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ABSTRACT: We discuss the uncertainty associated with a —

commonly used method for measuring the concentration of -

microcystin, a group of toxins associated with cyanobacterial blooms.
Such uncertainty is rarely reported and accounted for in important
drinking water management decisions. Using monitoring data from
Ohio Environmental Protection Agency and from City of Toledo,
we document the sources of measurement uncertainty and
recommend a Bayesian hierarchical modeling approach for reducing
the measurement uncertainty. Our analysis suggests that (1) much of

the uncertainty is a result of the highly uncertain “standard curve”

developed during each test and (2) the uncertainty can be reduced by pooling raw test data from multiple tests. Based on these
results, we suggest that estimation uncertainty can be effectively reduced through the effort of either (1) regional regulatory
agencies by sharing and combining raw test data from regularly scheduled microcystin monitoring program or (2) the

manufacturer of the testing kit by conducting additional tests as part of an effort to improve the testing kit.

B INTRODUCTION

Cyanobacterial blooms have become a global problem due
to excessive anthropogenic nutrient inputs and a warming
climate."” Aside from the negative ecological impacts associated
with blooms,” these blooms also pose a threat to human health
because they produce toxic compounds that impair the nervous
system, liver, and skin.* Because toxic cyanobacterial blooms
often occur in waters that are sources for drinking water,
frequent and accurate quantification of cyanboacterial toxins in
treatment-finished drinking water is paramount in protecting
the public. Microcystins (MCs) are a group of liver toxins com-
monly produced by many genera of cyanobacteria worldwide.”
These toxins have been associated with liver cancers and human
fatalities; particularly in people with poor liver function already
being treated through dialysis.*® Although many authors have
discussed the need for controlling harmful algal blooms (through
reducing N and P loadings to waters) to reduce the risk of MC
exposure, the problem of MC measurement uncertainty is not
adequately discussed in the literature. Information about
measurement uncertainty is important to local government
agencies responsible for providing safe drinking water.

The Toledo water crisis of August 2014 started when one MC
concentration measurement from a treated water sample in
Collins Park Water Treatment Plant of City of Toledo, Ohio,
exceeded the Ohio drinking water standard of 1 pg/L. (The Ohio
standard is based on the World Health Organization drinking
water quality criterion for microcystin.”) After the initial detec-
tion, three additional tests, each with the usual two replicates,
were carried out on the same day using the same water sample
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and each time at least one replicate showed a concentration
above the criterion. These results prompted the City of Toledo
to issue a “Do not drink” advisory on the morning of August 2,
2014, affecting about a half million residents. Additional tests
were conducted on drinking water from the water treatment
plant and throughout the distribution system until all samples
consistently showed microcystin concentration below “detect-
able” levels (<0.30 pug/L) during the water advisory, which
lasted nearly 3 days. In the aftermath of the crisis, some
questioned the wisdom of issuing the advisory based on one
sample exceeding the criterion.® An important question raised
by this incident is how to properly communicate the risk of
drinking water contamination to the public?

The City of Toledo’s source water is from western Lake Erie,
which has been plagued by dense blooms of the microcystin-
producing cyanobacterium Microcystis since the early 2000s.”~""
Projected future meteorological and agricultural conditions
are expected to promote large cyanobacterial blooms in Lake
Erie."”

While the harmful effects of microcystin have been reported
widely,"” the risk of exposure to harmful levels of the toxins
has not been adequately communicated. This is largely because
of the lack of information on the uncertainty associated with
concentrations measured using common laboratory equipment.
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In this paper, we describe a statistical modeling approach for
quantifying such uncertainty. We analyzed data from 21 tests
conducted at the Franz Theodore Stone Laboratory of the
Ohio State University (Stone Lab) during the 2014 cyano-
bacterial bloom season and proposed a Bayesian hierarchical
modeling approach for reducing the estimation uncertainty.

B METHODOLOGICAL BACKGROUND

The ELISA Method. The enzyme-linked immunosorbent
assay (ELISA) method'*"® is used for measuring microcystin
(MC) concentration in almost all Ohio drinking water facilities
that use Lake Erie as source water. The ELISA method
quantifies microcystin concentrations through a competitive
binding process between toxins and enzyme-labeled micro-
cystin in the inside wall of test wells. The toxin concentration
is visualized with a color development process and is inversely
proportional to color development (i.e., the darker the sample
color, the less toxin present) with a nonlinear relationship.
During a test, a number of samples with known toxin con-
centrations (standard solutions) were used to develop a
“standard curve”, a mathematical model of optical density
(OD) as a function of toxin concentrations. The ELISA
test kit used by Stone Lab and Toledo Water Department
(Abraxis #520011, Warminster, PA) has six standard concen-
trations (0, 0.15, 0.40, 1.00, 2.00, and 5.00 yg/L used in Stone
Lab and 0, 0.167, 0.444, 1.110, 2.220, and 5.550 used in
Toledo Water Department). Two replicates were used in both
facilities, resulting in 12 measured ODs for developing a
standard curve for each test. Water samples with unknown
MC concentrations are put in the remaining wells of the
96-well plate in the same test and their MC concentrations are
estimated (predicted) by the fitted standard curve.

Statistical Concerns. The process of measuring MC con-
centration has two steps: (1) developing a standard curve using
solutions with known MC concentrations and (2) estimating
the unknown MC concentrations in water samples. Statistical
issues arise in three areas: model specification, sample size, and
predictive uncertainty.

Because we do not know the underlying “true” relationship
between OD and MC concentration, we consider any speci-
fic model form as an approximation. Although model choice
includes considering alternative models, we limit our discussion
to the choice of response and predictor variables. Because a
standard curve is inevitably quantified using regression, the
choice of the regression model response variable determines
the accuracy of the measured MC concentration. When con-
ducting a test, we know the MC concentrations of standard
solutions and measure the respective ODs. Conceptually, the
response variable should be OD and the predictor variable
should be MC concentration. The resulting regression model,
however, is fit to minimize the predictive error of OD, not MC
concentration. When using the resulting model for estimating
MC concentrations, the estimation uncertainty will be larger
than the model summary statistics would suggest.

The City of Toledo uses a 4-parameter nonlinear regression
model, recommended by the kit manufacturer (Abraxis), with
OD as the response variable:
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where ¢ is the model error term (and & ~ N(0, 6*)), @, — a, are
unknown regression coeflicients to be estimated, OD is the

OD =

observed OD value, and ¢, is the standard solution
concentration. As in most empirical models, regression
coefficients do not have physical meanings. When model
coeflicients are estimated, the fitted model is optimized to
reduce prediction error in OD. Using the inverse model of eq 1
for estimating MC concentration will lead to larger than
expected estimation uncertainty (based on regression model
summary statistics such as residual variance and R?) because
model coefficients are estimated to minimize the prediction
error in OD, not in ¢, (see Results for details).

The Stone Lab uses another manufacturer-recommended
standard curve model, which is a log—linear regression model
after transforming the measured OD values to relative ODs—
the measured ODs from standard solutions with nonzero MC
concentrations and water samples with unknown MC con-
centrations were divided by the average of the two OD values
from the two standard solutions with a concentration of 0.0
(the “%B/B,” term specified by Abraxis #520011 instructions):

log(c,) = B, + prOD + ¢ )

where rOD is the relative OD. The resulting standard curve is
optimized for predicting log MC concentration. The trans-
formation of OD to rOD requires averaging measured OD
values from two replicates, which reduces the uncertainty in the
predictor variable, but also reduces sample size of the regression
model.

The second area of concern is related to the sample size
used for quantifying the standard curve. The standard curve
is typically developed based on a small number of standard
solutions, that is, the regression model is developed based on a
small sample size. As a result, the estimated standard curve is
inherently variable. However, the quality of a fitted standard
curve is commonly judged only by one or two summary statis-
tics, most likely the coefficient of determination or R* value and
residual sum of squares. (The R* of the nonlinear regression
model in eq 1 is calculated in the software of Abraxis kit to be
1 minus the ratio of residual variance over the sample variance
of response variable data.) We note that the R statistic is not
commonly associated with nonlinear regression models. When
fit to data from a typical ELISA test kit (six standard con-
centrations), the model of eq 1 has a degrees of freedom of
8 (six observations with two replicates and four model
parameters) and the model of eq 2 has a degrees of freedom
of 3 (five observations associated with nonzero concentrations
and two replicates were averaged before curve fitting). We note
that replicate standard solutions are not independent samples,
as a result, the degrees of freedom of the model of eq 1 is
smaller than 8 (and the uncertainty estimated based on a
degrees of freedom of 8 represents an underestimate).

A regression model with a small degrees of freedom is often
characterized by a near-perfect R* value. A small degrees of
freedom implies that each individual data point can have
relatively large influence on the fitted standard curve. As long as
measurement error (in OD) is present, we expect a relatively
high variation in estimated coeflicients from test to test. For a
given test, the resulting standard curve may fit to the data very
well, but we cannot put much confidence in it because a very
different curve is likely when we conduct the same test the next
time.

An extreme example is to fit a linear model using two
data points. The fitted line is always perfect without error (with
R* = 1). This is because the fitted model includes the obser-
vation error in the two data points (hence a perfect R* value).
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As a result, our confidence in the fitted line being the under-
lying true model is always low. (If we repeat the model fitting
process with two new data points from the same population, we
expect to see a different model with perfect model diagnostic
statistics.) Furthermore, we cannot evaluate the fitted model
using data alone because we exhausted information in the two
data points to estimate the two parameters of the linear model.
In this regard, degrees of freedom of a regression model is a
measure of information available for model assessment using
statistics. A small degrees of freedom, therefore, indicates a lack
of confidence in the model no matter how well the model fits to
the data. In general, the smaller the sample size, the more likely
a fitted regression model will represent idiosyncrasies specific
to the data used for fitting the model (noise). Therefore, the
model is more likely to have a small residual variance and a high
R? value, but less likely to be able to predict future cases. This
is why we can often improve a regression model’s summary
statistics by fitting the model using aggregated data (e.g,, means
of replicates), but without improving the model’s predictive
capability.

The third area of concern is the predictive uncertainty.
Once the standard curve is developed, we estimate MC con-
centrations of water samples based on their OD values. The
predictive uncertainty associated with the established standard
curve is often ignored by treating the estimated standard curve
as known and present the expected concentration value without
uncertainty information.

Finally, we note that when the estimated concentration value
is below the lowest nonzero standard solution concentration
(e.g, 0.15 pg/L) or larger than the largest concentration (e.g.,
S pg/L), it is considered as censored and reported as <0.1S or
>S5 pug/L, respectively. But the estimation process does not have
a “method reporting limit.” Rather, this practice is to avoid
extrapolating a regression model for prediction, due to the un-
certainty in the model form, as well as the increased predictive
variance when predicting points beyond the range of data used
to fit the model.

Regression Model Predictive Uncertainty. A regression
model’s predictive uncertainty can be presented as the predic-
tive distribution of a future observation. In the context of the
ELISA method, this predictive distribution is the probability
distribution of the unknown MC concentration of a water
sample given the observed OD value (z(MCIOD), where 7
represent a density function). For example, when using the
log—linear model in (2), the log transformed MC concen-
tration is assumed to be a normal distribution with mean
quantified by the linear regression model and the variance esti-
mated by the residual variance. Consequently, this predictive
distribution is expressed in terms of regression model coeffi-
cients, that is, 7(log(MC) IrOD, f3, f3,, 6°), which is normal
with mean fp+ f;7OD and variance 6.

The estimated model coefficients (3, ;) and sample vari-
ance of model residuals (6%) are themselves random variables.
As a result, uncertainty in these estimated quantities must be
considered. To simplify the notation, we use 8 to represent the
vector of model coefficients. A general expression of the pre-
dictive distribution is

#(log(MC)IrOD) = f #(log(MC)IrOD, 4, &%)

x 1(016%) x n(62)d6*d0 (3)

The analytic result of (3) is available for a linear model.'® For a
nonlinear regression model such as eq 1, a general analytic
solution is not available. However, numerical integration using
Monte Carlo simulation can be used to approximate the pre-
dictive distribution.

Because the primary model in our study is a log—linear
regression model, retransformation bias'” is a practical con-
cern. A Monte Carlo simulation based approach has many
advantages over alternative methods,'® especially when we are
interested in more than just a bias correction for the predicted
means. Qian'” (Chapter 9) described a general purpose Monte
Carlo simulation algorithm to approximate the integral of eq 3,
both for linear and nonlinear regression models (see online
Supporting Information).

Bayesian Hierarchical Modeling. Reviewing standard
curves developed in Stone Lab in the past, we find that fitted
standard curves not only have a considerable within-test varia-
tion, but also vary from test to test. On the one hand, we may
be tempted to interpret the among-test variation as a result of
inherent systematic (albeit unknown) differences among tests,
thereby, justifying the practice of estimating a different standard
curve for every test. On the other hand, a large random among-
test variation is expected because of the small degrees of
freedom, which requires us to pool data from multiple tests to
improve the model.

These two opposing approaches for modeling the data can be
unified by combining data from multiple tests using a Bayesian
hierarchical model (BHM), in which data from different tests
are treated as different, but their distribution models are allowed
to share common features. Using the model in eq 2 as an
example, the hierarchical modeling approach sets the model at
the test level using the same log—linear model as in eq 2, but
connects the models for different tests by imposing a common
prior distribution of model coeflicients:

Iog(cst,ij)
By,
B

ﬂo,- + ﬂU’ODi;‘ + g

1

Ho
~ MVN (” ) )
(4)

where the index ij represents the ith observation from the jth
test. The test-specific regression coeflicients fy and f;; are
assumed to share a common prior distribution, which is a
bivariate normal distribution. Conceptually, when using eq 4 we
suggest that each test has its unique features (test-specific model
coefficients), but these tests are subjected to the same set of
standard conditions (model coefficients are constrained to be
random variables from the same prior distribution). Using the
BHM in eq 4, the test-specific line defined by model coefficients
Po; and fy; lies in between the line defined by the estimated
overall mean coefficients (, and ;) and the line estimated
using data from the individual test alone. In other words, BHM
estimated test-specific models are always closer to the overall
average model than the respective models fit with individual test
data separately. This feature has been shown to improve overall
accuracy—reduced estimation uncertainty at a group (test) level
as well as improved predictive accuracy.

For the ELISA test, the improved predictive accuracy is of
particular interest because the fitted standard curve will be used
for estimating (predicting) MC concentrations using OD mea-
surements from water samples with unknown MC concen-
trations. The BHM improves the predictive accuracy of a test-
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specific model through pooling data from multiple tests
considering both unique features of individual tests and the
commonality of these tests.”’ The commonality helps to correct
potential bias of individual tests.”” If we believe that the varia-
tion among tests is due to test-specific conditions, using the
BHM estimated test-specific standard curve will improve
the test-specific standard curve by shrinking the curve toward
the overall center, thereby increasing our confidence in the
resulting concentration values. If we believe that the among
test variation is largely due to random noise as expected of a
model with small degrees of freedom, we can use the weighted
“average” model (defined by coefficients y, and p,) for esti-
mating MC concentrations.

In other words, regardless of the source of error we should
pool data from multiple tests using BHM when estimating MC
concentrations using ELISA.

B MATERIALS AND METHODS

Because the uncertainty in a standard curve is not quantified,
the risk of MC exposure through drinking water is uncertain.
We present (1) a method for quantifying the estimation uncer-
tainty in an estimated MC concentration using ELISA, and (2)
a BHM for reducing the estimation uncertainty.

Quantifying Predictive Uncertainty. We use the Monte
Carlo simulation method'” for quantifying regression model
predictive uncertainty. Briefly, the Monte Carlo simulation
starts by drawing a random sample of residual variance from its
sampling distribution (a rescaled y* distribution), which is used
to quantify the joint distribution of model coefficients (a multi-
variate normal distribution) for generating random samples of
model coefficients. The resulting random samples of model co-
efficients and residual variance are then used to draw predictive
samples of MC concentration.

Fitting and Evaluating BHM. We present the BHM using
the log—linear model as the base model. The model is fit by
using the R function 1mer from package 1me4.*’ Although
lmer is an implementation of the classical linear mixed effects
model, the results from lmer is similar to the BHM using
vague or flat priors.”’ Using 1mer simplifies the model devel-
opment process.

Because the usual residual based model assessment methods
are inappropriate for BHM,” we will not use residual-based
diagnostic graphs and statistics for model assessment. Instead,
we use the Watanabe-Akaike Information Criterion (WAIC),”*
a fully Bayesian implementation of information theoretical
methods for assessing model predictive accuracy.”” WAIC
calculates model deviance and effective parameters based on
draws from the pointwise predictive posterior distributions.
This incorporates uncertainty associated with varying
parameter influences (i.e. effective number of parameters),
and mimics the added predictive uncertainty associated with
unobserved (i.e., future) data. By comparing WAICs calcu-
lated for the BHM and the individually fit log—linear models,
we demonstrate the expected improvement of model
predictive accuracy of BHM. Computational details are in
the Supporting Information.

Risk Assessment. With the uncertainty assessment of an
estimated MC concentration value, we can use a probabilistic
risk assessment approach for communicating the risk of MC
exposure. Using BHM, the estimated MC concentration is
expressed as a probability distribution. Based on this distri-
bution we can express our uncertainty in terms of the proba-
bility of a concentration exceeding the criterion of 1 yg/L. State

managers can then communicate the risk to the public. As an
illustration, we present the estimated probability of exceeding
the criterion from five water samples measured on August 1,
2014 in the Toledo Water Plant. These concentration values
were estimated based on the same standard curve. Because the
Toledo Water Plant did not make raw ELISA data available
except for those conducted during the 2014 water crisis, we
illustrate the process of pooling data from multiple tests using
data from Stone Lab. In addition to the water sample that first
reported a high MC concentration value that ultimately led to
the “Do not drink” advisory, we also include four additional
samples: a tap water sample taken on July 31 (with OD values
1.002 and 1.013), the normal control sample (0.489 and 0.470),
a raw water sample taken on July 28 (0.883 and 0.933), and a
diluted raw water sample taken on July 30 (0.693 and 0.645).
These additional samples were selected to cover a wide rOD
range. The two data points with the smallest rOD values are
smaller than the rOD value from the smallest standard concen-
tration. We also highlight differences in predicted MC concen-
trations generated from a test-specific standard curve and the
two BHM standard curves (one based on f;; and f;; and the
other based on y, and g, in eq 4).

Uncertainty in estimated model coefficients can be propa-
gated into the uncertainty in the estimated MC concentration
of a water sample. In our Monte Carlo simulation, we draw
random samples of model coefficients. Each set of random sample
forms a potential standard curve and was used to estimate a likely
MC concentration based on the rOD value of a water sample. In
other words, for each water sample, the Monte Carlo simulation
yields the distribution of the unknown MC concentration.

B RESULTS

Uncertainty Assessment using Monte Carlo Simula-
tions. We use data from two ELISA tests conducted at the
Stone Lab to illustrate the within-test uncertainty of the
standard curves—one conducted on August 4, 2014 with a
near perfect R value (0.9993) and the other on September 11,
2014 with a respectable R* value of 0.96. These two R* values
represent the highest and the lowest among the 21 assays,
respectively. We also use data from tests conducted on August
1 and 2, 2014 in the Toledo water treatment plant. In all cases,
we have well fit standard curves using data from these tests
separately.

The Stone Lab data were transformed to fit a log—linear
regression model in eq 2. Because of the small degrees of
freedom, the sampling distribution of residual variance is highly
variable, which translates to a considerable within test variation
(Figure 1(a) and (b)). Although the “best” and the “worst”
standard curves both fit to their respective data well, the predic-
tive variations of the two models are quite different. Compared
to the within test variations, the among test variability shown in
the 21 individually fit standard curves (Figure 1(c)) can easily
be explained as random variation.

The 4-parameter nonlinear model used by Toledo also
shows substantial within and among test variations (Figure 2).
Because the response variable in the 4-parameter nonlinear
model is OD rather than cg, the estimation uncertainty of the
unknown MC concentration of a water sample is larger than it
appears (Figure 2(a)). Visually, we perceive the accuracy of a
model by the vertical distance between the upper and lower
bounds of the 95% intervals (i.e., in the y-axis direction), while
the uncertainty about the concentration is along the x-axis
direction. In Figure 2(a), the dashed horizontal line represents
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Figure 1. Uncertainty of fitted standard curves is evaluated by Monte Carlo simulation. Panel (a) shows the “best” fit standard curve (August 4,
2015), panel (b) shows the “worst” fit model (September 11, 2014), where the light-shaded area shows the 95% credible intervals of predictive
distributions of MC concentrations given observed rOD values and the dark-shaded areas are the 50% credible intervals. Panel (c) shows the 21

individually fit standard curves.

an OD measurement from a water sample. The predicted MC
concentration for this water sample is the x-axis value at which
the horizontal dashed line intercepts the fitted standard curve.
The estimation uncertainty is represented by the segment of
the horizontal dashed line within the shaded area representing
the predictive 95% credible interval. The estimation uncertainty
in MC concentration is much larger than the figure or model
statistics suggest because the regression model minimizes the
prediction error in OD (the y-axis), not the MC concentration
(the x-axis).

Although both models were recommended by ELISA kit
manufacturer, the log—linear model is fit to minimize the
estimation error of log MC concentrations, while the 4-parameter
nonlinear model is fit to minimize estimation error with respect
to OD. As a result, the log—linear model is better suited for
estimating MC concentrations.

Bayesian Hierarchical Model. The BHM fitted test-
specific models are less variable than the conventionally fit
models (Figure 3). Compared to individually fit standard curves

in Figure 1(c), BHM fitted test-specific standard curves are
closer (both in distance, the intercept, and in shape, the slope)
to the overall mean curve (black line in Figure 3).

The BHM model fit with data from all 21 tests has a WAIC
of 29.8. The comparable individually fit log—linear regression
model (fitted together allowing test-specific intercept and
slope) has a WAIC of 37.5. Intuitively, WAIC is a measure of
deviance, which is proportional to the mean squared error in
our case (a normal response variable). Although the specific
value of WAIC is a function of sample size (hence meaningless
by itself), the difference of WAICs of two models shows the
relative difference in two models predictive accuracy. The
smaller WAIC of the BHM model indicates an improved
predictive accuracy.

To estimate prediction uncertainty based on a test specific
standard curve, we refit the standard curve to the known
concentration data from the August 1, 2014 test (the Toledo
data) using the log—linear model. The resulting model (the
Toledo model) has an R> value of 0.96. The observed OD
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Figure 2. Uncertainty associated with the standard curve that detected the high MC concentration on August 1, 2014 in Toledo’s drinking water is
still considerable even with an almost perfect R* value (a). The within test variation of a subsequent test is, however, much larger, even though the
model fits the data well (b). The six curves developed on August 1 and 2 show a large among test variation reflecting the measurement uncertainty in
OD at various MC concentrations (c). The model’s predictive error for MC concentration (x-axis) at a given OD value is higher (the dashed
horizontal line in (a)) as the model minimizes the prediction error in OD (y-axis direction, the dashed vertical line in (a)).
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Figure 3. Standard curves fitted using BHM show a reduced among
test variation (compared to Figure 1(c)). The thick dark line is the
mean model characterized by y, and y, in eq 4. The thin shaded lines
are test-specific models characterized by f; and f§;; where j = 1, -+, 21,
the index of the 21 tests.

values for the August 1 tap water sample were 0.271 and 0.286,
which translate to an average rOD value of 0.261. Using the

Toledo data alone, the fitted log—linear model has an intercept
of 2.48 and a slope of —5.58, resulting in an estimated MC
concentration of 2.78 ug/L for this tap water sample. The
uncertainty about the predicted concentration is quite large,
reflected in a wide predictive 95% credible interval (CI) of
[0.88, 7.70] pug/L. In other words, the resulting concentration
of 2.78 is statistically not different from 1 (estimates associated
with solid lines in Figure 4) based on the classical hypothesis
testing approach.

Compared to the BHM developed by pooling the 21 tests
from the Stone Lab (mean intercept , = 2.96 and mean slope
Hy = —5.80), the single test using Toledo data produced a
much lower intercept. Using the BHM model, the mean
predicted MC concentration should be 4.26 ug/L (dotted lines
in Figure 4). When the Toledo data are pooled as part of the
Stone Lab data, the average mean model (the BHM average
model) changed little (o = 2.94, y; = —5.78), but the BHM
estimated test-specific (Toledo) intercept and slope are now
2.76 and —6.03 (the Toledo BHM model), respectively (dashed
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Figure 4. Predicted MC concentrations for the tap water sample
collected on August 1, 2014 are estimated by three standard curves
(solid circles). The solid line is the standard curve based on Toledo’s
test data (open circles) only. The dotted line is the mean standard
curve based on the BHM (pooling data from Stone Lab and the
August 1 test), and the dashed line is the BHM estimate standard
curve for the Toledo test.

lines in Figure 4). The BHM estimated Toledo standard curve
lies between the BHM mean curve and the curve fit with Toledo
data alone (within the range of the Toledo data). Using the
Toledo standard curve, the estimated mean MC concentration
for the August 1 tap water sample is 3.45 ug/L with a 95% CI of
(1.88, 5.91) (Figure S).
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Figure S. Estimated MC concentration distributions from the three
models are shown by the 95% CI (vertical lines), where the thin lines
are predictive 95% CI for individual concentration measurement and
the thick lines are the 95% CI for the estimated mean concentration.
The predictive distributions estimated by the Toledo model, the BHM
Toledo model, and the BHM mean model (from left to right) are
grouped based on the rOD values of the respective water samples.
Probability of an estimated MC concentration exceeding the WHO
criterion of 1 are shown on top of the figure. The numbers in the
lower row are based on the Toledo model and the numbers on the
upper row are based on the Toledo BHM model. The shaded
horizontal lines are the three criterion values (0.3, 1, and 1.6).

Risk Assessment. In the ELISA test of August 1, 2014, the
measured OD values used for developing the standard curve
showed little variation (the two replicates are almost identical
for all standard concentrations, Figure 2(a)), which can be an
anomaly as OD observation variance can be large (Figure 2(b))
and the variability is consistent from concentration to concen-
tration (Figure 2(c)).

We represent the estimation uncertainty in terms of a pre-
dictive distribution, which is used to estimate the probability of
the underlying concentration exceeding the criterion (Figure 5).
The closer the estimated probability is to 1 or 0, the more certain

we are about whether the underlying concentration is above or
below the criterion, respectively.

Using the standard curve fit with Toledo data alone, the
estimated MC concentration distribution has a high variance
(Figure S). When we treat standard curves from multiple tests
as replicates and use the BHM average model, the estimated
MC concentration can be quite different from the estimate
using test data alone. The Toledo BHM model estimated test-
specific MC concentration lies in between these two estimates
(the shrinkage effect), and the estimation uncertainty is typically
reduced.

B DISCUSSION

We discussed the estimation uncertainty associated with
the enzyme-linked immunosorbent assay (ELISA) method for
measuring microcystin (MC) concentrations. Because the
estimation process depends on the standard curve fitted with
a small number of known standard concentrations, uncertainty
associated with the estimation from a single test is likely far
larger than the R* value or residual variance would suggest.
Using a Monte Carlo simulation, we showed that the esti-
mation uncertainty can be substantial. Furthermore, such
uncertainty is readily reflected in the among test variation—
changes in the fitted standard curve from test to test. As the
estimation uncertainty is rarely presented in the estimated MC
concentration, decision making such as the one facing officials
of Toledo can be a very difficult task.

Using the Bayesian hierarchical model (BHM) we show that
estimation uncertainty can be reduced by sharing information
from multiple tests. Much of the mathematical basis of BHM is
discussed by Efron and Morris.”

Because the estimated MC concentrations are the basis for
decision making in many water management problems, we see
further advantages of using a Bayesian hierarchical modeling
approach:

e As in any drinking water management situations, MC

criterion is set to measure human exposure to the toxin.
The current standard of 1 yig/L from World Health Orga-
nization is a chronic exposure standard. In other words, a
harmful effect is expected when a “long-term” exposure to
a concentration of 1 pug/L or above is observed. As a
result, the criterion applies to the mean concentration of
MC, not individual measurements. In our examples, the
predictive distribution combines uncertainty in model co-
efficients and residual variance to estimate the uncertainty
associated with individual measurements. Uncertainty about
the mean is readily available (Figure S, see Supporting
Information for details.)
U.S. Environmental Protection Agency’s health advisories
on algal toxins in drinking water have two microcystin
concentration levels: 0.3 yg/L for children “younger than
school age” and 1.6 ug/L for other ages.26 These values
are based on potential health effect from exposure for
10 days, hence the criteria should be compared to 10-day
average concentrations. In any case, the current practice
of comparing the estimated MC concentration from a
one time sample is not appropriate. Given that most
drinking water systems in Ohio monitor MC concen-
trations weekly or biweekly, a time-series analysis method
(e.g, dynamic linear model*’) should be used for esti-
mating changes in the mean concentration over time.
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o As discussed earlier, the among-test variation (changes in

the fitted standard curve from test to test) is often
interpreted as something associated with specific test
conditions. Our simulation suggested that the among-test
variation could be a result of large within test variation
hidden from individual tests due to a small sample size.
Using BHM provides a compromise for both possibil-
ities. In other words, data from multiple tests should
be used.
Alternatively, the manufacturer of the test kit can carry
out additional studies to provide a robust standard curve.
Specifically, we can carry out the ELISA test using more
than five standard concentrations. For example, we can
fill the standard 96-well plate with 48 different known
concentrations, each with two replicates as usual. The
resulting standard curve will have a much wider inference
range and a better characterization of the uncertainty.
The model can be included as part of the kit and be used
as a Bayesian prior model. When measuring MC concen-
trations, a user can carry out the test as usual. A Bayesian
linear regression model”®* can be used to derive a
standard curve that combines the prior model and test-
specific data. The Bayesian method can be readily pro-
grammed into many standard software packages for
routine use by lab operators. This approach is essentially
the same as combining data from multiple tests, if we
assume that among-test differences we routinely ob-
served is due to observation error (no other test-specific
sources of uncertainty).

o Our simulation, however, cannot definitely conclude that
the test-to-test variation is due entirely to random noise.
With a Bayesian hierarchical model, we have both the
test-specific model and the average model. If both
models predict a high probability of the mean concen-
tration exceeding the criterion, we can conclude that the
risk of harmful exposure is high.

Individual drinking water treatment facilities in Ohio are
likely to send their water samples to a small number of
laboratories for testing. Data from these tests should be
shared with a state regulatory agency for developing the
Bayesian hierarchical model and updating the model over
time, while drinking water plant operators receive the
same standard reports as usual. When we have individual
measurements exceeding the criterion, we should use the
updated model for assessing likelihood of the mean
concentration exceeding the criterion.

Individual laboratories currently conducting ELISA
testing may already have data from a large number of
tests. Computer programs presented in this paper can be
used by individual laboratories to develop the BHM.

Although we focused on the ELISA test for measuring
MC concentrations, our results, in principle, apply to similar
methods used for measure concentrations of other water
quality variables such as total phosphorus and total nitro-
gen,30’31 where concentration measurements are based on a
standard curve developed using regression with a few degrees
of freedom.
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