1. **Course Number and Name:**
 CSET 2230 Assembly Language & Computer Architecture

2. **Credits and Contact hours:**
 Credits: 4 hours, Contact: 3 lecture hours; 2 lab hours

3. **Instructor’s or course coordinator’s name:**
 Robert Langendefeer

4. **Text book, title, author, and year:**
 - Other supplemental materials:
 Software: DEBUG, MASM

5. **Specific Course Information:**
 a. **Brief description of the content of the course (catalog description):**
 This course covers the software architecture of the 8088 and 8086 microprocessors. Basic 8086/8088 instruction sets, various machine codes, and addressing modes are covered. The DEBUG and MASM software are used.
 b. **Pre-requisites, or co-requisites:**
 EET 2210

6. **Specific goals for the course:**
 a. **Specific outcomes of instruction:**
 1. Ability to write Assembly Language programs for the Intel 8088/8086 microprocessors using DEBUG and MASM. Ability to load, verify, and save machine language programs.
 2. Ability to debug and interpret machine code using the DEBUG software.
 3. Ability to decode and encode machine code by hand.
 4. Ability to examine and modify the contents of Memory.
 5. Knowledge of various addressing modes.
 6. Knowledge of data transfer instructions, arithmetic instructions, logic instructions, shift instructions, and rotate instructions.
 7. Knowledge of Control flow and loop instructions.
 8. Ability to keep abreast of the latest technology by reading appropriate journal/conference papers and other scientific magazines.
 b. **Explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course: a, c, f, k**
 A. An understanding of the analytical and laboratory skills associated with electrical engineering technology, as evidenced by the ability to: Write, debug, and analyze assembly language programs for the 8086/8088 microprocessor instruction set.
C. An ability to conduct, analyze, and interpret experiments concerning assembly language programming, as evidenced by: The ability to perform various lab exercises using DEBUG and MASM software. Written reports for select experiments.

F. An ability to identify, analyze and solve technical problems associated with assembly language programming, as evidence by: An ability to solve problems given in class quizzes, tests, and final examination. An ability to participate in class discussions and solve problems open for discussion during class time.

K. A commitment to quality and continuous improvement as evidenced by: The ability to use the latest software and computers. The ability to learn from past mistakes made on quizzes and tests and perform better in future, as evidenced by improvement in test scores, etc.

7. **Brief list of topics to be covered:**
 1. Introduction to Microprocessors and Microcomputers.
 2. Software Architecture of the 8088 and 8086 Microprocessors.
 3. Assembly Language Programming.
 4. Machine Language Coding and the DEBUG software development program of the IBM PC.
 5. 8086/8088 Programming – Integer Instructions and Computations.
 6. 8086/8088 Programming – Control Flow Instructions and Program Structures.
 7. Assembly Language Program Development with MASM.