
Course Syllabus

Credits & Contact Hours

Coordinator

Textbook

Course Information

Specific Goals- Students

Learning Objectives (SLOs)

EECS 3550 – Software Engineering

3 credit hours & three 50-minute lecture contact hours per week.

Dr. Henry Ledgard

Software Craftsmanship, Pete McBreen , 2001; The Best Software

Writing I, edited by Joel Spolsky, 2005; More Joel on Software, Joel

Spolsky, 2008.

An introduction to the Software Engineering process. Topics include:

the software lifecycle, programming teams, user requirements,

human-computer interaction, functional specification, security and

performance, software architecture, software design, object-

oriented programming, professional programming practice, software

tools, testing, and modification. A major project is assigned.

Prerequisites: EECS 2510 and ENGL 2950 or 2960

Required course

The students will be able to

1. Devise a variety of simple proofs.

2. Learn the canonical metaphor for building large

software projects.

3. Review the many other models for developing

software projects.

1. Learn the skills required to become a true software

craftsman.

2. Learn the roles and skills required for working as a team

on a software project.

3. Work in a team to build a software product.

4. Recognize and create a Functional Specification from a

set of User Requirements.

5. Be able to define the properties of readable and

reusable code.

6. Conduct a specification, design, or code review.

7. Make an effective oral presentation on a technical topic.

8. Be knowledgeable of contemporary issues related to

software.

9. Identify some of the software issues that affect society

as a whole.

Topics

10. Plan and execute lifecycle steps for developing a

complex software product.

1. Software Lifecycle models.

2. Software Requirements.

3. Systems Specification.

4. Architectural Design.

5. Object-oriented Design.

6. User Interface Design.

7. Software Testing.

8. Managing People.

9. Process Improvement.

10. Programming Practice.

11. Working in Teams.

12. Design and Code Reviews.

