.3: 

 

Bottleneck Heuristic 2: 

Step 1. Let S be the total storage space available before materializing the root view. Let 

set N be the set of all views under consideration, which will initially be all 

views except the root view A. Let M be the set of views to be materialized. 

Initially, let M= {A} where view A is the root view which is required to be 

materialized and this will be the current solution. Let Q be the set of views that 

may not be considered. Initially Q will be empty. Let wj be the weight 

associated with view j and let nj, Sj respectively be the number of pages 

required, and space required to materialize view j. Let SM be the space required 

to materialize all the views in the set M. For each node j, calculate fj = wj * 
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(min. # or rows to be retrieved to answer queries related to view j in the current 

solution). Let the objective function value Z = Max (fj for MNj U∈ ).  

Step 2. For each view QNj −∈ , calculate Zj for QNj −∈  where Zj is the objective 

function value if view j were to be materialized in addition to all other views in 

M. Let view QNj −∈′  be such that it maximizes (Z- Zj) for QNj −∈  and  

(Z- Zj) >0.  If there is no such j′ , go to Step 4 else go to Step 3. 

Step 3.  If there is such a j′  and if 0≥−− ′jM SSS , then let jMM ′= U , jNN ′−= . 

Set jZZ ′= . Go to Step 2. In case there are ties between more than one such j', 

they are broken arbitrarily. Else if 0<−− ′jM SSS , that implies that there is not 

enough space left to accommodate view j′ . Reset jQQ ′= U . Go to Step 2.  

Step 4. Views to be materialized are given by the set M. Z gives the objective function. 

In the next section, we discuss and compare the results obtained using HRU 

heuristics and Bottleneck heuristics (Bottleneck Heuristic 1 and Bottleneck Heuristic 2) 

with the results obtained using the 0-1 Integer Programming models. 

 

 

2.6 Experimental Results 

 

We randomly generated 10 instances of data cubes each with 32 required views 

and 64 required views.  The procedure of generating problem instances is described in 

brief below. 
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For our experiments, we have generated problem instances for a given number of 

dimensions. We have not used any levels in those dimensions. For a given number of 

dimensions with no levels present in them, the number of cuboids present in a given data 

cube will be given by n2 , where n is the number of dimensions. 

 

 

Figure 2.2: Data Cube Problem Instance 

 

 

For example, let’s say n = 3. So we will be having eight cuboids. Following 

diagram denotes the data cube and the associated cuboids. 

We will name the root view as View 1 having data aggregated by three 

dimensions i.e. 1, 2 and 3, and assume that it will consist of 10000 rows. Next we will 

find all the possible combinations of two dimensions out of these three. So the possible 

combinations are View 2 having data aggregated by dimensions 1 and 2, View 3 having 

data aggregated by dimensions 2 and 3 and View 4 having data aggregated by 1 and 3 

and all of them are answered from the root view 123. For each of these views, we will 
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assume the number of rows will be drawn from a uniform distribution 

UNFI(0.6,1)*Min(number of rows in the set of immediate parents of the node). In this 

case, it has only one parent and it is the root view with 10,000 rows. Number of rows 

present in each of these views is shown in Figure 1.2. Next we will find all the possible 

combination of one dimension out of the three, which will result in the View 5, View 6 

and View 7. Again in each of these views, the number of rows is generated as explained 

above. The last view will be having just one row which will be having data 

summarization by all the dimensions.  

Next, we generated the 0-1 Integer Programming model for each of the problems 

defined in Section 2.3 and found the cost of optimal solution for each instance of these 

problems using LINGO software.  Finally, we found the cost of solution to each of these 

problem instances using HRU Heuristics 1 and 2 (refer to Section 2.2), and the 

Bottleneck Heuristics 1 and 2 (refer to Section 2.5). 

In Table 2.4, we have presented the cost comparison between the optimal 

solution, which is the number of pages to be retrieved, for the special case of Problem 1 

described in Section 2.3, and the corresponding cost of solution obtained by the HRU 

Heuristic 1 under the number of views to be materialized constraint.  Here, we have 

limited the number of views to be materialized to 10 and 20 for problems with 32 

required views and 64 required views respectively.  We found that the HRU Heuristic 1 

comes within 1% of the optimal solution in all of the 20 problem instances.  Furthermore, 

the HRU Heuristic 1 found the optimal solution for 10 of the 20 problem instances.  For 

the size and complexity of problems tested here, the HRU Heuristic 1 seems to be a good 

method for solving Problem 1. 
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Cost of Solution  

(no. of Pages to be 

retrieved) 
 

Problem 

Instance 

Number 

Number of 

Required 

Views 

Number of 

Views to be 

Materialized 
 

Optimal 

HRU 

Heuristic 1 

 

% 

Deviation 

1.1 32 10 163400 163500 0.06 

1.2 32 10 153200 154250 0.69 

1.3 32 10 131900 132000 0.08 

1.4 32 10 138850 138850 0.00 

1.5 32 10 164400 164400 0.00 

1.6 32 10 171400 173000 0.93 

1.7 32 10 176500 176640 0.08 

1.8 32 10 182200 182200 0.00 

1.9 32 10 159600 159600 0.00 

1.10 32 10 134900 134900 0.00 

1.11 64 20 262070 262070 0.00 

1.12 64 20 224625 225715 0.49 

1.13 64 20 248900 248900 0.00 

1.14 64 20 232900 232900 0.00 

1.15 64 20 250600 250600 0.00 

1.16 64 20 264850 264990 0.05 

1.17 64 20 303455 303455 0.00 

1.18 64 20 230320 231600 0.56 

1.19 64 20 269720 270440 0.27 

1.20 64 20 305715 305995 0.09 

 
Table 2.4: Cost Comparison Between Optimal Solution and HRU Heuristic 1 Solution for 

the Special Case of Problem 1 
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Cost of Solution  

(no. of Pages to be 

retrieved) Problem 

Instance 

Number 

Number of 

Required 

Views 

Available Space 

as Proportion of 

Total Space 
 

Optimal 

HRU 

Heuristic 2 

 

% 

Deviation 

2.1 32 0.5 150431 151491 0.70 

2.2 32 0.5 141811 142021 0.15 

2.3 32 0.5 122016 122251 0.19 

2.4 32 0.5 126451 126651 0.16 

2.5 32 0.5 154481 154706 0.15 

2.6 32 0.5 158201 158641 0.28 

2.7 32 0.5 160801 160801 0.00 

2.8 32 0.5 167741 167741 0.00 

2.9 32 0.5 147701 147701 0.00 

2.10 32 0.5 126101 126351 0.20 

2.11 64 0.5 246025 246169 0.06 

2.12 64 0.5 208958 208969 0.01 

2.13 64 0.5 232896 233194 0.13 

2.14 64 0.5 217278 217486 0.10 

2.15 64 0.5 234274 234797 0.22 

2.16 64 0.5 244027 244036 0.00 

2.17 64 0.5 279617 280481 0.31 

2.18 64 0.5 209525 210121 0.28 

2.19 64 0.5 247951 248126 0.07 

2.20 64 0.5 287368 288394 0.36 

 
Table 2.5: Cost Comparison Between Optimal Solution and HRU Heuristic 2 Solution for 

the Special Case of Problem 2 
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Cost of Solution  

(weighted number of pages 

to be retrieved) 
Problem 

Instance 

Number 

Number of 

Required 

Views 

Number of 

Views to be 

Materialized 
 

Optimal 

Bottleneck 

Heuristic 1 

 

% 

Deviation 

3.1 32 10 810000 810000 0.00 

3.2 32 10 930000 930000 0.00 

3.3 32 10 768000 768000 0.00 

3.4 32 10 648000 648000 0.00 

3.5 32 10 855000 855000 0.00 

3.6 32 10 910000 910000 0.00 

3.7 32 10 770000 770000 0.00 

3.8 32 10 400500 436500 8.99 

3.9 32 10 950000 950000 0.00 

3.10 32 10 680000 680000 0.00 

3.11 64 20 810000 810000 0.00 

3.12 64 20 810000 980000 20.99 

3.13 64 20 830000 830000 0.00 

3.14 64 20 970000 970000 0.00 

3.15 64 20 846000 980000 15.84 

3.16 64 20 570000 570000 0.00 

3.17 64 20 651000 960000 47.47 

3.18 64 20 950000 950000 0.00 

3.19 64 20 930000 930000 0.00 

3.20 64 20 980000 980000 0.00 

 
Table 2.6: Cost Comparison Between Optimal solution and Bottleneck Heuristic 1 

Solution for Problem 3 
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Cost of Solution  

(weighted number of pages 

to be retrieved) 
Problem 

Instance 

Number 

Number of 

Required 

Views 

Available Space 

as Proportion of 

Total Space 
 

Optimal 

Bottleneck 

Heuristic 2 

 

% Deviation 

4.1 32 0.5 810000 810000 0.00 

4.2 32 0.5 930000 930000 0.00 

4.3 32 0.5 768000 768000 0.00 

4.4 32 0.5 648000 648000 0.00 

4.5 32 0.5 855000 855000 0.00 

4.6 32 0.5 910000 910000 0.00 

4.7 32 0.5 770000 770000 0.00 

4.8 32 0.5 400500 400500 0.00 

4.9 32 0.5 950000 950000 0.00 

4.10 32 0.5 680000 880000 29.41 

4.11 64 0.5 810000 810000 0.00 

4.12 64 0.5 810000 980000 20.99 

4.13 64 0.5 830000 960000 15.66 

4.14 64 0.5 970000 970000 0.00 

4.15 64 0.5 846000 980000 15.84 

4.16 64 0.5 570000 950000 66.67 

4.17 64 0.5 651000 960000 47.47 

4.18 64 0.5 950000 950000 0.00 

4.19 64 0.5 930000 930000 0.00 

4.20 64 0.5 980000 980000 0.00 

 

Table 2.7: Cost Comparison Between Optimal solution and Bottleneck Heuristic 2 
Solution for Problem 4 
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However, it is not possible to generalize this observation for situations where 

there are more required views and perhaps more complex dependencies.  Harinarayan et 

al. (1999) have identified problem structures where their heuristic will not perform well.  

Furthermore, they have found an upper bound to the extent of the error.  For situations 

requiring three views to be materialized (including the base cuboid), this upper bound is 

25%. 

The cost comparison between the optimal solution and the corresponding cost of 

solution obtained by the HRU Heuristic 2 under the storage space constraint for the 

special case of Problem 2 (refer to Section 2.3) is shown in Table 2.5.  The amount of 

space available is assumed to be 50% of the total space required to materialize all the 

required views including the root view in the given data cube.  We found that the HRU 

Heuristic 2 again comes within 1% of the optimal solution.  However, in this case the  

HRU Heuristic 2 found the optimal solution only in 20% of the problem instances as 

compared to 50% of the problem instances in Problem 1 using HRU Heuristic 1. 

 Table 2.6 shows the cost comparison between the optimal solution and the cost of 

solution obtained by the Bottleneck Heuristic 1 under the number of views to be 

materialized constraint for Problem 3 (refer to Section 2.3).  We found that the 

Bottleneck Heuristic 1 reached the optimal solution in all but four instances.  In these 

instances the deviation varied between 8.99% and 47.47%.  This is probably due to the 

heuristic’s premature stopping condition as implemented in our computer program. 

The cost comparison between the optimal solution and the cost of solution 

obtained by the Bottleneck Heuristic 2 under the storage space constraint for Problem 4 

(refer to Section 2.3) appears in Table 2.7.  We found that the heuristic did not find the 
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optimal solution in six instances.  In these instances the deviation from the optimal varied 

between 15.66% and 66.67%.  Furthermore, our experimental evaluation of Problem 1 

through Problem 4 points to the fact that the space constrained environment is more 

demanding on the heuristic; i.e., it seems to find the optimal solution in fewer instances.  

In the next section, we conclude this chapter and suggest future research 

directions. 

 

 

2.7 Conclusions and Future Research 

 

In this chapter, we have presented two heuristic procedures for solving two 

versions of the MVS problem.  In the first heuristic procedure (Bottleneck Heuristic 1), 

the constraint is the maximum number of views that can be materialized. In the second 

heuristic (Bottleneck Heuristic 2), the constraint is the total storage space available for 

materialization of views. We have also developed the 0-1 Integer Programming models 

for four different versions of the MVS problem.  We used these formulations to solve 10 

problem instances each with 32-node and 64-node data cubes.  We then compared the 

cost of optimal solution with the corresponding cost of solution obtained by applying 

various heuristic procedures.   

Our findings indicate that the heuristics used to solve the problem instances come 

very close to the optimal solutions.  Even though the problem is NP-complete, we could 

solve 64 node problems within 10 seconds for Problem 1 and Problem 3, and within 90 

seconds for Problems 2 and Problem 4 on a 466 MHz machine (refer to Section 2.3) 
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using our formulation. It takes more time to solve problems with the storage space 

constraint as it puts higher burden on the system to check each possible combination to 

find the best set of views to materialize for obtaining optimal solution. 

Further research in this area should perhaps be focused upon some of the related 

practical aspects of data warehouse management.  For example, how well do the 

problems defined here address the real life problems faced by data warehouse 

administrators?  The formulations presented here do not consider view maintenance 

costs.  Further research is needed in this area. In the heuristic procedures developed here, 

weight for each node in a given lattice structure is generated randomly. In further 

research, one can also pursue the issues concerning developing a systematic process for 

defining the weights for views and performing sensitivity analysis of weights on the 

heuristics solutions. 



44 

 
 
 

CHAPTER 3: STATISTICAL SAMPLING TO 
INSTANTIATE MVS PROBLEM INSTANCES 

 
 

3.1 Introduction 

 

As described in the previous chapter, materialized views can speed up the 

execution of many queries (Gupta 1999, Harinarayan et al. 1999). For complex queries 

involving large volumes of data, the scope for speeding up using materialized views is 

very high. The HRU heuristics (HRU Heuristic 1 and HRU Heuristic 2) as well as the 

heuristic procedures reported in Chapter 2 assume that the number of pages (surrogate for 

rows) present in each node in a given lattice structure is known prior to applying the 

heuristic. In a large multidimensional data cube, there may be a large number of nodes in 

a lattice structure. Determining the number of rows in each of these nodes (views) may 

also be a time-consuming process. In these days of on-line real-time decision making, the 

data warehouse administrator may not be able to afford the necessary time of this 

magnitude before he/she applies a heuristic to determine the views to be materialized.   

In this chapter, we explore the use of statistical sampling methodologies to 

estimate the number of rows present in each node in a given lattice structure.  Here, we 

estimate the rows, which is a surrogate measure for the pages used in previous chapter. 

We assume that the root node is always materialized as were the cases in Harinarayan, 

Rajaraman, and Ullman’s work (1996, 1999).  The root node is assumed to contain the 
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lowest level of aggregated data and the keys to appropriate levels of the dimensions of a 

cube. Thus, it is possible to take a sample from it and estimate the number of rows that is 

expected to be in a particular derived node.   

In the database related literature, several researchers have developed a number of 

sampling techniques to estimate the number of unique rows in a relation. We employ 

three of these sampling techniques to estimate the number of rows present in each node 

of a 27-node lattice structure. Subsequently we apply appropriate HRU heuristic (HRU 

Heuristic 1 or HRU Heuristic 2) to solve the MVS problem (Problem 1 with equal 

weights or Problem 2 with equal weights, respectively) twice: once with the actual 

number of rows, and once with the estimated number of rows. We also apply the 0-1 

Integer Programming model to solve Problem 1 with equal weights, and actual number of 

rows to determine the optimal solution. Finally we compare the solutions obtained by 

applying the HRU heuristics on the actual as well as the estimated data with the optimal 

solution obtained by applying the 0-1 Integer Programming model on the actual data set.  

In the next section, we present the sampling literature related to finding the 

number of unique rows in a relation. In Section 3.3, we present the methodology adopted 

for estimating the number of rows for the MVS problem instances for two realistic data 

warehouses. In Section 3.4, we discuss two realistic lattice instances that we generated 

for testing purposes, and present the results of our experiments. The overall results are 

briefly discussed in Section 3.5. We conclude the chapter with possible future research 

directions in Section 3.6. 
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3.2 Sampling Literature Related to the Number of Unique Rows 

 

Suppose that the root node View0 contains the monthly sales data for different 

cities in different countries. Also, suppose that the SQL query for a descendant view 

View1 is “SELECT SUM (sales) FROM View0 GROUP BY country.”  If View0 contains 

n unique countries, it is clear that View1 will also contain exactly n rows. Thus, 

estimating the number of rows in a view of a data cube is essentially the same as 

estimating the number of distinct values of an attribute in a relation. Since the root view 

contains the least aggregated data, and since it is always materialized, it can be used to 

estimate the number of rows in all other views.   

In the statistics literature, the problem of estimating the number of classes is a 

well-studied problem that is equivalent to the distinct-value estimation problem in the 

data warehouses (Bunge and Fitzpartick 1993). This problem has also been extensively 

researched in the database literature. For a thorough analysis refer to the work by Hass et 

al. (1995). They have devised several new estimators including the hybrid estimator that 

appears to outperform the estimators developed in prior literature, both for real and 

synthetic data set. This hybrid estimator first uses a chi-squared test to decide whether the 

data has low skew or high skew. Accordingly, it applies a smoothed jackknife estimator in 

the former case and the Shlosser Estimator in the latter case. In this dissertation, we will 

denote this as HYBSHLO estimator. Hass and Stokes (1998) have done an extensive 

study of several generalized jackknife estimators, relating previously known estimators 

and proposing new ones. 
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Charikar et al. (2000) have devised an estimator called Guaranteed-Error 

Estimator (GEE). They pointed out that the GEE performed well for data with high skew 

or with relative few low frequency elements, which was demonstrated in their 

experimental results. By the same reasoning, they pointed out that the GEE would not 

perform as well (in fact will severely underestimate) for data which has both low skew 

and a large number of distinct values; again, this was demonstrated in their experimental 

results. In case of high-skew real-world data as well as synthetic data, they found that the 

GEE outperforms the Shlosser Estimator. So they suggested a modified version of 

HYBSHLO estimator which substitutes the GEE for the Shlosser estimator in the case of 

high-skew data. This is denoted as the HYBGEE (for Hybrid with the GEE). Their 

experimental results show that HYBGEE gives a significant reduction in error compared 

to HYBSHLO. 

Charikar et al. (2000) through their extensive empirical evaluation, further 

pointed out that to ensure accuracy, the estimation procedure needs to take into account 

characteristics of the input distribution. Keeping this in mind, they analytically derived an 

estimator called the Adaptive Estimator (AE), a modified version of the GEE that adapts 

to the input distribution of data so as to avoid the problem faced by the GEE for data 

having both low skew and large number of distinct values. 

In this dissertation, we have investigated three estimators. These are the Shlosser 

Estimator (Shlosser 1981, Hass et al. 1995), the GEE (Charikar et al. 2000), and the AE 

(Charikar et al. 2000). The details of these estimators are available in the respective 

referenced papers. In this section, we will simply include the computational expressions 

that have been used to estimate these three statistics. 
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Let, 

n = number of rows in a relation, 

r = number of rows in a sample drawn from a relation,  

d = number of distinct values of an attribute or of a composite attribute that 

      appears in the sample 

D̂ = estimate for the number of distinct values of an attribute or a composite 

attribute that exists in the population. 

 

For ri ≤≤1 , let fi be the number of attribute values that appear exactly i times in 

the sample of size r. Thus, ∑ =
=

r

i ifd
1

 and ∑ =
=

r

i iifr
1

 

 

We applied sanity bounds to all the estimators used to ensure that nDd ≤≤
∧

; i.e., 

if nD >
∧

, we set 
∧

D  to n and if 
∧

D  < d, we set 
∧

D  to d  (Charikar et al. 2000). With the 

above notations, we have computed the relevant estimates using the following 

computational expressions. 

 

 

Shlosser Estimator: (Ref: Hass et al. 1995, and Shlosser 1981) 
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where, q = r/n  (is the probability with which each tuple is included in the sample, 

independently of all other tuples.) 

 

 

GEE: The Guaranteed-Error Estimator: (Ref: Charikar et al. 2000) 
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AE (The Adaptive Estimator): (Ref: Charikar et al. 2000) 
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where m is the number of low frequency values. 

In the next section, we briefly outline the methodology adopted in our 
experiments. 
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3.3 Methodology 

 

Consider a lattice with n views named v0, v1, v2 … vn-1. Let ri and ir̂  be the actual 

and estimated number of rows in vi, respectively. We can employ the HRU heuristics 

(HRU Heuristic 1 and HRU Heuristic 2) to solve Problem 1 with equal weights or 

Problem 2 with equal weights (refer Chapter 2), as warranted, using the values of ri’s. 

Our objective is to investigate if we can use the estimated values of the ri’s and get an 

acceptable solution. To accomplish the objective, we have employed the following 

procedures: 

1. Use the HRU heuristics to solve an instance of Problem 1 with equal weights or 

Problem 2 with equal weights, as warranted, using the actual number of rows in 

the views.  

2. Employ three alternative estimators to estimate the number of rows in the views. 

Apply these estimates to solve the problem instances generated using each 

estimating method.  

3. Use the 0-1 Integer Programming model to determine the optimal solution (with 

the actual number of rows in each view).  

4. Finally compare the above solutions. 

 

For generating problem instances, we need a lattice structure. For our 

investigation, we have constructed two 27-node lattice instances viz. Lattice Instance 1 

(TPCH database) and Lattice Instance 2 (AANS database). These lattice instances are 

discussed briefly below. 
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3.3.1 Lattice Instance 1 (TPCH Database) 

 

In this case, we have first populated a 1-GB TPCH Benchmark database 

(http://www.tpc.org/tpch/spec/h130.pdf). Then we populated the root node from this 

database using the Customer (C), Part (P), Month (M) dimensions, and the “Sale” 

measure.   

 

 
Figure 3.1: Lattice Instance 1 with Actual Number of Rows  

(Source: TPCH Benchmark Database)* 
* To keep the diagram simple, many dependencies have not been shown 

Last Cuboid 

or Last View 

Base Cuboid 

or Root View 
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The actual number of rows in each view was counted from the root node. In the 

remainder of the chapter we will refer to this database as the TPCH database. With three 

dimensions and two levels in each dimension, we have a 27-node lattice instance. This 

lattice diagram along with the row counts is shown in Figure 3.1.  

 

 

3.3.2 Lattice Instance 2 (AANS Database) 

 

At 1-GB level, the TPCH database does not represent a realistic transaction 

database. For example, no customer appears to have ordered the same product more than 

once. Thus some of the higher level nodes tend to have the same number of records as do 

their parents (see Figure 3.1). This is not a shortcoming of the TPCH database. We 

assume that if the root node were instantiated from a very large database (like 100 GB), 

perhaps it would have behaved differently. However, the limitations on our 

hardware/software configuration forced us not to go beyond a 1-GB database.  This is 

why we created our own 1-GB database. In the remainder of the chapter we will refer to 

this database as the AANS database. In this database, the daily transactions were created 

randomly from certain predefined probability distributions with the expectation that the 

number of rows in a descendent view would be in general be somewhat less than the 

number of rows in its ancestor view. Again we have considered the same three 

dimensions as were the case in TPCH database. This 27-node instance of the lattice along 

with row counts is shown in Figure 3.2  
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Figure 3.2: Lattice Instance 2 with Actual Number of Rows  

(source: AANS Database) * 
* To keep the diagram simple, many dependencies have not been shown 

 

 

3.3.3 Problem Instances for Experimentation 

 

Table 3.1 briefly defines the experimental setup that we have used in our 

experimentation. As defined earlier in this section, we have used two different lattice 

instances i.e. Lattice Instance 1 and Lattice Instance 2.  
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To generate problem instances, estimated rows for each view were obtained by 

drawing random samples without replacement with three different sample sizes, viz. 

20%, 10% and 5%. Here 20% sample size, for example, represents 20% of the total 

number of rows available in the root view for each lattice instance. As shown in Table 

3.1, for each sample size we have employed three different estimators, i.e. the Shlosser 

Estimator, the GEE and the AE, to estimate the number of rows present in each view in 

the given lattice instance for both lattice instances. 

For each sample size, and within that for each applied estimator, we have solved 

two versions of the MVS problem i.e. Problems 1 and 2 with equal weights (refer 

Chapter 2).  

For the number of views to be materialized constraint (Problem 1 with equal 

weights), we have solved it for three different settings, viz. 5 views to be materialized, 10 

views to be materialized, and 20 views to be materialized, out of 27 views in a given 

lattice instance for both lattice instances. The number of views to be materialized 

includes the root view. So if we are materializing five views, we will find the other four 

potential views to be materialized besides the root view which is always assumed to be 

materialized. 

For the storage space constraint (Problem 2 with equal weights), we have solved 

the MVS problems for two different settings. For the first setting, we assumed that 60% 

of the total space is available for materialization of views, while for the second setting, 

we assumed that 70% of the total space is available for materialization of views. Here, 

total space is the space occupied if all the views in a given 27-node lattice instance were 

materialized.  
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For example, let ‘S’ be the total space required if all the views were materialized 

including the root view, ‘r’ be the space occupied by the root view, and ‘N’ be net space 

available for materializing other views besides the root view. For 60% space constraint, 

‘N’ will be given as:  

N = 0.6*S – r 

Hence, all the other views in a given 27-node lattice instance besides the root 

view will be considered as potential candidates for selection for materialization till the 

space ‘N’ gets filled. 

Our extensive empirical evaluation points to the fact that the root view itself 

occupies almost 40% to 55% of the total space available by itself as it holds the lowest 

level of aggregated data. This is the main reason we have selected 60% and 70% of the 

total space as sample size, respectively. As one travels down from the base cuboid to the 

last cuboid in a given lattice instance (refer to Figure 3.1 and 3.2), the number of rows 

present in each view decreases by at least one order of magnitude for each level. In some 

instances, the reduction may be more drastic.  

For each lattice instance, we first applied the 0-1 integer programming model to 

the actual data for each formulations (Problems 1 and 2 with equal weights) to find the 

cost of optimal solution for various previously mentioned settings (refer to Table 3.1) for 

each resource constraints. For the same settings, we then applied the HRU heuristics 

(Problems 1 and 2 with equal weights) to the actual data to find the cost of the solutions 

for each lattice instance. Then we applied the HRU heuristics to the estimated data for all 

the previously mentioned settings (refer to Table 3.1) to find the cost of solutions. Finally 

we compared the cost of solutions obtained by applying the HRU heuristics on the actual 



57 

   

as well as on the estimated data with the optimal solution obtained by applying the 0-1 

Integer Programming model on the actual data. 

So that we can compare the cost of the solutions obtained by the appropriate HRU 

heuristic with the cost of the optimal solutions obtained by the 0-1 Integer Programming 

model, we used the following procedure: Let ri be the actual number of rows present in a 

view v and ir
∧

 be the estimated number of rows present in a view v. 

1. First, the appropriate HRU heuristic was employed to solve problem instances 

with ri. Let us refer to this solution as XH, which is the set of views to be 

materialized. 

2. Then, the appropriate HRU heuristic was employed to solve problem instances 

with ir
∧

. Let us refer to this solution as HX
∧

, which is the set of views to be 

materialized. 

3. Then, the 0-1 Integer Programming model was employed to solve problem 

instances with ri. Let us refer to this solution as XIP, which is the optimal set of 

views to be materialized. 

4. Let Z(XH), Z( HX
∧

) and Z(XIP) be the objective function values using ri and 

solutions XH, HX
∧

 and XIP, respectively. 

5. Finally, we compared Z(XH), Z( HX
∧

) and Z(XIP) and reported the deviations of 

cost of solutions for all problem instances (refer to Table 3.1). 

In the next section, we report and briefly discuss the experimental results for 

various mentioned settings. 
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3.4 Experimental Results 

 

The root nodes of both lattice instances were populated from their respective 

database in Microsoft’s SQL Sever database.  Then we applied three estimators (refer to 

Section 3.2) to estimate the number of rows present in the remainder of the views for 

both lattice instances. In all estimating procedures, we have used three different sample 

sizes, viz. 20%, 10% and 5% for drawing random samples without replacement from the 

respective population (i.e. root view). For each lattice instance, all estimates were 

computed using the same sample for respective sample sizes.  The actual and estimated 

numbers of rows for both lattice instances for different sample sizes are shown in Tables 

3.2 through 3.7.  In these tables, we have also shown the Absolute Deviation Proportion 

(ADP) for these estimates.   

From these tables, it appears that all three estimators tend to estimate the number 

of rows fairly accurately for the views that contain high levels of aggregated data. These 

methods, in general, tend to lose their accuracy as the number of dimensions and levels in 

each dimension in the aggregation increases. One can notice the increase in variations in 

the ADP as the sample size decreases. One reason for this could be as sample size 

decreases, variation in the respective estimation increases. Also one can notice that in 

both lattice instances, the variations in the case of the GEE were more while the variation 

in the case of the AE were the least. One reason for this could be, as mentioned earlier, 

that the AE adopts itself to the input data distribution. But the GEE performs well only 

for the data with high skew. In our case, data in both the databases, viz. TPCH and 
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AANS, are lowly skewed; with TPCH database having large number of  low frequency 

elements while AANS database having small number of low frequency elements. 

 

 

N
o
d
e
 

View 

Actual 

Rows (A) 

Shlosser 

(S) 

Abs Dev     

|A-S| 

ADP 

|A-S|/A 

GEE           

(G) 

Abs Dev      

|A-G| 

ADP 

|A-G|/A 

AE        

(E) 

Abs Dev 

|A-E| 

MAD 

|A-E|/A 

0 CPM* 6,001,192 6,001,192 0 0.000 6,001,192 0 0.000 6,001,192 0 0.000 

1 CPY 6,001,028 6,001,107 79 0.000 2,683,791 3,317,237 0.553 6,001,192 164 0.000 

2 NPM 5,710,004 5,858,214 148,210 0.026 2,642,931 3,067,073 0.537 6,001,192 291,188 0.051 

3 CTM 5,873,146 5,937,209 64,063 0.011 2,665,567 3,207,579 0.546 6,001,192 128,046 0.022 

4 NPY 5,510,833 5,753,234 242,401 0.044 2,612,666 2,898,167 0.526 6,001,192 490,359 0.089 

5 CTY 5,746,207 5,873,933 127,726 0.022 2,647,446 3,098,761 0.539 6,001,192 254,985 0.044 

6 NTM 45,000 45,000 0 0.000 45,000 0 0.000 45,000 0 0.000 

7 NTY 26,250 26,250 0 0.000 26,250 0 0.000 26,250 0 0.000 

8 CP 6,000,127 6,000,570 443 0.000 2,683,638 3,316,489 0.553 6,001,192 1,065 0.000 

9 PM 2,199,959 3,337,699 1,137,740 0.517 1,841,899 358,060 0.163 2,723,921 523,962 0.238 

10 CM 1,126,591 1,680,661 554,070 0.492 1,164,430 37,839 0.034 1,224,216 97,625 0.087 

11 NP 3,494,158 4,510,793 1,016,635 0.291 2,236,494 1,257,664 0.360 5,473,028 1,978,870 0.566 

12 PY 1,378,602 2,266,261 887,659 0.644 1,429,477 50,875 0.037 1,616,643 238,041 0.173 

13 CY 617,446 793,585 176,139 0.285 675,558 58,112 0.094 642,939 25,493 0.041 

14 NM 300 300 0 0.000 300 0 0.000 300 0 0.000 

15 CT 4,804,917 5,355,939 551,022 0.115 2,496,101 2,308,816 0.481 6,001,192 1,196,275 0.249 

16 TM 1,800 1,800 0 0.000 1,800 0 0.000 1,800 0 0.000 

17 NY 175 175 0 0.000 175 0 0.000 175 0 0.000 

18 NT 3,750 3,750 0 0.000 3,750 0 0.000 3,750 0 0.000 

19 TY 1,050 1,050 0 0.000 1,050 0 0.000 1,050 0 0.000 

20 C 99,996 100,250 254 0.003 100,723 727 0.007 100,136 140 0.001 

21 P 199,996 201,990 1,994 0.010 203,213 3,217 0.016 200,754 758 0.004 

22 M 12 12 0 0.000 12 0 0.000 12 0 0.000 

23 N 25 25 0 0.000 25 0 0.000 25 0 0.000 

24 T 150 150 0 0.000 150 0 0.000 150 0 0.000 

25 Y 7 7 0 0.000 7 0 0.000 7 0 0.000 

26 ALL* 1 1 0 0.000 1 0 0.000 1 0 0.000 

 Sum    2.459   4.445   1.566 

 
* Values are already known 

 
Table 3.2: Actual and Estimated Number of Rows for Lattice Instance 1 for  

Sample Size of 20% 
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N
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View 

Actual 

Rows (A) 

Shlosser 

(S) 

Abs Dev     

|A-S| 

ADP 

|A-S|/A 

GEE           

(G) 

Abs Dev      

|A-G| 

ADP 

|A-G|/A 

AE        

(E) 

Abs Dev 

|A-E| 

ADP 

|A-E|/A 

0 CPM* 6,001,192 6,001,192 0 0.000 6,001,192 0 0.000 6,001,192 0 0.000 

1 CPY 6,001,028 6,001,192 164 0.000 1,897,745 4,103,283 0.684 6,001,192 164 0.000 

2 NPM 5,710,004 5,920,750 210,746 0.037 1,881,898 3,828,106 0.670 6,001,192 291,188 0.051 

3 CTM 5,873,146 5,966,203 93,057 0.016 1,890,862 3,982,284 0.678 6,001,192 128,046 0.022 

4 NPY 5,510,833 5,862,811 351,978 0.064 1,870,433 3,640,400 0.661 6,001,192 490,359 0.089 

5 CTY 5,746,207 5,931,072 184,865 0.032 1,883,936 3,862,271 0.672 6,001,192 254,985 0.044 

6 NTM 45,000 45,002 2 0.000 45,004 4 0.000 45,000 0 0.000 

7 NTY 26,250 26,250 0 0.000 26,250 0 0.000 26,250 0 0.000 

8 CP 6,000,127 6,000,894 767 0.000 1,897,686 4,102,441 0.684 6,001,192 1,065 0.000 

9 PM 2,199,959 4,295,787 2,095,828 0.953 1,541,146 658,813 0.299 2,617,761 417,802 0.190 

10 CM 1,126,591 2,692,036 1,565,445 1.390 1,150,181 23,590 0.021 1,154,898 28,307 0.025 

11 NP 3,494,158 5,118,531 1,624,373 0.465 1,718,979 1,775,179 0.508 5,339,332 1,845,174 0.528 

12 PY 1,378,602 3,392,439 2,013,837 1.461 1,329,734 48,868 0.035 1,569,089 190,487 0.138 

13 CY 617,446 1,413,377 795,931 1.289 763,687 146,241 0.237 623,693 6,247 0.010 

14 NM 300 300 0 0.000 300 0 0.000 300 0 0.000 

15 CT 4,804,917 5,633,370 828,453 0.172 1,824,588 2,980,329 0.620 6,001,192 1,196,275 0.249 

16 TM 1,800 1,800 0 0.000 1,800 0 0.000 1,800 0 0.000 

17 NY 175 175 0 0.000 175 0 0.000 175 0 0.000 

18 NT 3,750 3,750 0 0.000 3,750 0 0.000 3,750 0 0.000 

19 TY 1,050 1,050 0 0.000 1,050 0 0.000 1,050 0 0.000 

20 C 99,996 107,730 7,734 0.077 109,729 9,733 0.097 101,304 1308 0.013 

21 P 199,996 282,162 82,166 0.411 254,149 54,153 0.271 210,225 102,29 0.051 

22 M 12 12 0 0.000 12 0 0.000 12 0 0.000 

23 N 25 25 0 0.000 25 0 0.000 25 0 0.000 

24 T 150 150 0 0.000 150 0 0.000 150 0 0.000 

25 Y 7 7 0 0.000 7 0 0.000 7 0 0.000 

26 ALL* 1 1 0 0.000 1 0 0.000 1 0 0.000 

 Sum    6.367   6.138   1.411 

 
* Values are already known 

 
Table 3.3: Actual and Estimated Number of Rows for Lattice Instance 1 for  

Sample Size of 10% 
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N
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View 

Actual 

Rows (A) 

Shlosser 

(S) 

Abs Dev     

|A-S| 

ADP 

|A-S|/A 

GEE           

(G) 

Abs Dev      

|A-G| 

ADP  

|A-G|/A 

AE        

 (E) 

Abs Dev 

|A-E| 

ADP 

|A-E|/A 

0 CPM* 6,001,192 6,001,192 0 0.000 6,001,192 0 0.000 6,001,192 0 0.000 

1 CPY 6,001,028 6,001,192 164 0.000 1,341,908 4,659,120 0.776 6,001,192 164 0.000 

2 NPM 5,710,004 5,958,474 248,470 0.044 1,335,952 4,374,052 0.766 6,001,192 291,188 0.051 

3 CTM 5,873,146 5,982,663 109,517 0.019 1,339,326 4,533,820 0.772 6,001,192 128,046 0.022 

4 NPY 5,510,833 5,930,291 419,458 0.076 1,332,012 4,178,821 0.758 6,001,192 490,359 0.089 

5 CTY 5,746,207 5,964,613 218,406 0.038 1,336,808 4,409,399 0.767 6,001,192 254,985 0.044 

6 NTM 45,000 46,122 1,122 0.025 46,311 1,311 0.029 45,078 78 0.002 

7 NTY 26,250 26,259 9 0.000 26,267 17 0.001 26,252 2 0.000 

8 CP 6,000,127 6,001,078 951 0.000 1,341,892 4,658,235 0.776 6,001,192 1,065 0.000 

9 PM 2,199,959 5,022,564 2,822,605 1.283 1,201,010 998,949 0.454 2,529,270 329,311 0.150 

10 CM 1,126,591 3,856,728 2,730,137 2.423 1,018,658 107,933 0.096 1,077,018 49,573 0.044 

11 NP 3,494,158 5,523,824 2,029,666 0.581 1,274,377 2,219,781 0.635 5,294,604 1,800,446 0.515 

12 PY 1,378,602 4,418,421 3,039,819 2.205 1,108,624 269,978 0.196 1,496,721 118,119 0.086 

13 CY 617,446 2,556,057 1,938,611 3.140 788,230 170,784 0.277 582,933 34,513 0.056 

14 NM 300 300 0 0.000 300 0 0.000 300 0 0.000 

15 CT 4,804,917 5,803,177 998,260 0.208 1,314,156 3,490,761 0.726 6,001,192 1,196,275 0.249 

16 TM 1,800 1,800 0 0.000 1,800 0 0.000 1,800 0 0.000 

17 NY 175 175 0 0.000 175 0 0.000 175 0 0.000 

18 NT 3,750 3,750 0 0.000 3,750 0 0.000 3,750 0 0.000 

19 TY 1,050 1,050 0 0.000 1,050 0 0.000 1,050 0 0.000 

20 C 99,996 198,386 98,390 0.984 152,001 52,005 0.520 104,579 4,583 0.046 

21 P 199,996 833,421 633,425 3.167 387,862 187,866 0.939 227,855 27,859 0.139 

22 M 12 12 0 0.000 12 0 0.000 12 0 0.000 

23 N 25 25 0 0.000 25 0 0.000 25 0 0.000 

24 T 150 150 0 0.000 150 0 0.000 150 0 0.000 

25 Y 7 7 0 0.000 7 0 0.000 7 0 0.000 

26 ALL* 1 1 0 0.000 1 0 0.000 1 0 0.000 

 Sum    14.19   8.490   1.493 

 
* Values are already known 

 
Table 3.4: Actual and Estimated Number of Rows for Lattice Instance 1 for  

Sample Size of 5% 
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N
o
d
e
  

Views 

Actual 

Rows (A) 

Shlosser 

(S) 

Abs Dev  

|A-S| 

ADP 

|A-S|/A 

GEE           

(G) 

Abs Dev  

|A-G| 

ADP  

|A-G|/A 

AE        

(E) 

Abs Dev 

|A-E| 

ADP 

|A-E|/A 

0 CPM* 9,275,377 9,275,377 0 0 9,275,377 0 0 9,275,377 0 0 

1 CPY 3,722,050 5,050,036 1,327,986 0.357 2,801,702 920,348 0.247 4,289,960 567,910 0.153 

2 NPM 1,208,341 1,246,332 242,887 0.242 1,047,691 44,246 0.044 1,016,862 13,417 0.013 

3 CTM 406,941 1,570,251 361,910 0.3 1,246,307 37,966 0.031 1,238,163 29,822 0.025 

4 NPY 1,003,445 352,443 25,472 0.078 344,281 17,310 0.053 329,426 2,455 0.008 

5 CTY 326,971 451,995 45,054 0.111 438,316 31,375 0.077 416,636 9,695 0.024 

6 NTM 73,697 74,295 598 0.008 75,125 1,428 0.019 73,939 242 0.003 

7 NTY 61,055 61,436 381 0.006 62,052 997 0.016 61,178 123 0.002 

8 CP 609,926 729,032 119,106 0.195 676,665 66,739 0.109 639,527 29,601 0.049 

9 PM 21,576 17,980 0 0 17,980 0 0 17,980 0 0 

10 CM 53,002 53,005 3 0 53,066 64 0.001 53,002 0 0 

11 NP 110,228 1,200 0 0 1,200 0 0 1,200 0 0 

12 PY 17,980 43,549 54 0.001 43,841 346 0.008 43,535 40 0.001 

13 CY 43,495 111,299 1,071 0.01 112,822 2,594 0.024 110,749 521 0.005 

14 NM 840 841 1 0.001 841 1 0.001 863 23 0.027 

15 CT 34,223 21,576 0 0 21,576 0 0 21,576 0 0 

16 TM 1,200 6,151 1 0 6,152 2 0 6,153 3 0 

17 NY 699 34,238 15 0 34,264 41 0.001 34,237 14 0 

18 NT 6,150 699 0 0 699 0 0 699 0 0 

19 TY 1,000 1,000 0 0 1,000 0 0 1,000 0 0 

20 C 4,417 4,417 0 0 4,417 0 0 4,417 0 0 

21 P 1,798 12 0 0 12 0 0 12 0 0 

22 M 12 100 0 0 100 0 0 100 0 0 

23 N 70 1,798 0 0 1,798 0 0 1,798 0 0 

24 T 100 70 0 0 70 0 0 70 0 0 

25 Y 10 10 0 0 10 0 0 10 0 0 

26 ALL* 1 1 0 0 1 0 0 1 0 0 

  Sum       1.309     0.633     0.31 

 

* Values are already known 

 
Table 3.5: Actual and Estimated Number of Rows for Lattice Instance 2 for  

Sample Size of 20% 
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N
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e
  

Views 

Actual 

Rows (A) 

Shlosser 

(S) 

Abs Dev  

|A-S| 

ADP 

|A-S|/A 

GEE           

(G) 

Abs Dev  

|A-G| 

ADP  

|A-G|/A 

AE        

(E) 

Abs Dev 

|A-E| 

ADP 

|A-E|/A 

0 CPM* 9,275,377 9,275,377 0 0 9,275,377 0 0 9,275,377 0 0 

1 CPY 3,722,050 6,450,148 2,728,098 0.733 2,339,522 1,382,528 0.371 3,879,718 157,668 0.042 

2 NPM 1,208,341 2,110,140 1,106,695 1.103 1,153,541 150,096 0.15 953,626 49,819 0.05 

3 CTM 406,941 2,619,232 1,410,891 1.168 1,325,427 117,086 0.097 1,147,385 60,956 0.05 

4 NPY 1,003,445 462,005 135,034 0.413 393,809 66,838 0.204 319,085 7,886 0.024 

5 CTY 326,971 644,579 237,638 0.584 508,797 101,856 0.25 405,828 1,113 0.003 

6 NTM 73,697 76,950 3,253 0.044 80,237 6,540 0.089 73,488 209 0.003 

7 NTY 61,055 63,077 2,022 0.033 65,938 4,883 0.08 60,969 86 0.001 

8 CP 609,926 1,186,693 576,767 0.946 787,416 177,490 0.291 623,295 13,369 0.022 

9 PM 21,576 17,980 0 0 17,980 0 0 17,980 0 0 

10 CM 53,002 53,408 406 0.008 54,103 1,101 0.021 53,096 94 0.002 

11 NP 110,228 1,200 0 0 1,200 0 0 1,200 0 0 

12 PY 17,980 43,889 394 0.009 45,196 1,701 0.039 43,397 98 0.002 

13 CY 43,495 117,359 7,131 0.065 122,197 11,969 0.109 110,176 52 0 

14 NM 840 839 1 0.001 839 1 0.001 839 1 0.001 

15 CT 34,223 21,576 0 0 21,576 0 0 21,576 0 0 

16 TM 1,200 6,152 2 0 6,163 13 0.002 6,150 0 0 

17 NY 699 34,383 160 0.005 34,693 470 0.014 34,275 52 0.002 

18 NT 6,150 699 0 0 699 0 0 699 0 0 

19 TY 1,000 1,000 0 0 1,000 0 0 1,000 0 0 

20 C 4,417 4,417 0 0 4,417 0 0 4,417 0 0 

21 P 1,798 12 0 0 12 0 0 12 0 0 

22 M 12 100 0 0 100 0 0 100 0 0 

23 N 70 1,798 0 0 1,798 0 0 1,798 0 0 

24 T 100 70 0 0 70 0 0 70 0 0 

25 Y 10 10 0 0 10 0 0 10 0 0 

26 ALL* 1 1 0 0 1 0 0 1 0 0 

  Sum       5.111     1.718     0.203 

 

* Values are already known 

 

Table 3.6: Actual and Estimated Number of Rows for Lattice Instance 2 for  
Sample Size of 10% 
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N
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Views 

Actual 

Rows (A) 

Shlosser 

(S) 

Abs Dev  

|A-S| 

ADP 

|A-S|/A 

GEE           

(G) 

Abs Dev  

|A-G| 

ADP 

|A-G|/A 

AE        

(E) 

Abs  Dev  

|A-E| 

ADP 

|A-E|/A 

0 CPM* 9,275,377 9,275,377 0 0 9,275,377 0 0 9,275,377 0 0 

1 CPY 3,722,050 7,616,304 3,894,254 1.046 1,834,523 1,887,527 0.507 3,600,477 121,573 0.033 

2 NPM 1,208,341 3,781,522 2,778,077 2.769 1,186,226 182,781 0.182 870,772 132,673 0.132 

3 CTM 406,941 4,366,060 3,157,719 2.613 1,297,470 89,129 0.074 1,033,276 175,065 0.145 

4 NPY 1,003,445 858,533 531,562 1.626 467,840 140,869 0.431 294,015 32,956 0.101 

5 CTY 326,971 1,286,073 879,132 2.16 604,712 197,771 0.486 376,842 30,099 0.074 

6 NTM 73,697 95,670 21,973 0.298 95,681 21,984 0.298 72,556 1,141 0.015 

7 NTY 61,055 73,847 12,792 0.21 76,558 15,503 0.254 59,959 1,096 0.018 

8 CP 609,926 2,382,030 1,772,104 2.905 889,752 279,826 0.459 576,479 33,447 0.055 

9 PM 21,576 17,980 0 0 17,980 0 0 17,980 0 0 

10 CM 53,002 59,295 6,293 0.119 61,362 8,360 0.158 53,478 476 0.009 

11 NP 110,228 1,200 0 0 1,200 0 0 1,200 0 0 

12 PY 17,980 48,159 4,664 0.107 50,848 7,353 0.169 43,244 251 0.006 

13 CY 43,495 165,457 55,229 0.501 150,021 39,793 0.361 108,596 1,632 0.015 

14 NM 840 838 2 0.002 838 2 0.002 838 2 0.002 

15 CT 34,223 21,576 0 0 21,576 0 0 21,576 0 0 

16 TM 1,200 6,155 5 0.001 6,219 69 0.011 6,139 11 0.002 

17 NY 699 36,369 2,146 0.063 37,965 3,742 0.109 34,473 250 0.007 

18 NT 6,150 702 3 0.004 709 10 0.014 704 5 0.007 

19 TY 1,000 1,000 0 0 1,000 0 0 1,000 0 0 

20 C 4,417 4,417 0 0 4,417 0 0 4,417 0 0 

21 P 1,798 12 0 0 12 0 0 12 0 0 

22 M 12 100 0 0 100 0 0 100 0 0 

23 N 70 1,798 0 0 1,798 0 0 1,798 0 0 

24 T 100 70 0 0 70 0 0 70 0 0 

25 Y 10 10 0 0 10 0 0 10 0 0 

26 ALL* 1 1 0 0 1 0 0 1 0 0 

  Sum       14.424     3.516     0.621 

 

* Values are already known 

 

Table 3.7: Actual and Estimated Number of Rows for Lattice Instance 2 for  
Sample Size of 5% 

 

 



65 

   

Also one can notice that for all sample sizes, variations were less in the case of 

AANS database compared to TPCH database. One reason for these could be that AANS 

database data is comparatively less skewed than the data in TPCH database or it could be 

the presence of small number of low frequency elements in AANS database. Also, as 

discussed earlier, TPCH database for 1 GB size does not represent a realistic picture. For 

example, in seven years of data, no customer has ordered the same product more than 

once. Because of this, some of the derived views have the same number of rows as their 

immediate parent. 

We have tabulated the cost of optimal and heuristic solutions for both lattice 

instances for different sample sizes viz. 20%, 10% and 5%, and resource constraints. 

Tables 3.8 through 3.10 tabulate the results for the number of views to be materialized 

constraint. We have solved the MVS problem (Problem 1 with equal weights) for three 

different problem instances. In the first problem instance, we imposed a constraint of 5 

views to be materialized; in the second problem instance, we set it to 10 views; in the 

third problem instance, we set it to 20 views.  

As one can observe from these tables (Table 3.8, 3.9 and 3.10), the heuristic failed 

to identify the optimal solutions in certain cases. That means that in these cases it 

recommended a materialization scheme that is different from the optimal materialization 

scheme. One interesting point to notice here is that even a sample size as low as 5% 

produced acceptable results and hence it was not necessary to run 10% or 20% sample 

size experiments especially if we use AE method for sampling. 
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Solutions by HRU Heuristic 1: Set of Materialized Views 

Lattice 

Instance 

Problem 

Instance 

Optimal Solution 

(Set of Materialized 

Views) 
With Actual 

Number of Rows 

With Shlosser 

Estimates 

With GEE  

Estimates With AE Estimates 

1: 
Materialize 
5 views 

0,6,9,10,11 0,6,9,10,11 0,6,9,10,21 0,1,2,6,10 0,6,9,10,21 

2:  
Materialize 
10 views 

0,2,6,9,10,11, 
12,15,20,21 

0,2,6,9,10,11, 
12,15,20,21 

0,6,9,10,11,12, 
13,15,20,21 

0,1,2,3,6,9, 
10,13,20,21 

0,6,9,10,11,12, 
13,14,20,21 

1: TPCH 
 
 
 
 

3:  
Materialize 
20 views 

0,2,3,4,5,6,7,8,9, 
10,11,12,13,14,15, 
16,18,20,21,24 

0,2,3,4,5,6,7,8,9, 
10,11,12,13,14,15
,16,18,20,21,24 

0,2,3,4,5,6,7,9,10, 
11,12,13,14,15,16
,18,19,20,21,24 

0,1,2,3,4,5,6,7,9, 
10,11,12,13,14,15
,16,18,20,21,24 

0,6,7,9,10,11,12,13, 
14,16,17,18,19,20,21
,22,23,24,25,26 

1: 
Materialize 
5 views 

0,1,2,3,9 0,1,2,3,9 0,2,3,8,9 0,1,2,3,9 0,1,2,3,9 

2: 
Materialize 
10 views 

0,1,2,3,6,8, 
9,10,11,15 

0,1,2,3,6,8, 
9,10,11,15 

0,1,2,3,6,8, 
9,10,11,15 

0,1,2,3,6,8, 
9,10,11,15 

0,1,2,3,6,8, 
9,10,11,15 

2: AANS 
 
 
 
 

3:  
Materialize 
20 views 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14, 
15,16,18,20,21 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14, 
15,16,18,20,21 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14, 
15,16,18,20,21 

0,1,2,3,4,5,6,7,8,9
,10,11,12,13,14,1
5,16,18,20,21 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14, 
15,16,18,20,21 

 
Table 3.8: Views to be Materialized for Three Problems in Lattice Instances 1 and 2 for 

Sample Size of 20% Under the Number of Views to be Materialized Constraint 
 

Solutions by HRU Heuristic 1: Set of Materialized Views 

Lattice 

Instance 

Problem 

Instance 

Optimal Solution 

(Set of Materialized 

Views) 
With Actual 

Number of Rows 

With Shlosser 

Estimates 

With GEE  

Estimates With AE Estimates 

1: 
Materialize 
5 views 

0,6,9,10,11 0,6,9,10,11 0,6,9,10,21 0,1,2,3,6 0,6,9,10,21 

2:  
Materialize 
10 views 

0,2,6,9,10,11, 
12,15,20,21 

0,2,6,9,10,11, 
12,15,20,21 

0,6,9,10,11,12, 
13,15,20,21 

0,1,2,3,6,9, 
10,13,20,21 

0,6,9,10,11,12, 
13,14,20,21 

1: TPCH 
 
 
 
 

3:  
Materialize 
20 views 

0,2,3,4,5,6,7,8,9, 
10,11,12,13,14,15, 
16,18,20,21,24 

0,2,3,4,5,6,7,8,9, 
10,11,12,13,14,15
,16,18,20,21,24 

0,2,3,4,5,6,7,9,10, 
11,12,13,14,15,16
,18,19,20,21,24 

0,1,2,3,4,5,6,7,9, 
10,11,12,13,14,15
,16,18,20,21,24 

0,6,7,9,10,11,12,13, 
14,16,17,18,19,20,21
,22,23,24,25,26 

1: 
Materialize 
5 views 

0,1,2,3,9 0,1,2,3,9 0,2,3,8,9 0,1,2,3,9 0,1,2,3,9 

2: 
Materialize 
10 views 

0,1,2,3,6,8, 
9,10,11,15 

0,1,2,3,6,8, 
9,10,11,15 

0,1,2,3,6,8, 
9,10,11,15 

0,1,2,3,6,8, 
9,10,11,15 

0,1,2,3,6,8, 
9,10,11,15 

2: AANS 
 
 
 
 

3:  
Materialize 
20 views 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14,15, 

16,18,20,21 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14, 
15,16,18,20,21 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14, 
15,16,18,20,21 

0,1,2,3,4,5,6,7,8,9
,10,11,12,13,14,1
5,16,18,20,21 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14, 
15,16,18,20,21 

 
Table 3.9: Views to be Materialized for Three Problems in Lattice Instances 1 and 2 for 

Sample Size of 10% Under the Number of Views to be Materialized Constraint 
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Solutions by HRU Heuristic 1: Set of Materialized Views 

Lattice 

Instance 

Problem 

Instance 

Optimal Solution 

(Set of Materialized 

Views) 
With Actual 

Number of Rows 

With Shlosser 

Estimates 

With GEE  

Estimates With AE Estimates 

1: 
Materialize 
5 views 

0,6,9,10,11 0,6,9,10,11 0,6,13,20,21 0,1,2,3,6 0,6,9,10,21 

2:  
Materialize 
10 views 

0,2,6,9,10,  
11,12,15,20,21 

0,2,6,9,10, 
11,12,15,20,21 

0,6,9,10,11, 
12,13,14,20,21 

0,1,2,3,6, 
9,10,14,20,21 

0,6,9,10,11, 
12,13,14,20,21 

1: TPCH 
 
 
 
 

3:  
Materialize 
20 views 

0,2,3,4,5,6,7,8,9, 
10,11,12,13,14,15, 
16,18,20,21,24 

0,2,3,4,5,6,7,8,9, 
10,11,12,13,14,15
,16,18,20,21,24 

0,2,3,4,5,6,7,9,10, 
11,12,13,14,15,16
,18,19,20,21,24 

0,1,2,3,4,5,6,7,9, 
10,11,12,13,14,15
,16,18,20,21,24 

0,6,7,9,10,11,12,13, 
14,16,17,18,19,20,21
,22,23,24,25,26 

1: 
Materialize 
5 views 

0,1,2,3,9 0,1,2,3,9 0,2,3,8,9 0,1,2,3,9 0,1,2,3,9 

2: 
Materialize 
10 views 

0,1,2,3,6,  
8,9,10,11,15 

0,1,2,3,6, 
8,9,10,11,15 

0,1,2,3,6, 
8,9,10,11,15 

0,1,2,3,6, 
8,9,10,11,15 

0,1,2,3,6, 
8,9,10,11,15 

2: AANS 
 
 
 
 

3: 
Materialize 
20 views 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14,15, 

16,18,20,21 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14, 
15,16,18,20,21 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14, 
15,16,18,20,21 

0,1,2,3,4,5,6,7,8,9
,10,11,12,13,14,1
5,16,18,20,21 

0,1,2,3,4,5,6,7,8, 
9,10,11,12,13,14, 
15,16,18,20,21 

 
Table 3.10: Views to be Materialized for Three Problems in Lattice Instances 1 and 2 for 

Sample Size of 5% Under the Number of Views to be Materialized Constraint 
 

 

Tables 3.11 through 3.13 tabulate the results for both lattice instances for different 

sample sizes, viz. 20%, 10% and 5%, for the storage space constraint. We have solved the 

MVS problem (Problem 2 with equal weights) for two different problem instances: in 

first problem instance, we assume that only 60% of the total space is available for 

materialization of views, while in second problem instance, we assumed this percentage 

to be 70%.  
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Solutions by HRU Heuristic 2: Set of Materialized Views 

Lattice 

Instance 

Problem 

Instance 

Optimal Solution 

(Set of Materialized 

Views) 
With Actual 

Number of Rows 

With Shlosser 

Estimates 

With GEE  

Estimates With AE Estimates 

 
1:  

60% of 
Total Space 

 

0,2,3,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,5,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,1,2,3,6,7,9, 
10,13,14,16,17, 
18,19,20,21,22, 
23,24,25,26 

0,6,7,9,10,11, 
12, 13,14,16,17, 
18,19,20,21,22, 
23, 24,25,26 

 
 
 
 

1: TPCH 
 
 
 
 

2:  
70% of 

Total Space 
 

0,2,3,4,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,4,5,6,7,9,10, 
11,12,13,14,15,16
,17,18,19,20,21,2
2,23,24,25,26 

0,2,4,5,6,7,9,10, 
11,12,13,14,15,16
,17,18,19,20,21, 
22,23,24,25,26 

0,1,2,3,6,7,9,10, 
11,12,13,14,16,17
,18,19,20,21,22, 
23,24,25,26 

0,6,7,9,10,11, 
12,13,14,16,17, 
18,19,20,21,22, 
23,24,25,26 

 
1:  

60% of 
Total Space 

 
 

0,3,6,7,9,10,11, 
12,13,14,15,16,  
17,18,19,20,21, 
22,23,24,25,26 

0,3,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,3,6,9,10,11, 
14,15,16,18, 
20,21,22,23, 
24,25,26 

0,6,7,9,10,11,12, 
13,14,15,16,17, 
18,19,20,21,22, 
23,24,25,26 

0,3,6,9,10,11, 
14,15,16,18, 
20,21,22,23, 
24,25,26 

 
 
 
 

2: AANS 
 
 
 
 

 
2:  

70% of 
Total Space 

 

0,2,3,6,7,8,9,10, 
11,12,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,3,6,8,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,3,6,8,9,10, 
11,14,15,16, 
18, 20,21,22, 
23,24,25,26 

0,2,3,6,7,9,10, 
11,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,3,5,6,7,9, 
10,11,12,15,16, 
17,19,21,22,23, 

24,25,26 

 
Table 3.11: Views to be Materialized for Two Problems in Lattice Instances 1 and 2 for 

Sample Size of 20% Under the Storage Space Constraint 
 
 
 

Solutions by HRU Heuristic 2: Set of Materialized Views 

Lattice 

Instance 

Problem 

Instance 

Optimal Solution 

(Set of Materialized 

Views) 
With Actual 

Number of Rows 

With Shlosser 

Estimates 

With GEE  

Estimates With AE Estimates 

 
1:  

60% of 
Total Space 

 

0,2,3,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,5,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21,22
,23,24,25,26 

0,2,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,1,2,3,6,7,9,10, 
13,14,16,17, 

18,19,20,21,22, 
23,24,25,26 

0,6,7,9,10,11, 
12, 13,14,16,17, 
18,19,20,21,22, 
23, 24,25,26 

 
 
 
 

1: TPCH 
 
 
 
 

2:  
70% of 

Total Space 
 

0,2,3,4,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,4,5,6,7,9,10, 
11,12,13,14,15,16
,17,18,19,20,21, 
22,23,24,25,26 

0,2,5,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,1,2,3,6,7,9,10, 
12,13,14,16,17, 
18,19,20,21,22, 
23,24,25,26 

0,6,7,9,10,11,12, 
13,14,16,17,18, 
19,20,21,22,23, 

24,25,26 

 
1:  

60% of 
Total Space 

 
 

0,3,6,7,9,10,11, 
12,13,14,15,16,  
17,18,19,20,21, 
22,23,24,25,26 

0,3,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,3,6,9,10,11, 
14,15,16,18, 
20,21,22,23, 
24,25,26 

0,6,7,9,10,11,12,1
3,14,15,16,17, 
18,19,20,21,22, 
23,24,25,26 

0,3,6,7,9,10,11, 
12,13,14,15,16,17, 
18,19,20,21,22,23, 

24,25,26 

 
 
 
 

2: AANS 
 
 
 
 

 
2:  

70% of 
Total Space 

 

0,2,3,6,7,8,9,10, 
11,12,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,3,6,8,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,3,6,8,9,10, 
11,14,15,16, 
18, 20,21,22, 
23,24,25,26 

0,3,5,6,7,8,9,10, 
11,14,15,16,17 
,18,19,20,21,22, 
23,24,25,26 

0,2,3,6,8,9,10, 
11,13,14,15, 

16,18,20,21,22, 
23,24,25,26 

 
Table 3.12: Views to be Materialized for Two Problems in Lattice Instances 1 and 2 for 

Sample Size of 10% Under the Storage Space Constraint 
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Solutions by HRU Heuristic 2: Set of Materialized Views 

Lattice 

Instance 

Problem 

Instance 

Optimal Solution 

(Set of 

Materialized 

Views) 
With Actual 

Number of Rows 

With Shlosser 

Estimates 

With GEE  

Estimates 

With AE 

Estimates 

 
1:  

60% of 
Total Space 

 

0,2,3,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,5,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,5,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,1,2,3,6,7,10, 
13,14,16,17, 

18,19,20,21,22, 
23,24,25,26 

0,6,7,9,10,11, 
12, 13,14,16,17, 
18,19,20,21,22, 
23, 24,25,26 

 
 
 
 

1: TPCH 
 
 
 
 

2:  
70% of 

Total Space 
 

0,2,3,4,6,7,9,10,11,
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,4,5,6,7,9,10, 
11,12,13,14,15,16,
17,18,19,20,21,22,

23,24,25,26 

0,4,5,6,7,9,10,11,
12,13,14,15,16,1
7,18,19,20,21,22,

23,24,25, 
26 

0,1,2,3,6,7,9,10, 
12,13,14,16,17, 
18,19,20,21,22, 
23,24,25,26 

0,6,7,9,10,11, 
12,13,14,16,17, 
18,19,20,21,22, 
23,24,25,26 

 
1:  

60% of 
Total Space 

 

0,3,6,7,9,10,11, 
12,13,14,15,16,  
17,18,19,20,21, 
22,23,24,25,26 

0,3,6,7,9,10,11, 
12,13,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,3,6,9,10,11, 
14,15,16,18, 
20,21,22,23, 
24,25,26 

0,6,7,9,10,13, 
14,15,16,17,18, 
19,20,21,22, 
23,24,25,26 

0,6,7,9,10,11,12, 
13,14,15,16,17, 
18,19,20,21,22, 
23,24,25,26 

 
 
 
 

2: AANS 
 
 
 
 

 
2:  

70% of 
Total Space 

 

0,2,3,6,7,8,9,10, 
11,12,14,15,16, 
17,18,19,20,21, 
22,23,24,25,26 

0,2,3,6,8,9,10,11, 
12,13,14,15,16, 

17,18,19,20,21,22,
23,24,25,26 

0,2,3,6,8,9,10, 
11,14,15,16, 
18, 20,21,22, 
23,24,25,26 

0,3,6,7,8,9,10,11,
12,14,15,16,17, 
18,19,20,21,22, 
23,24,25,26 

0,2,3,5,6,7,9,10, 
11,12,13,14,15, 

16,17,18,19,20,21,
22,23,24,25,26 

 
Table 3.13: Views to be Materialized for Two Problems in Lattice Instances 1 and 2 for 

Sample Size of 5% Under the Storage Space Constraint 
  

As one can see from these tables (Tables 3.11 through 3.13), in some cases 

heuristic gave the optimal solutions while in other cases it failed to produce the optimal 

solutions and recommended a different materialization scheme than the optimal view 

materialization scheme. Again one can notice the same trend as observed in the case of 

the number of views to be materialized constraint. Even the sample size as low as 5% 

produced acceptable results making sample of sizes 10% and 20% somewhat unnecessary 

except for the most important applications. 

Appropriate comparisons between the two approaches call for calculating the 

following objective function values and making a critical evaluation of the differences. 

Let Z( 1
ˆ

ShlX ) be the objective function value using actual data but using solution obtained 

by solving problem instances generated using the Schlosser estimates for Problem 1 with 

equal weights using HRU Heuristic 1. Similarly, Z( 1
ˆ

GEEX ) and Z( 1
ˆ

AEX ) are defined. Let 
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Z(XIP1) be the objective function value using actual data obtained by solving problem 

instances generated using the 0-1 Integer Programming model and Z(XHRU1) be the 

objective function value using actual data but using solution obtained by HRU Heuristic 

1 with actual data for Problem 1 with equal weights. Tables 3.14 through 3.16 present the 

values for Z(XHRU1), Z( 1
ˆ

ShlX ), Z(
1

ˆ
GEEX ), Z(

1
ˆ

AEX ) along with corresponding deviations 

from Z(XIP1) for three problem instances for both lattice instances for the number of 

views to be materialized constraint .  

One way to look at these deviations is to split it into two components, the 

difference caused by the use of estimated data and by the use of heuristics as defined in 

the following equation, where the first part in the RHS of the equation is the difference 

caused by the use of estimated data and the second part is caused by the use of heuristics. 

Z( 1
ˆ

ShlX )  - Z(XIP1) = (Z( 1
ˆ

ShlX )  - Z(XHRU1) ) + (Z(XHRU1) - Z(XIP1)) 

 

Cost of Solution 

with Real Data Cost of Solution With Estimated Data Using HRU Heuristic 1  

Lattice 

Instance 

Problem 

Instance 

Optimal 

Cost 

Z(XIP1) 

HRU 

Heuristic 1 

Z(
1HRUX ) 

% 

Dev* 

Shlosser 

Z(
1

ˆ
ShlX ) 

% 

Dev* 

GEE 

Z(
1

ˆ
GEEX ) 

% 

Dev* 

AE 

Z(
1

ˆ
AEX ) 

% 

Dev* 

1 62,023,340 62,023,340 0.00 62,530,420 0.82 74,186,290 19.61 62,530,420 0.82 

2 56,396,780 56,396,780 0.00 56,470,010 0.13 59,736,640 5.92 57,398,080 1.78 
1 
 

3 54,844,770 54,844,766 0.00 54,845,080 0.00 54,845,500 0.00 57,204,800 4.30 

1 25,421,980 25,421,980 0.00 27,264,760 7.25 25,421,980 0.00 25,421,980 0.00 

2 17,638,620 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00 
2 
 

3 16,989,310 16,989,312 0.00 16,989,310 0.00 16,989,310 0.00 16,989,310 0.00 

 * % Dev stands for the deviation of the cost of solution (in % of the optimal cost) 
 

Table 3.14: Deviation of the Cost of Heuristic Solution from the Optimal Solution for 
Sample Size of 20% Under the Number of Views to be Materialized Constraint 
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Cost of Solution with 

Real Data Cost of Solution With Estimated Data Using HRU Heuristic 1 

Lattice 

Instance 

Problem 

Instance 

Optimal 

Cost 

Z(XIP1) 

HRU 

Heuristic 1 

Z(
1HRUX ) 

% 

Dev* 

Shlosser 

Z(
1

ˆ
ShlX ) 

% 

Dev* 

GEE 

Z(
1

ˆ
GEEX ) 

% 

Dev* 

AE 

Z(
1

ˆ
AEX ) 

% 

Dev* 

1 62,023,340 62,023,340 0.00 62,530,420 0.82 88,042,150 41.95 62,530,420 0.82 

2 56,396,780 56,396,780 0.00 56,470,010 0.13 59,736,640 5.92 57,398,080 1.78 
1 
 

3 54,844,770 54,844,766 0.00 54,845,080 0.00 54,845,500 0.00 57,204,800 4.30 

1 25,421,980 25,421,980 0.00 27,264,760 7.25 25,421,980 0.00 25,421,980 0.00 

2 17,638,620 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00 
2 
 

3 16,989,310 16,989,312 0.00 16,989,310 0.00 16,989,310 0.00 16,989,310 0.00 

 * % Dev stands for the deviation of the cost of solution (in % of the optimal cost) 
 

Table 3.15: Deviation of the Cost of Heuristic Solution from the Optimal Solution for 
Sample Size of 10% Under the Number of Views to be Materialized Constraint 

 

 

Cost of Solution with 

Real Data Cost of Solution With Estimated Data Using HRU Heuristic 1 

Lattice 

Instance 

Problem 

Instance 

Optimal 

Cost 

Z(XIP1) 

HRU 

Heuristic 1 

Z(
1HRUX ) 

% 

Dev* 

Shlosser 

Z(
1

ˆ
ShlX ) 

% 

Dev* 

GEE 

Z(
1

ˆ
GEEX ) 

% 

Dev* 

AE 

Z(
1

ˆ
AEX ) 

% 

Dev* 

1 62,023,340 62,023,340 0.00 73,471,740 18.46 88,042,150 41.95 62,530,420 0.82 

2 56,396,780 56,396,780 0.00 57,398,080 1.78 59,977,590 6.35 57,398,080 1.78 
1 
 

3 54,844,770 54,844,766 0.00 54,845,080 0.00 54,845,500 0.00 57,204,800 4.30 

1 25,421,980 25,421,980 0.00 27,264,760 7.25 25,421,980 0.00 25,421,980 0.00 

2 17,638,620 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00 
2 
 

3 16,989,310 16,989,312 0.00 16,989,310 0.00 16,989,310 0.00 16,989,310 0.00 

 * % Dev stands for the deviation of the cost of solution (in % of the optimal cost) 
 

Table 3.16: Deviation of the Cost of Heuristic Solution from the Optimal Solution for 
Sample Size of 5% Under the Number of Views to be Materialized Constraint 
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Let Z( 2
ˆ

ShlX ) be the objective function value using actual data but using solution 

obtained by solving problem instances generated using the Schlosser estimates for 

Problem 2 with equal weights using HRU Heuristic 2. Similarly, Z( 2
ˆ

GEEX ) and Z( 2
ˆ

AEX ) 

are defined. Let Z(XIP2) be the objective function value using actual data obtained by 

solving problem instances generated using the 0-1 Integer Programming model and 

Z(XHRU2) be the objective function value using actual data but using solution obtained by 

HRU Heuristic 2 with actual data for Problem 2 with equal weights. Tables 3.17 through 

3.19 present the values for Z(
2HRUX ), Z(

2
ˆ

ShlX ), Z(
2

ˆ
GEEX ), Z(

2
ˆ

AEX ) along with 

corresponding deviations from Z(XIP2)) for two problem instances for both lattice 

instances for the storage space constraint .  

 

 

Cost of Solution 

with Real Data Cost of Solution With Estimated Data Using HRU Heuristic 2 

Lattice 

Instance 

Problem 

Instance 

Optimal  

Cost  

Z(XIP2) 

HRU 

Heuristic 2 

Z(
2HRUX ) 

%  

Dev* 

Shlosser 

Z(
2

ˆ
ShlX ) 

%  

Dev* 

GEE 

Z(
2

ˆ
GEEX ) 

%  

Dev* 

AE 

Z(
2

ˆ
AEX ) 

%  

Dev* 

1 55,170,060 55,171,168 0.00 55,426,150 0.46 59,275,160 7.44 57,204,800 3.69 
1 
 

2 54,970,890 54,971,997 0.00 54,972,000 0.00 56,237,960 2.30 57,204,800 4.06 

1 47,622,320 47,622,320 0.00 47,648,410 0.05 65,359,190 37.24 47,648,410 0.05 
2 
 

2 22,832,300 22,835,439 0.01 22,848,880 0.07 31,491,840 37.93 22,848,880 0.07 

  

* % Dev stands for the deviation of the cost of solution (in % of the optimal cost) 
 

Table 3.17: Deviation of the Cost of Heuristic Solution from the Optimal Solution for 
Sample Size of 20% Under the Storage Space Constraint 
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Cost of Solution 

with Real Data Cost of Solution With Estimated Data Using HRU Heuristic 2 

Lattice 

Instance 

Problem 

Instance 

Optimal  

Cost  

Z(XIP2) 

HRU 

Heuristic 2 

Z(
2HRUX ) 

%  

Dev* 

Shlosser 

Z(
2

ˆ
ShlX ) 

%  

Dev* 

GEE 

Z(
2

ˆ
GEEX ) 

%  

Dev* 

AE 

Z(
2

ˆ
AEX ) 

%  

Dev* 

1 55,170,060 55,171,168 0.00 55,426,150 0.46 59,275,160 7.44 57,204,800 3.69 
1 
 

2 54,970,890 54,971,997 0.00 55,171,170 0.36 58,453,810 6.34 57,204,800 4.06 

1 47,622,320 47,622,320 0.00 47,648,410 0.05 65,359,190 37.24 47,622,320 0.00 
2 
 

2 22,832,300 22,835,439 0.01 22,848,880 0.07 38,890,000 70.33 22,839,380 0.03 

 * % Dev stands for the deviation of the cost of solution (in % of the optimal cost) 
 

Table 3.18: Deviation of the Cost of Heuristic Solution from the Optimal Solution for  
Sample Size of 10% Under the Storage Space Constraint 

 

 

Cost of Solution 

with Real Data Cost of Solution With Estimated Data Using HRU Heuristic 2 

Lattice 

Instance 

Problem 

Instance 

Optimal  

Cost  

Z(XIP2) 

HRU 

Heuristic 2 

Z(
2HRUX ) 

%  

Dev* 

Shlosser 

Z(
2

ˆ
ShlX ) 

%  

Dev* 

GEE 

Z(
2

ˆ
GEEX ) 

%  

Dev* 

AE 

Z(
2

ˆ
AEX ) 

%  

Dev* 

1 55,170,060 55,171,168 0.00 55,753,540 1.06 66,295,260 20.17 57,204,800 3.69 
1 
 

2 54,970,890 54,971,997 0.00 55,263,180 0.53 58,453,810 6.34 57,204,800 4.06 

1 47,622,320 47,622,320 0.00 56,804,050 19.28 74,527,940 56.50 65,359,190 37.24 
2 
 

2 22,832,300 22,835,439 0.01 22,848,880 0.07 38,966,380 70.66 31,408,280 37.56 

 * % Dev stands for the deviation of the cost of solution (in % of the optimal cost) 
 

Table 3.19: Deviation of the Cost of Heuristic Solution from the Optimal Solution for 
Sample Size of 5% Under the Storage Space Constraint 

 

Careful review of Tables 3.14 through 3.19 reveals some important observations. 

In the case of the number of views to be materialized constraint (Tables 3.14 through 

3.16), the following points were observed: 

1. The HRU Heuristic 1 always produced the optimal solution when applied on the 

actual data set. 
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2. In the case of Lattice Instance 1, performance of the Shlosser Estimator and the 

AE was good. In the case of the Shlosser Estimator, the maximum deviation of 

the cost of solution from optimal solution was 0.82 for sample sizes 20% and 

10%. But for sample size of 5%, for Problem Instance 1, the deviation of the cost 

of solution from the optimal solution was as high as 18.46%.  

3. In the case of Lattice Instance 1, performance of the GEE was poor for Problem 

Instance 1 and 3. The performance was worse as the sample size went down from 

20% to 5%. It did produce the optimal solutions for all sample sizes for Problem 

Instance 3. 

4. The performance of the AE is observed to be the best for all sample sizes. The 

maximum deviation of the cost of solution from the optimal solution was 4.3% in 

the case of Problem Instance 3 in Lattice Instance 1 for all sample sizes. 

5. In the case of Lattice Instance 2, all the estimators performed pretty well. The 

only deviation of the solution from the optimal solution was the case of Shlosser 

Estimator, which was 7.25% for Problem Instance 1 for all sample sizes. 

6. One can also notice the improved performance of all the estimators as the number 

of views to be materialized increased from 5 views to 20 views. The only 

exception was in the case of the AE for Lattice Instance 1 for all sample sizes 

where the maximum deviation observed was 4.3%.  

7. One interesting point to note is that the performance of the estimators was not 

highly sensitive to the sample size. Even a sample size of as low as 5% produced 

acceptable results. Many times, it was not essential to go for sample sizes of 10% 

and 20%.  
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In the case of the storage space constraint (Tables 3.17 through 3.19), following 

points were observed: 

1. The HRU Heuristic 2 always produced the optimal solution except in one case 

when applied to the actual data set. In the case of Lattice Instance 2, for Problem 

Instance 2, for all the different sample sizes, deviation of the cost of solution from 

the optimal solution was 0.01, which is very close to the optimal solution. 

2. In the case of Lattice Instance 1, the Shlosser Estimator and the AE performed 

well. For the Shlosser Estimator, maximum deviation of the cost of solution from 

the optimal solution was 1.06% when the sample size was 5% for Problem 

Instance 1. For the AE, maximum deviation of the cost of solution from the 

optimal solution was 4.06% for all sample sizes for Problem Instance 2. 

Performance of the GEE was comparatively not good. It deteriorated further as 

the sample size went down. In the case of Problem Instance 1 for a sample size of 

5%, the deviation was as high as 20%. 

3. In the case of Lattice Instance 2, the Shlosser Estimator and the AE performed 

well. Their performance was comparatively poor for sample size of 5%. The 

maximum deviation of the cost of solution from the optimal solution in the case of 

the Shlosser Estimator was 19% for Problem Instance 1, for the sample size of 

5%, and in the case of the AE it was 37.56% for Problem Instance 2, for sample 

size of 5%. Again the GEE did not perform well. Its performance further 

deteriorated as the sample size went down from 20% to 5%. For sample size of 

5%, the deviation was as high as 70.66%. 



76 

   

4. In general, again, the performance of the estimators was not too sensitive to the 

sample size except in a few cases. In fact, in the case of sample size of 10%, the 

AE produced better results than compared to the results obtained from sample size 

of 20%. In the former case, maximum deviation was 0.03% while in  the later 

case, it was 0.07% for Lattice Instance 2, and for Problem Instance 2. But the 

deviation was more in the case of sample size of 5% – it was 37% in the case of 

the AE and 19% in the case of the Shlosser Estimator. 

5. If one carefully reviews tables from Table 3.11 through Table 3.13, one can 

observe that for both lattice instances, even for 60% storage space constraint 

setting, the system materialized most of the views out of 27 views. The main 

reason for this could be the root view, which always occupies the maximum 

space. Almost 45% of the total space in the case of AANS database and 55% of 

the total space in the case of TPCH database was taken by the root view. 

6. If one compares the performance of estimators in the case of the storage space 

constraint with the performance of estimators in the case of the number of views 

to be materialized constraint, the deviation of the cost of solution from the optimal 

solution was always high in the case of the storage space constraint for all 

settings. One reason for this could be that space constraint puts higher burden on 

the system when it comes to finding the optimal solution, as the system has to try 

many more combinations than in the case of the number of views to be 

materialized constraint. As was discussed in Chapter 2, the 64-node MVS 

problems with the storage space constraint took almost 90 seconds to find the 
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optimum solution, while in the case of the number of views to be materialized 

constraint, it took just 10 seconds to find the optimum solution using LINGO. 

 

 

3.4.1 Computational Times 

 

The sampling procedures have two major computational components: 

1. Drawing the sample from the root view in a given lattice instance. 

2. Computing the estimates for the number of rows present in a view in a given 

lattice instance. 

To simplify the computer codes, we drew the sample and populated the sample 

table on hard disk. We used simple random sampling without replacement method for 

drawing the samples from the root view. The main purpose of employing statistical 

sampling to data warehouse is to reduce the computational time needed to count the 

actual number of records in a table to the minimum possible extent without 

compromising the accuracy of the solution. One can perform more robust random 

sampling techniques, but it may proportionately increase the sampling time.  

The second part of computational time was computing the estimates from the 

sample table populated. There were three sub-components in it. First, we need to find the 

distinct attributes values present in the sample, then compute the frequencies of their 

occurrence and then apply the three estimators to estimate the number of unique rows 

present in a view under consideration in a given lattice instance. 
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The computational times taken by various sampling techniques are shown in 

Table 3.20. We have collected computational time for both lattice instances, i.e. TPCH 

and AANS database. In Table 3.20, the second column, named “Actual Number of 

Rows,” shows the total time needed for computing the actual number of rows present in 

all other views in a given lattice instance from the root view. In the case of Lattice 

Instance 1, it took 690 seconds in total to count the actual number of rows in all 26 nodes 

excluding the root view while in the case of Lattice Instance 2, it took 248 seconds. Even 

though AANS database has more records in the root view (more than nine million) than 

the number of records in the root view in TPCH database (slightly more than six million), 

the time taken in the case of AANS database was much less. The main reason for this 

could be that in AANS database, most key fields are numeric which enables database 

engine to process the records faster. In columns 4, 5 and 6, we have shown the time 

needed to compute the Shlosser, the GEE and the AE estimates, respectively.  

 
 

Computational Time (in Seconds) 

Lattice 

Instance Using Actual 

Number of 

Rows 

Sample 

Size 
Shlosser GEE AE 

20% 241.47 221.68 238.26 

10% 120.37 108.64 117.62 
1 

(TPCH) 
690 

5% 66.28 59.62 63.9 

20% 142.85 114.96 141.01 

10% 73.89 56.51 68.67 
2 

(AANS) 
248 

5% 42.54 31.66 37.75 

 
Table 3.20: Computational Times 
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In the case of Lattice Instance 1, even with a 20% sample size, average time 

savings were almost 66%, with the GEE taking the minimum time (221.68 seconds). For 

a sample size of 5%, the savings were as high as 91%, with the GEE again giving the best 

results (59.62 seconds). But as discussed earlier, the performance of the AE was 

comparatively best when it comes to estimating the number of rows present in a view in a 

given lattice instance. In Table 3.20, one can notice that the time taken by the AE is very 

much comparable with that taken by the GEE. 

In the case of Lattice Instance 2, with 20% sample size, time savings in terms of 

percentage were 42%, 53%, and 43% for the Shlosser, the GEE and the AE estimators 

respectively. Again, though the GEE took the least time to estimate, its performance in 

terms of prediction accuracy was not good at all. For the sample size of 5%, the savings 

were as high as 87% with the GEE and 85% with the AE estimator. As seen earlier, the 

performance of the AE estimator was best when it comes to prediction accuracy. Based 

on the above results, the AE has given the best performance in our experimental 

evaluation both in terms of prediction accuracy and savings in time. 

The above statistics clearly indicate the worth of using statistical sampling 

techniques in generating problem instances for a the data warehouse as it results in 

significant savings in terms of time without compromising the accuracy in terms of 

deviation of the cost of solution from the optimal solution. Even a sample size of as low 

as 5% produced good results. We must also point out that the times taken by the sampling 

techniques in our experimentation have certain built-in penalties because the necessary 

data were read from the disk for certain parts of the experimentation. Also as pointed out 

earlier, most of the DBMS available gather statistics on the table. With appropriate 
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computer programming code, one can use this table statistics and compute the 

estimations from there. This could definitely result in further savings in terms of time.  

In the next section, we briefly discuss the use of statistical sampling techniques 

and the final results. 

 

 

3.5 Discussion 

 

Since counting the actual number of unique rows from a very large root node may 

be time-consuming, the major motivation of our study was to investigate the feasibility of 

using estimated number of rows using sampling techniques to generate problem instances 

representative of the actual problem.  In our experiment, we use three different sample 

sizes, viz. 20%, 10% and 5%, to draw the samples from the root view for each Lattice 

Instance. Then we use two different resource constraints: the first constraint is the 

number of views to be materialized constraint and second constraint is the storage space 

constraint. For problems with number of views to be materialized constraints, with these 

ranges of sample size, all three estimating techniques were able to generate representative 

problem instances with reasonable accuracy. The deviations between optimal objective 

function value with actual data and heuristic solution with estimated data were relatively 

small. In the case of the storage space constraint, the differences in the objective function 

values using optimal procedure with actual data and heuristic procedure with estimated 

data were comparatively higher. One reason for this could be that the storage space 

constraint puts higher burden on the system when it comes to finding the optimal solution 
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as the system has to try all the possible combinations of views that could fit in the 

available space. 

The frequency of occurrence of various attributes or composite attributes was 

mostly very lowly skewed in both databases. If we consider the sum of absolute deviation 

proportion of the estimates from the respective actual measures, then we can conclude 

that the AE sampling method has performed best in both lattice instances for both 

Problem 1 with equal weights and Problem 2 with equal weights (Table 3.14 through 

Table 3.19).  One can surely conclude that there is a considerable amount of savings in 

terms of time by employing such statistical sampling techniques to estimate the actual 

number of rows present in each view in a given lattice structure without compromising 

the accuracy of the solution (refer to Table 3.20).  

In the next section, we provide conclusions and directions for future research. 

 

 

3.6 Conclusions and Future Research 

 

In this chapter, we have used three different sampling methodologies to generate 

problem instances representative of the original MVS problem and then we applied the 

HRU heuristics to solve the problems.  The problem instances were generated from two 

different realistic databases. We have demonstrated that the HRU heuristics perform very 

well when it is employed with the actual number of rows in each node of the underlying 

lattice structure.  In fact, it produced the optimal solution in almost every problem 

instance in our investigation.  



82 

   

Subsequently, we applied the appropriate HRU heuristic (HRU Heuristic 1 or 

HRU Heuristic 2) to solve the MVS problem (Problem 1 with equal weights or Problem 2 

with equal weights, respectively) by replacing the actual number of rows present in each 

view in a given lattice instance with the estimated number of rows. HRU heuristics with 

the estimated rows provided the optimal solutions in some cases while it failed to find the 

optimal solutions in others (Table 3.14 through Table 3.19). However, the maximum 

deviation of the cost of heuristic solution with estimated data from the optimal solution 

was found to be 71% while the least being 0%. The deviation of 71% was with the GEE 

estimator which does not perform well in most instances. The maximum deviation with 

the AE estimator was 38%.  Our experimental evaluation shows that the HRU heuristics 

performed best with the AE estimator. We assume that for a large problem, this loss of 

accuracy would be acceptable given that the MVS problem is NP-complete (Harinarayan 

et al. 1999). 

Whenever an estimated value is used instead of the actual value, certain level of 

inaccuracies in the solution process is introduced. However, the success of using 

estimates in solving the MVS problem may depend on the internal characteristics of the 

MVS problem itself. In certain lattices, introduction of minor variations in the values of 

the parameters may not make significant differences. Further research is needed to 

identify the sensitivity of a solution for a given MVS problem or for a given class of the 

MVS problems. 

  In this chapter we have demonstrated that employing sampling methodologies can 

provide acceptable solution to the MVS problem.  Obviously, further research is needed 
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to explore more refined data structures so that the sample table can be rapidly constructed 

inside the memory instead of writing it in a secondary storage device. 
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CHAPTER 4: SIMULATION MODEL AND ANALYSIS OF A 
DATA WAREHOUSE 

 

4.1 Introduction 

 

A data warehouse can be defined as a database of databases. It brings together a 

wide range of information from many different heterogeneous independent data sources 

into one centralized data repository to support business analysis activities and decision-

making tasks. In Chapter 2 we presented two heuristic procedures for solving a special 

case of the MVS problem. We also presented 0-1 Integer Programming models to address 

four different versions of the MVS problems. In Chapter 3, we explored the use of 

statistical sampling techniques to estimate the number of rows present in each view in a 

given lattice structure and examined the difference in the objective function values  

between heuristic solutions to estimated problem instances and the optimal solutions to 

corresponding actual problem instances. 

In this chapter, we explore the application of a systems dynamics approach and 

simulation to model a data warehouse and estimate its performance. Data warehouses are 

large complex systems with many interacting non-linear components. A small change in 

any one component may have a dramatic impact elsewhere in the system. Consequently 

the behavior of data warehouse is often unpredictable (Hillard et al. 1999). Data 

warehouse managers may find a simulation model useful in identifying critical 
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components, diagnosing problems and optimizing the overall design. It will allow users 

to pinpoint performance issues or troubleshoot performance problems that may have 

occurred hours or days earlier.  

The next section briefly describes the systems dynamics approach to data 

warehouse modeling. In Section 4.3, we briefly review the related literature. Section 4.4 

describes the conceptual framework of the simulation model. In Section 4.5, we discuss 

the simulation model developed using the ARENA simulation package along with its 

results. In Section 4.6, we discuss the experimental design for conducting experiments in 

brief. Experimental results are discussed in Section 4.7. In Section 4.8, we conclude this 

chapter and discuss future research to be pursued. 

 

 

4.2 Systems Dynamics Approach to Data Warehouse 

 

Data warehouses are large complex systems with many non-linear interacting 

components (Hillard et al. 1999). Many different technologies are needed to assemble an 

effective data warehouse. For example, one needs Extract-Transform-Load (ETL) tools 

that will fetch the data from multiple heterogeneous data sources spread across 

geographical boundaries. These tools help to extract information, transform information 

from different domains into one standard domain, and then load that information into the 

data warehouse. These tools are very complex in nature. Secondly since the data is spread 

across different locations, one often needs a high speed network that will support fast 

data communication between the data sources and the data warehouse. Hence network 
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bandwidth plays a crucial role in determining the response time faced by data warehouse 

users. 

Once the information is loaded into the data warehouse, one needs to materialize a 

set of views to improve query performance. This process, as seen in the last two chapters, 

is very involved and time intensive. Once the views are materialized, they need to be 

maintained to reflect the latest information, as the information at the data sources keep 

changing over time. Maintaining views is again a very time-consuming process. Many 

researchers have addressed this issue (Colby et al. 1997, Gupta 1999, Kalnis 2002, 

Mumick et al. 1997). 

Once the data warehouse is properly set up, the data warehouse users need various 

query-and-reporting tools, multidimensional analysis tools, and statistical tools to mine 

the data warehouse for valuable information. There are several tools available in the 

market, such as Actuate’s Enterprise Reporting Applications (http://www.actuate.com), 

Panorama’s Business Intelligence Platform (http://www.panoramasoftware.com), 

Microsoft OLAP tools, Oracle Discoverer, and Oracle Reports. Though these tools are 

powerful, they are seldom comprehensive. Often companies need to customize them to 

suit their requirements. This can be proved to be a very tedious task. Furthermore, data 

warehouse end users may be spread over geographically diverse locations, which may 

necessitate the use of high speed network to support faster data communication. Hence 

network bandwidth may again become critical a factor influencing the response time 

experienced by the end users. 
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Last but not the least, data warehouse performance also depends on the capacity 

and speed of the disk farm, the indexing and partitioning strategy used to optimize the 

database efficiency, the CPU capacity, and the RDBMS engine. 

In summary, the performance of a data warehouse is difficult to predict because: 

(i) the data warehouse is comprised of a number of different and interacting components, 

(ii) the data warehouse is dependent on other systems for its data and (iii) the usage that 

will be made of the system by end-users is often difficult to predict. 

In today’s decision support environment where time is a very critical factor, the 

data warehouse manager must make sure that end-users are getting reliable answers to 

their questions within a reasonable time. One method of ensuring timeliness and 

reliability is to experiment with real system components. Experimenting with real 

components is a risky venture as a small change may has profound impact on system 

performance. 

When dealing with such a complex system, a simulation model could be a viable 

approach to predict the behavior and performance of a data warehouse system. The 

simulation approach to data warehouse performance applies the principles of systems 

dynamics, used in real-world simulation applications such as biological, engineering, and 

nuclear research. It can be used to simulate the behavior and performance of the data 

warehouse system based on its overall design. Such a simulation approach can have a 

number of benefits: 

i. Data warehouse managers can improve the performance of their systems. They can 

walk through various scenarios and as a result can configure their new or updated 

systems to be more reliable and efficient. 
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ii. Data warehouse managers can manage risk better and plan better capacity utilization. 

They can justify or negate investment decisions and can accurately predict when they 

need to update, add or replace system parts. 

iii. Data warehouse managers will have more complete understanding of the 

interrelationships between components in an existing data warehouse configuration, 

and how multiple factors influence the data warehouse performance. This provides an 

ability to understand both opportunities for synergies within the design and areas of 

inefficiencies.  

In the next section, we briefly discuss one related research work in this area. 

 

 

4.3 Related Work 

 

Considering that data warehouse technology itself is a budding technology, there 

is not much published research with regard to simulating the behavior and performance 

of data warehouse systems. One study by Robert Hillard, Peter Blecher and Peter 

O’Donnell (1999) applies the concept of Chaos Theory to the operation of data 

warehouses. First a brief explanation of chaos theory follows.  

Chaos theory is used to understand and make predictions about apparently 

random behavior of complex systems that have many interacting non-linear components. 

The key aspect of chaotic systems is that they are very sensitive to even small changes in 

initial conditions (Gleick 1987, Medio 1992). This means that nearly identical systems, 

with only slight differences, may behave very differently. 
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Hillard et al. (1999) argued that data warehouses are large complex systems with 

many non-linear interacting elements. This creates a tendency for periods of chaotic 

behavior. The application of chaos theory will help in developing an understanding of the 

variability of data warehouse performance commonly experienced by the developers and 

managers of data warehouses. They further argued that chaos theory could be used to 

minimize the impact of such erratic performance on the users of the system. 

In the next section, we briefly discuss the conceptual framework for simulating 

the behavior and performance of a data warehouse system. 

 

 

4.4 Conceptual Framework for Simulating Data Warehouse 

Operation 

 

In general the operational performance of a data warehouse depends on the 

interaction of various parameters, like the length of time required for the uploading cycle, 

the types of ad-hoc queries posed to data warehouse, the frequency of these queries, the 

mean time between the failures of the equipment, user behavior and the performance of 

the database management system itself. The network of influences between and within 

these parameters is very complex. We have developed a conceptual framework of the 

simulation model for simulating the behavior and performance of a data warehouse. The 

details of this model are shown in Figure 4.1. The major components of the conceptual 

model are: 
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a. Design Criteria 

Performance of a data warehouse largely depends on the number of views 

materialized. Given a set of materialized views, if a query is answered directly from 

the materialized views, it will be executed quickly with minimum response delay. On 

the other hand, there might be queries which could not be directly answered from the 

materialized views, but could be answered indirectly using one or more of the 

materialized views. Such queries might take more time to execute compared to the 

former ones. Some queries may need to refer back to the root view (base cuboid), 

which will always be materialized and which has the lowest level of summarization 

with all possible dimensions and levels in those dimensions. In this case the query 

would likely to take a long time to execute. Therefore, we have various categories of 

business queries that are directly related to the views materialized in the data 

warehouse. 

 

b. View Materialization Policy 

There are two view materialization policies possible. The first policy is the fixed view 

materialization policy, which uses a model to decide the set of views to be 

materialized and once such views are materialized they are never changed. Such 

views are updated periodically to reflect the changes in the source information, so that 

the end users always get current data. The second policy is the dynamic view 

materialization policy, which assumes that over time, business requirements change, 

resulting in a change in the query pattern. This could lead to dynamically changing 
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the views to be materialized (Kalnis 2002). In this work, we have focused on the fixed 

view materialization policy. However, from a simulation perspective, this is not a 

serious limitation, since our query arrival behavior captures both types of queries. The 

only limitation may be that we are not accounting for query processing time lost due 

to change in the number or sets of views materialized.  

 

c. Environmental Variables 

Certain environmental variables have profound effects on the performance of a data 

warehouse. One such environmental variable is equipment failure. There could be 

many causes of equipment failure including power failure, server crashing and 

computer hardware failure like hard-disk or RAM or router. When such instances 

occur, data warehouse systems fail and all the queries in the system are lost. 

 

d. View Maintenance Practices 

The materialized views need to be maintained so as to reflect changes in the source 

information. The data may be loaded into the system on a monthly, weekly or daily 

basis depending on the organization’s requirements. During the start of the uploading 

cycle queries already being processed are generally allowed to execute to completion; 

but waiting queries are lost. No new queries are accepted during the uploading 

process. 
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e. Query Processing Policies 

If only one query is being processed at the data warehouse, it will be faster since all 

the resources (CPU, RAM, etc.) are devoted to that single query. If more than one 

query is being processed simultaneously, the processing of all queries will be slowed 

because of the sharing of resources.  

 

In the next section, we briefly discuss and provide a model for implementation of 

the conceptual framework discussed in this section using ARENA simulation package. 

 

 

4.5 Implementation of Conceptual Framework in ARENA 

 

In the previous section, we discussed the conceptual framework of the simulation 

model for simulating the behavior and performance of a data warehouse. In this section, 

we present the implementation of the conceptual framework of the simulation model 

using ARENA simulation package. Our objective is to predict the performance of a data 

warehouse under varying design conditions and query processing policies in terms of the 

average time to process a query, the average time to process each category of query, the 

server utilization and the number of queries declined.  

As discussed in Chapter 3, we have populated a 1 GB data warehouse from the 

Transaction Processing Council (www.tpc.org) website. The Transaction Processing 

Council website provides the data to populate big experimental data warehouses (ranging 

from 1 to 1000 GB) and has been widely used by industries for benchmarking purposes. 
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Running this data warehouse on our computer system, we gained some insight into the 

parameters relevant for simulation model building such as query processing time, delays 

experienced by queries because of simultaneous processing, and the relationship between 

these parameters and the views materialized in this data warehouse.  

Figure 4.2 shows the main features of the simulation model developed using 

ARENA simulation package. The major components of the ARENA simulation model 

are discussed below: 

 

a. Design Criteria Based on Materialized Views: Query Categories 

This block generates queries that the users pose to the data warehouse. There are two 

create modules. The first generates queries (entities) that could be directly answered 

from the materialized views. The second generates queries that could not be directly 

answered from the materialized views.  The inter-arrival rate is assumed to be 

exponentially distributed and the processing time is assumed to be normally 

distributed for both query types. The specific parameter values used are presented in 

Table 4.1. The type of distribution used for the inter-arrival time and service was 

broadly justified from general queuing and database literature as well as our 

experience with the TCPH and AANS database.  

 

b. Decision Block and Waiting Queue 

As mentioned earlier, the server in this case can handle at most three queries 

simultaneously. Details of this construct and the justification are given under query 

processing policies.  This is modeled using three process modules in ARENA. Each 
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incoming query checks the availability of one of the three process modules. If three 

queries are already being processed, then all arriving queries wait in a queue. As soon 

as the server becomes available, queries in the queue may proceed for processing. 

 

c. Data Warehouse Simulator with Query Processing Policies  

The data warehouse simulator is the engine that processes the incoming queries based 

on their critical attribute values. Modeling the processor of the data warehouse was 

somewhat difficult since a typical computer can process several queries at a time 

while a processor construct in ARENA can handle only one query at a time. We 

decided to allow at most three queries to be processed simultaneously. We do this by 

first creating three process modules, and then activating them one at a time as the 

number of queries in the system goes from 0 to 3, after which the number of active 

process modules stays at three satisfying the condition of processing a maximum of 

three simultaneous queries. Finally, the processing time of each query gets increased 

as the number of simultaneous queries in process increases. The following describes 

the way query processing takes place in the simulator: 

i. As the number of simultaneous queries under process increases, the processing 

time of all queries under process increases. This approximately mimics the 

simultaneous processing of queries by a real CPU.  In this version of the 

simulation model, only three queries are allowed to be processed simultaneously. 

In general, the higher the number of simultaneous queries, the higher the delay in 

response will be. Queries arriving while all three process modules are busy will be 

held in the queue until one of the process modules becomes free. 



96 

   

ii. The number of queries being processed simultaneously determines the appropriate 

delay factor to be applied to the remaining processing time of all queries under 

process. This is done each time a process module begins or completes a query. 

The delay factors used in our simulation are given in Table 4.1. The function of 

the delay factor is simply to linearly increase or decrease the remaining 

processing time as the number of queries in process changes by 1. For example, at 

simulation time t, if the system is currently processing two simultaneous Type 1 

queries (which implies that there are no waiting queries) with remaining 

processing time t1 and t2, and if a third Type 2 query arrives with a simulated 

processing time of t3, then using the delay factors given in Table 4.1, the new 

processing time of the three queries will be (1.5/1.25)* t1, (1.5/1.25)* t2 and 2*t3, 

respectively. Suppose at time t', processing of Type 2 query is completed, that is 

t2 becomes 0, and no new query arrives (note that waiting line must be empty, 

since only two process modules are active at time t'), the new processing time for 

Type 1 query will be (1/1.25)*t1 . That is the factors given in Table 4.1 applies to 

the original simulated time and since some of the original times have already been 

increased when the number of simultaneous queries processed increased from 1 to 

2, it must now be adjusted suitably when it goes from 2 to 3.  All of this is 

achieved by first preempting the current queries under process, changing the 

remaining processing time and resuming the processing by the respective servers 

from the point of preemption.                      

iii. At the time of arrival of the uploading task, queries already in-process will be 

processed. But the queries waiting in the queue, if any, will be lost. Queries that 
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arrive after the arrival of the uploading task will also be lost. Once uploading is 

complete, normal query processing will resume. 

iv. During the failure of equipment, all incoming queries as well as queries  

in-process or waiting at that instance will be lost. 

v. If the system fails during the uploading cycle, uploading will fail and the system 

will revert back to earlier status. The time required to put the system back to work 

will include the time needed for the uploading task as well, so that data warehouse 

users access the latest information. As soon as the system is up, the incoming 

queries will follow the previous mentioned rules. 

 

d. View Maintenance Practices: Uploading Cycle 

Here, this is modeled by a single query that seizes the server for a certain period of 

time, thus simulating the time required for loading the latest information from the 

data sources to the data warehouse. The uploading cycle query first checks if there are 

any queries that have already seized the server. In that case, the uploading cycle query 

will wait in the queue until the queries that seize the server are released out of the 

system. At this instance all the waiting queries if any will be lost. Then the uploading 

query will seize the server for certain specified time and during this time, all the 

incoming queries will be lost. As soon as the uploading is complete, the incoming 

queries will be allowed to enter the server as per the earlier mentioned policies. 
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e. Environmental Variable: System Failure 

Here, this is modeled by a single query that enters the server and seizes it for a 

specified period of time. When the system failure occurs, all the queries in the system 

as well as those waiting in the queue are lost. Incoming queries are also disposed off 

immediately. If update is going on during the time of failure, it will fail and data 

warehouse will be reverted back to its original state. As soon as the failure query 

leaves the systems, the server will be up and the incoming queries will be entertained 

in the server as per previously mentioned rules. 

 

f. Disposing Policies 

The departing query has to perform a check on the server before being disposed off. 

This accomplishes the delaying or speeding up of the queries under process, if any, 

based on certain pre-emption policies (refer to Section 4.5.c.ii).  

 

In the next section, we discuss the experimental results obtained for a simulated 

run of one week. 
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4.6 Experimental Design 

 
The simulation experiments were designed to demonstrate the usefulness of 

simulation model in a data warehouse design context. For each experimental setting, 

model was run for a simulated period of eight days. Data for the first day was discarded 

to let the system reach steady state conditions. Table 4.1 shows various model input 

parameters with corresponding values. 

 

Delay Factors 
Sr. 

No. 
Query Type 

Arrival Time 

Distribution 

(in minutes) 

Processing Time 

Distribution 

(in minutes) No 

Delay 

First 

Delay 

Second 

Delay 

1 Query Type 1 EXPO(x)* NORM(10,2) 1 1.25 1.5 

2 Query Type 2 EXPO(y)* NORM(20,3) 1 1.5 2 

3 Failure XPO(7200) EXPO(500) – – – 

4 Update CONSTANT 1440 CONSTANT 60 – – – 
      
     * “x” and “y” are specified in Table 4.2 

 
Table 4.1: Experimental Parameters 

 

In many service oriented simulation models, we hypothesize a Poisson arrival 

process, which leads to exponentially distributed inter-arrival times. To reduce variance 

of the difference between outcomes (such as average waiting time, average turnaround 

time, etc.) of different experimental settings, we used common random number 

generators for various random processes in the model. Processing times for the queries 

are assumed to come from the Normal distribution with a mean of 10 and 20 minutes, and 

standard deviation of 2 and 3, respectively. As mentioned earlier, these were estimates 

derived on the basis of our experiments running the TPCH and AANS databases in 
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several servers.  Table 4.1 also shows the Delay Factors used for each type of query. The 

values for First Delay and Second Delay are 1.25 and 1.5, respectively, for Query Type 1, 

and 1.5 and 2, respectively, for Query Type 2. First Delay occurs when two queries are 

being processed by the server simultaneously. Second Delay occurs when three queries 

are being processed by the server simultaneously. Please refer to section 4.5.c.ii for 

details. 

The time between failures is assumed to come from the Exponentially 

Distribution with a mean value of 7200 minutes. The time to repair a failure is also 

assumed to be exponentially distributed with a mean of 500 minutes. Data uploading is 

assumed to take place daily starting at mid-night. This process is assumed to take 60 

minutes. 

 

Inter Arrival Time (minutes) 

Query Type 1 (x) Query Type 2 (y) 

Sr. 

No. 

Experimental 

Setting 

 [Proc = NORM(10,2)] [Proc = NORM(20,3)] 

Query Mix 

(y/x) 

1 a 20 50 2.50 

2 b 15 30 2.00 

3 c 16 44 2.75 

4 d 15 40 2.67 

5 e 14 36 2.57 

6 f 13 32 2.46 

7 g 12 28 2.33 

8 h 11 24 2.18 

9 i 10 20 2.00 

 
Table 4.2: Experimental Settings 
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To achieve a variety of operating conditions, we kept the processing time 

parameters unchanged while the inter-arrival rate was varied. Table 4.2 shows the nine 

different experimental settings used in our experiment. For example, in setting “a,” the 

mean inter-arrival time for Query Type 1 is assumed to be 20 minutes and for Query 

Type 2, it is assumed to be 50 minutes.  Again all inter-arrival times follow exponential 

distribution. Since Query Type 2 queries cannot be directly answered from the 

materialized views, they have a longer processing time and they are also presumed to 

occur less frequently since they system is hopefully designed with appropriate set of 

views materialized. With the query mix combination and mean arrival rate, we maintain a 

server utilization of 75% to almost 99%. The query mix is selected to be between 2.00 

and 2.75.  

 In traditional queuing analysis, server utilization is given by λ/µ for single server 

systems and (λ/s)*µ for a multi server system with s servers, λ is the arrival rate and µ is 

the service rate. The system in this simulation is little tricky in that the number of active 

servers changes from 1 to 3 and the service time and hence the service rate of all servers 

changes as the number of active servers changes. As described earlier, this helps us 

mimic the processor of a data warehouse server more accurately. We calculated the 

approximate utilization rate by judiciously combining simulated probability of system 

having 0, 1, 2, 3 or more queries in the system, types of queries in the system, and the 

corresponding rates at which each active server is working. For example, if there are two 

Type 1 queries in the system, and the experimental setting is “b,” inter arrival time of 

Query Type 1 is Expo(15), Query Type 2 is Expo(30), and service time is Normal (10,2) 

for Query Type 1 and Normal(20,2) for Query Type 2. The delay factors will make the 
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simulated remaining service time of the queries in process and/or the new arrival to go to 

1.25*(whatever was remaining from the original service time at the time of arrival of the 

second query). This will help us estimate the instantaneous service rate of the system 

when the system has two Type I queries. There are many combinations of system states 

each of which will have its own instantaneous service rate as calculated above. Weighted 

average of these service rates will be used as an estimate for the average service rate. The 

average inter-arrival rate is known for setting “b”. Since the service rate already 

incorporates the expected service time for each type of query and calculates its rate using 

that, the arrival rate used is simply the sum of the two arrival rates. Ratio of the arrival to 

service rates gives the estimated utilization. The system gets emptied everyday at 12.00 

midnight to process the update query. The simulated system is thus a series of one day 

simulations. This midnight emptying process also allows us to slightly overload the 

system and still not experience total clogging of the system, which would have happened 

in settings “h” and “i”.  

 

 

4.7 Experimental Results 

 

Table 4.3, Table 4.4 and Table 4.5 present the system performance obtained from 

our model for all the experimental combinations and each query type. For each 

experimental setting, Tables 4.3 through 4.5 show the simulated server utilization, the 

average query waiting time, the average query processing time, the average query 

turnaround time and the 90th percentile of the query turnaround time. As expected, we 



104 

   

observe that as the mean inter-arrival time decreases in the subsequent experimental 

setting from “a” through “i” the simulated server utilization, the waiting time, the average 

turnaround time and the 90th percentile turnaround time increase. Mean processing time 

increases modestly. This increase is a result of the inherent delay in simultaneous 

processing of queries as modeled here by the use of delay factors. As sever utilization 

increases, larger values of the delay factor are applied more frequently thereby increasing 

the time to process queries. 

 

 

Query Type 1 

Experimental 

Settings 

Simulated 

Server 

Utilization Average 

Waiting 

Time 

Average 

Processing 

Time 

Average 

Turnaround 

time 

90 percentile of 

Turnaround 

Time 

a 0.75 2.55 12.48 15.03 23.45 

b 0.89 7.67 13.59 21.26 39.35 

c 0.84 3.93 12.87 16.80 26.91 

d 0.85 5.98 13.17 19.15 36.17 

e 0.89 6.10 13.43 19.54 35.32 

f 0.91 13.39 13.86 27.24 59.84 

g 0.91 17.90 14.28 32.17 57.18 

h 0.91 42.83 14.52 57.34 147.70 

i 0.99 90.87 14.71 105.60 188.10 

 
Table 4.3: Query Type 1 Statistics 
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Query Type 2 

Experimental 

Settings 

Simulated 

Server 

Utilization 
Average 

Waiting 

Time 

Average 

Processing 

Time 

Average 

Turnaround 

time 

90 percentile of 

Turnaround 

Time 

a 0.75 2.77 31.18 33.95 47.96 

b 0.89 8.69 34.58 43.27 70.99 

c 0.84 5.10 32.78 37.88 59.67 

d 0.85 6.01 34.22 40.24 60.13 

e 0.89 6.95 34.24 41.19 62.69 

f 0.91 13.33 34.40 47.73 85.91 

g 0.91 17.94 36.26 54.20 85.92 

h 0.91 40.14 38.35 78.49 146.30 

i 0.99 93.69 39.70 133.40 221.30 

 
Table 4.4: Query Type 2 Statistics 

 
 

Overall 

Experimental 

Settings 

Simulated 

Server 

Utilization 
Average 

Waiting 

Time 

Average 

Processing 

Time 

Average 

Turnaround 

time 

90 percentile 

of Turnaround 

Time 

a 0.75 2.61 17.80 20.41 30.42 

b 0.89 7.98 20.02 28.00 49.04 

c 0.84 4.23 18.00 22.24 35.35 

d 0.85 5.99 18.58 24.57 42.33 

e 0.89 6.33 19.01 25.34 42.66 

f 0.91 13.37 19.50 32.86 67.00 

g 0.91 17.91 20.28 38.19 65.04 

h 0.91 42.04 21.51 63.55 147.32 

i 0.99 91.76 22.65 114.42 198.64 

 
Table 4.5: Overall Statistics 
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Figures 4.3 and 4.4 represent parts of these data as bar charts. They show the 

comparison between the average turnaround time and the 90th percentile turnaround time 

respectively for Query Type 1, Query Type 2 and Overall for experimental settings of “a” 

through “i” along with the corresponding simulated server utilization. One can see that as 

the value of inter-arrival time decreases the average turnaround time and the 90th 

percentile turnaround time increases. As one can notice from these figures, after 

experimental setting “f” the performance of system deteriorates considerably. A data 

warehouse manager could use such information to plan future expansion of the system to 

improve and protect performance levels.  

 

 
Figure 4.3: Bar Chart Showing Comparison of Average Turnaround Time Between 

Query Type 1, Query Type 2 and Overall 
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Table 4.6 shows the number of queries discarded due to data warehouse update 

and data warehouse failure for Query Type 1, Query Type 2 and the total number of 

queries discarded. Again one can notice the increase in the number of queries discarded 

as the query inter-arrival time decreases. Since update takes place every day, this has 

direct effect on the number of queries discarded during that time. But queries discarded 

due to data warehouse failure do not seem to be affected considerably. 

 
 
 

 
Figure 4.4: Bar Chart Showing Comparison of 90th Percentile Turnaround Time Between 

Query Type 1, Query Type 2 and Overall 
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Queries Discarded due 

to Data Warehouse 

Update 

Queries Discarded due 

to Data Warehouse 

Failure Sr. No. 
Experimental 

Settings 
Query 

Type 1 

Query 

Type 2 

Query 

Type 1 

Query 

Type 2 

Total Queries 

Discarded 

1 A 33 7 4 1 45 

2 B 36 19 3 3 61 

3 C 37 10 5 0 52 

4 D 37 10 6 2 55 

5 E 44 9 0 5 58 

6 F 52 12 3 4 71 

7 G 66 27 4 3 100 

8 H 86 36 11 3 136 

9 I 173 78 32 13 296 

 
Table 4.6: Number of Queries Discarded 

 

In the next section, we conclude this chapter and provide directions for future 

research. 

 

 

4.8 Conclusions and Future Research 

 

Data warehouses are large complex systems with many different interacting 

components. A small change in any one component may produce dramatic changes 

somewhere else in the system. As such a data warehouse environment is very dynamic 

and sensitive and can exhibit periodic chaotic behavior. In this chapter, we presented a 

conceptual framework for simulating the operation of data warehouses. We have also 
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developed a simulation model that will predict the behavior and performance of a data 

warehouse system given initial values for some parameters. We used the TPCH 

benchmark database to obtain insights into some critical parameters like queries 

processing times, effect of simultaneous processing on queries processing time, and their 

relationship to the views materialized.  

The simulation model is built using the ARENA simulation package. In this 

simulation model, we have provided the provisions for different query categories with 

different processing times, effect of equipment failure on the system, and uploading cycle 

to upload the current information from the data sources to make the model more realistic. 

We have also provided the provisions for delaying and speeding up of the query 

processing depending upon the number of simultaneous query occupying the data 

warehouse processor. 

Our experimental evaluation points to the fact that a simulation model can be used 

to model a data warehouse environment, thus providing a justification for the technical 

feasibility. Data warehouse managers can use such models to enhance the performance 

reliability of the data warehouses. Our experimentation also shows that different query 

types (those which could be directly answered from the materialized views and those 

which could not be directly answered from the materialized views) have significant 

impact on the system’s performance. Future research could focus on validating the model 

against some real-world data warehouses. Also one can extend the simulation model 

discussed here to incorporate more features making the model more realistic. 
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CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH 

 

Data warehouses are seen as strategic weapon to gain competitive advantage for 

businesses. A data warehouse extracts, integrates, and stores the “relevant” information 

from multiple, independent, and heterogeneous data sources into one centralized data 

repository to support the decision making information needs of knowledge workers and 

decision makers in the form of Online Analytical Processing (OLAP). Business analysts 

then run complex business queries over the data stored at the data warehouse to mine the 

valuable information and identify hidden business trends. Results of such queries are 

generally pre-computed and stored ahead of time at the data warehouse in the form of 

materialized views. This drastically reduces the query execution time to minutes or 

seconds which otherwise may take hours or even days to complete. 

There are many architectural issues involved concerning the design of a data 

warehouse. In this dissertation, we have concentrated on three such issues. The first issue 

concerns the selection of views to be materialized. Selecting the right set of views to 

materialize is a non-trivial task. This problem has been shown to be NP-Complete in data 

warehouse literature (Harinarayan et al. 1999). We have developed two heuristic 

procedures to solve two different versions of the MVS problem. We have also developed 

the 0-1 Integer Programming models to find the optimum solutions to four different 

versions of the MVS problem. We compared the results obtained by using the heuristic 
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procedures with that obtained by using the 0-1 Integer Programming models and reported 

the findings. Future research in this area could focus on validating these heuristic 

procedures against some real-world data warehouse systems. One could also focus on 

performing sensitivity analysis of weights associated with materialized views and their 

relationship to optimal and/or heuristic solutions. 

The second issue deals with employing statistical sampling procedures to generate 

problems instances given a huge root view (least aggregated data view) and an associated 

lattice structure. Most of the heuristic procedures available in the data warehouse 

literature, including ours, assume that the number of rows present in each view in a given 

lattice structure is known ahead of time. But actual counting of the number of rows 

present in each view takes considerable time. Such delays are not permissible in today’s 

decision support environment. We have explored the use of statistical sampling 

techniques to address this issue. We have applied three well know estimators from the 

database sampling literatures to two realistic data warehouses. The estimators used are 

the Shlosser Estimator (Hass et al. 1995, and Shlosser 1981), the Guaranteed Error 

Estimator (Charikar et al. 2000, Chaudhuri et al. 1998) and the Adaptive Estimator 

(Charikar et al. 2000). Then we have employed the 0-1 Integer Programming model as 

well as the heuristic procedures developed by Harinarayan et al. (1999) to the actual as 

well as to the estimated data and compared the results. Our findings suggest substantial 

computational time savings without compromising the accuracy of the solution. Future 

research in this area could focus on performing the sensitivity analysis of a solution for a 

given class of the MVS problems and developing more refined data structures to store 

sampled tables in the computer memory to further reduce the computational time. One 
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can also address the confidence interval issues associated with the difference between the 

objective function values of estimated and actual problems.  

The third issue deals with simulating the behavior and performance of a data 

warehouse system based on its overall design. A data warehouse system is a large 

complex system with many interacting non-linear components. The data warehouse 

environment is said to be very dynamic and sensitive and exhibit periodic chaotic 

behavior. We have provided a conceptual framework for simulating the operation of data 

warehouses. We have also developed a simulation model using ARENA simulation 

package that will simulate the behavior and performance of the data warehouse system 

given initial values for some system parameters. Our experimentation shows that 

simulation can be used to construct a realistic model of a data warehouse, thus providing 

justification for the technical feasibility. Future research in this area could focus on 

validating this model against some real-world data warehouse systems. One can also 

focus on extending this model and incorporating more features to make the model more 

realistic. 
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