An analytical procedure is presented for the nonlinear analysis of reinforced concrete frame structures consisting of beams, columns, and shear walls under monotonic and pushover loads. The procedure is capable of accurately representing shear-related mechanisms coupled with flexural and axial behaviors. The formulation described herein uses linear-elastic frame analysis algorithms in a nonlinear mode based on an unbalanced force approach. Rigorous nonlinear sectional analyses of concrete member cross sections, using a distributed-nonlinearity fiber model, are performed based on the disturbed stress field model. The proposed method is distinct from existing methods in that it allows for the inherent and accurate consideration of shear effects and significant second-order mechanisms within a simple modeling process suitable for practical applications. Decisions regarding the anticipated behavior and failure mode or the selection of appropriate analysis options and parameter values, or additional supporting calculations such as the moment-axial force or shear force-shear deformation responses, are not required.

Keywords: beam column; fiber model; frame structure; monotonic; nonlinear analysis; pushover; reinforced concrete; retrofit; shear.

INTRODUCTION

The analysis and design procedures that have been incorporated into modern design codes typically require frame structures to be analyzed linear-elastically and designed for ductile and flexure-critical behavior. Although linear-elastic analyses cannot accurately predict all aspects of structural behavior, such as redistribution of forces and service load deformations, they are deemed sufficient if the structure is designed for flexural behavior. There are numerous analytical tools that can perform such an analysis and design reasonably well. In some situations, however, it may be necessary to analyze a shear-critical structure to more accurately predict its behavior. Such an analysis may be required for the safety assessment of existing structures that were built 20 years ago or earlier based on practices considered deficient today; damaged or deteriorated structures; accurate assessment of large, atypical, or unique structures; investigation of rational retrofit alternatives in structures requiring rehabilitation; and forensic analyses in cases of structural failure. Furthermore, modern building codes such as IBC (2006) and FEMA 356 (2000) favor more accurate procedures over traditional linear-elastic methods for a more thorough analysis.

Such analyses can be performed using nonlinear analysis procedures that typically require computer-based applications. Most available applications for this purpose, however, such as SAP2000® (CSI 2005), RUAUMOKO (Carr 2005) and DRAIN-2DX (Prakash et al. 1993), ignore shear mechanisms by default. If the structure being analyzed is in fact shear-critical, severely unconservative estimates of both strength and ductility are typically obtained. Unlike flexure-critical structures, shear-critical structures fail in a much less forgiving, brittle manner with little or no forewarning; therefore, consideration of shear behavior is essential for safe and realistic assessment of structural performance.

Some available computer tools for frame structures, such as SAP2000, permit the consideration of shear behavior through automatically generated shear hinges based on simple formulas; however, there is typically insufficient information available on the applicability of these formulas to the frame being analyzed. As a result, grossly inaccurate results for both strength and ductility predictions are commonly obtained when using such generic or unknown models for the shear behavior. On the other hand, some available tools, such as RUAUMOKO, permit the analyst to define the shear behavior manually through user-defined shear hinges. Creation of this input, however, requires expert knowledge on the shear behavior of concrete and usually takes significant time and effort even when using other computer programs for the shear calculations, which severely limits the use of such procedures in practice. In addition, whether considering shear behavior or not, the analyst is typically required to select from a list of models and options appropriate for the frame being analyzed. These may include material models, such as the concrete tensile or compressive response models, or nonlinear analysis options, such as large displacements or hinge unloading methods. The selection of these options tends to have a significant effect on the computed response and may render the analytical results questionable if not properly selected. This further limits the use of existing tools by practicing structural engineers.

Consider, for example, a frame specimen tested by Duong et al. (2007) involving a one-bay, two-story, shear-critical frame. The frame was tested under a monotonically increasing lateral load applied to the second-story beam and two constant column loads applied to simulate the axial force effects of higher stories. For analysis purposes, two software programs were used: SAP2000 and RUAUMOKO. Both analyses were performed with the use of only default options and models. For modeling the hinges, the default moment and shear hinges were used in the SAP2000 model, and the default moment hinges, the only available option, were used in the RUAUMOKO model. As seen in Fig. 1, highly contradictory and inaccurate predictions were obtained for both strength and ductility. SAP2000 underestimated the strength by 70%, predicting a shear failure; RUAUMOKO overestimated it by 25%, predicting a flexural failure. The RUAUMOKO analysis did not provide any indication of the ultimate displacement; the analysis carried on sustaining the ultimate load based on the elastic-plastic hinge behavior. SAP2000,
iterative, secant stiffness formulation. The computer-based
(1.76 in.) attained (Duong et al. 2007). More details of these
test was expected to be only slightly more than the 44.8 mm
failure displacement. The actual failure displacement in the
on the other hand, predicted an erroneous 4.0 mm (0.16 in.)
failure displacement. The actual failure displacement in the
test was expected to be only slightly more than the 44.8 mm
failure displacement. The actual failure displacement in the

This current study is concerned with the development and verification of an analytical method for the nonlinear analysis of frame-related structures with particular emphasis on shear-related mechanisms. A frame analysis program, VecTor5, based on predecessor program TEMPEST (Vecchio 1987; Vecchio and Collins 1988), was developed for accurate simulations under monotonic and pushover loading conditions. The procedure is distinct from others in its inherent and accurate consideration of shear effects and significant second-order mechanisms within a simple modeling process suitable for use by practicing structural engineers. Decisions regarding the expected behavior and failure mode or selection of appropriate values for multiple parameters and options are not required prior to the analyses, nor are additional supporting calculations such as moment-axial force, moment-curvature, or shear force-shear deformation responses of the cross sections.

RESEARCH SIGNIFICANCE

Although modern design codes typically require frame structures to be designed for ductile behavior, situations often arise in practice where shear-related mechanisms play a significant role. Currently available analytical tools either ignore shear mechanisms altogether, employ unclear or overly simplistic formulations, or are overly complex, requiring the selection of numerous analysis options and input of supporting calculations prior to the analysis. Most neglect shear deformations by default. Thus, improved analytical tools are much needed. This study describes a nonlinear analysis procedure for plane frames that provides a comprehensive and accurate assessment of shear effects—one that does not require precalculation of interaction responses or failure modes, nor the selection of a confusing array of analysis options and material models.

OVERVIEW OF PROPOSED ANALYTICAL PROCEDURE

The analytical procedure proposed is based on a total load, iterative, secant stiffness formulation. The computer-based calculation procedure consists of two interrelated analyses. First, a linear-elastic global frame analysis, using a classical stiffness-based finite element formulation, is performed to obtain member deformations. Using the calculated deformations, nonlinear sectional analyses are performed to determine the sectional member forces, based on a distributed-nonlinearity fiber approach. The differences between the global and sectional forces are termed the “unbalanced forces,” which are added to the “compatibility restoring forces” (that is, virtual static loads) to force member deformations in the global frame analysis to match those in the nonlinear sectional analysis. The compatibility restoring forces are applied to the ends of each member in a self-equilibrating manner. The global frame analysis and the sectional analyses are performed iteratively, resulting in a double-iterative procedure, until all unbalanced forces converge to zero. In all calculations, the initial transformed cross-sectional area A_i and moment of inertia I_i are used together with the initial tangent Young’s modulus of concrete E_t. The procedure allows the analysis of frames with unusual or complex cross sections under a wide range of static and thermal load conditions. Nonlinear thermal analysis calculations were adopted from the predecessor procedure TEMPEST.

To analyze a structure with the proposed analytical procedure, a global model of the structure must first be created by dividing frame elements (that is, beams, columns, and shear walls) into a number of members (that is, segments). All mechanical and thermal forces acting on the structure, as well as support conditions, must be defined as shown in Fig. 2. Unlike lumped-nonlinearity frame elements with plastic hinges located at each end, the frame element proposed is based on a distributed-nonlinearity fiber model where nonlinear behavior is monitored at each member using average member forces. Therefore, reasonably short members should be used in the model to adequately capture...
the nonlinear behavior. For optimal accuracy, the recommended member length is in the range of 50% of the cross section depth for beam and column members and 10% of the cross section depth for shear wall members. A more detailed description of the modeling and analysis process is provided by Guner and Vecchio (2008) and Guner (2008).

A layered (fiber) analysis technique is employed for the nonlinear sectional analyses; therefore, a sectional model of each cross section used in the frame model must be created by dividing the cross section into a number of concrete layers, longitudinal reinforcing bar layers, and longitudinal prestressing steel layers. A sectional model and the material properties required for the input are shown in Fig. 3, where f'_{c} is the concrete compressive strength; ρ_{ti} and ρ_{zi} are the transverse and out-of-plane reinforcement ratios, respectively; S_{ti} is the spacing of the transverse reinforcement in the longitudinal direction; f_{yi} and $f_{u,i}$ are the yield and ultimate stresses of the transverse reinforcement, respectively; $E_{st,i}$ and $E_{sht,i}$ are the Young’s and the strain hardening moduli of the transverse reinforcement, respectively; $\varepsilon_{sht,i}$ is the strain at the onset of strain hardening; $A_{s,j}$ is the total cross-sectional area of the longitudinal reinforcement or prestressing steel layer; and $\Delta \varepsilon_{pj}$ is the locked-in strain differential for the prestressing steel layer.

At the end of the analysis, the procedure provides sufficient output to fully describe the behavior of the structure, including the load-deflection response, member deformations and deflections, concrete crack widths, reinforcement stresses and strains, deficient parts and members (if any), and failure mode and failure displacement of the structure. The postpeak response of the structure is also provided, through which the energy dissipation and the displacement ductility can be calculated.

BASIC ANALYSIS STEPS

1. The procedure starts with adding current compatibility restoring forces to the fixed-end forces due to applied mechanical loads. In the first iteration of the first load stage, the compatibility restoring forces are taken as zero.

2. A linear-elastic frame analysis of the structure is performed to determine the joint displacements, joint reactions, and member end-actions. Using appropriate end factors, the average internal forces of each member (that is, N_k, M_k, and V_k) are determined. The geometry of the structure is updated based on the joint displacements computed.

3. The axial and shear strain distributions through the depth of each member are determined.

LINEAR-ELASTIC GLOBAL FRAME ANALYSIS

A typical frame member is shown in Fig. 5, relative to the member-oriented local coordinate system axes x_m, y_m, and z_m. A flowchart indicating the major steps in the global frame analysis procedure is presented in Fig. 6.

4. Nonlinear sectional analysis iterations are performed for each member to calculate the sectional forces, that is, $N_{sec,k}$, $M_{sec,k}$, and $V_{sec,k}$.

5. The unbalanced forces (that is, the differences between the global and sectional forces) are calculated for each member. These unbalanced forces are added to the compatibility restoring forces to be applied to the structure.

6. The aforementioned calculations are repeated until all unbalanced forces become zero or the maximum number of iterations is reached.

To illustrate the concept of unbalanced forces, the response of a member to an applied moment M_a in the first two iterations is shown in Fig. 4. For M_a and curvature ϕ_{L1}, calculated from the linear-elastic global frame analysis, nonlinear sectional moment is calculated as M_{N1} in the first iteration (arrows 1 to 3 in Fig. 4). The difference between M_a and M_{N1} is the unbalanced moment M_{U1}, which is added to the compatibility restoring force ($M_{R1} = 0 + M_{U1}$) to be applied to the member as $M_{L2} = M_a + M_{R1}$ to find M_{N2}. Notice how the unbalanced moment ($M_{U2} = M_a - M_{N2}$) reduces while the compatibility restoring force ($M_{R2} = M_{U1} + M_{U2}$) increase. The procedure is continued in this manner until M_{N} becomes equal to M_a.

![Fig. 3](image3.png)

Fig. 3—Creation of sectional model: (a) cross section; and (b) sectional model.

![Fig. 4](image4.png)

Fig. 4—Unbalanced force approach.

![Fig. 5](image5.png)

Fig. 5—Frame member: (a) degrees-of-freedom in member-oriented axes; and (b) global axes.
Shear protection algorithm

In the analysis of frames that are typically modeled accordingly to centerline dimensions, experience has shown that D-regions (that is, “disturbed” regions where strain distributions are significantly nonlinear) are vulnerable to premature shear failures near concentrated loads, corners, and supports. Therefore, a “shear protection” algorithm was introduced into the proposed procedure to approximately account for the increased strength of D-regions. This algorithm first detects the joints of frames (beam and column connection nodes), the point load application points, and the supports. It then determines all members that fall within the distance of $0.7 \times h_s$ from such joints, as defined by CSA A23.3-04 Clause 11.3, where h_s is the cross-section depth. Finally, the shear forces acting on those members are reduced, when calculating shear strains, to prevent premature failures. More details of this implementation are provided by Guner (2008).

Shear compatibility strain

A shear compatibility strain γ_{ltc} is calculated for each member as defined by

$$\gamma_{ltc} = \gamma_{ltc}^{pre} + 1.15 \times \frac{V_{UN}}{G_c \times A_t}$$

(1)

In Eq. (1), γ_{ltc} is the shear compatibility strain to be used in the current global frame analysis iteration, γ_{ltc}^{pre} is the shear compatibility strain of the previous global frame analysis iteration, V_{UN} is the unbalanced shear force, G_c is the elastic shear modulus as defined by Eq. (2), and A_t is the transformed cross-sectional area. A shear area factor of 1.15 is assumed in Eq. (1) for general cross sections.

$$G_c = \frac{E_c}{2(1 + \nu)}$$

(2)

In Eq. (2), E_c is the initial tangent modulus of elasticity of concrete, and ν is Poisson’s ratio, which is initially assumed to be 0.15.

Compatibility restoring forces

The axial, moment, and shear compatibility restoring forces are determined for each frame member as follows

$$N_R = N_R^{pre} + N_{UN}$$

(3)

$$M_R = M_R^{pre} + M_{UN}$$

(4)

$$V_R = \gamma_{ltc}^{pre} \times \frac{12 \times E_c \times I_t}{L_k^2}$$

(5)

In Eq. (3) to (5), N_R^{pre} and M_R^{pre} are the axial and moment compatibility restoring forces from the previous global
Joint displacements, reactions, and member end-actions

A load vector \(\{p\} \), consisting of fixed-end forces due to applied mechanical loads and compatibility restoring forces, is assembled. Using the classical stiffness-based finite element formulation, a structural stiffness matrix \([k]\) is created and assembled based on the procedure described by Weaver and Gere (1990). The joint displacements \(\{u\}\) are then determined based on Eq. (6). Using the calculated nodal displacements, updated nodal coordinates are determined, and new member lengths and direction cosines are calculated. This update is performed to consider geometric nonlinearity. Support reactions and member end-actions relative to the elemental axes are finally calculated.

\[
\{u\} = [k]^{-1} \times \{p\} \tag{6}
\]

Fixed-end forces due to dowel resistance

The dowel resistance provided by the reinforcing bars may be significant in some cases, for example, in beams or columns with low percentages of shear reinforcement. Dowel action is taken into account for each member through the introduction of resisting fixed-end moments. The dowel force is calculated by taking the stiffness portion of the dowel force-dowel displacement formulation proposed by He and Kwan (2001). Details of this implementation are described in Guner (2008).

End factors and average member forces

End factors are used to average the end actions of members to determine one average axial force, shear force, and bending moment value for each member. To account for a possible concentration of deformations at one particular end, the end with higher actions is typically given a higher weighting in this averaging process. Consequently, the end factors for axial force and bending moment, initially taken as 0.5 for both ends, is gradually changed to 0.75 and 0.25, depending on the acting compressive strain. For cracked members, the end factors for bending moment and axial force are always set to 0.75 and 0.25. For averaging the shear force, end factors of 0.5 are used for all members.

Unbalanced forces

Unbalanced forces are the differences between member forces calculated by the global frame analysis and those obtained from the nonlinear sectional analysis, as follows

\[
N_{UNk} = N_k - N_{seck} \tag{7}
\]
\[
M_{UNk} = M_k - M_{seck} \tag{8}
\]
\[
V_{UNk} = V_k - V_{seck} \tag{9}
\]
updated member lengths are uniform and equal to the strains at the center of the layer, as its ability to continue an analysis into the post-peak regime by the “shear protection algorithm,” as described previously.

In the analytical procedure where the load is introduced or where a support is present, however, that high transverse stresses are present at locations assumed to be zero in the sectional calculations. It is known, are calculated by the global frame analysis.

It is further assumed that the longitudinal strains in each layer are uniform and equal to the strains at the center of the layer, as shown in Fig. 8. The sectional equilibrium requirements include balancing the axial force, shear force, and bending moment that are calculated by the global frame analysis.

The clamping stresses in the transverse direction are based on Fig. 9(a) as follows

\[\varepsilon_{cl} = \frac{L_k - L_k^{pre}}{L_k^{pre}} \]
\[\phi = \frac{\varphi_{cl} - \varphi_{cl}^{pre}}{L_k} \]
\[\varepsilon_{x,top} = \varepsilon_{cl} - \frac{h_x}{2} \times \phi \]
\[\varepsilon_{x,bot} = \varepsilon_{cl} + \frac{h_x}{2} \times \phi \]

It is further assumed that the longitudinal strains in each layer are uniform and equal to the strains at the center of the layer, as shown in Fig. 8. The sectional equilibrium requirements include balancing the axial force, shear force, and bending moment that are calculated by the global frame analysis.

As the DSFM considers reinforced concrete as an orthotropic material in the principal stress directions, it is necessary to formulate the concrete material stiffness matrix; therefore, the longitudinal reinforcing or prestressing bar layers defined for each cross section must be smeared to concrete layers. For this purpose, the bar layers are assumed to be smeared in a tributary area of 7.5 times the bar diameters on both sides of the bars, as suggested by CEB-FIP (1990). The resulting reinforcement ratio is used in the sectional analyses when analyzing the related concrete layer.

Average crack spacings

A reasonable estimate of the average crack spacing is needed for crack slip calculations. In the analytical procedure proposed, a variable crack spacing formulation is adapted from Collins and Mitchell (1991). In contrast to the constant crack spacing, the variable crack spacing model considers the fact that the crack spacing becomes larger as the distance from the reinforcement increases. As a result, each concrete layer may have different crack spacings in the longitudinal and transverse directions based on the reinforcement quantity and configuration. Calculation details of this implementation are found in Guner (2008).

Shear-strain-based layer analysis

The purpose of the shear-strain-based layer analysis is to calculate the longitudinal stress \(\sigma_x \) and shear stress \(\tau_{xy} \) of each concrete layer.

Consider a single concrete layer that has a certain percentage of longitudinal and transverse reinforcement (for example, Fig. 8, shaded layer). To calculate the principal strains in this layer, \(\varepsilon_y \) must be determined; \(\varepsilon_x \) and \(\gamma_{xy} \) are known from the global analysis. Any value can be assumed for \(\varepsilon_y \) to start the iterative calculation process. The net principal strains, \(\varepsilon_{c1} \) and \(\varepsilon_{c2} \), and the orientation of stress field \(\theta \) can be calculated from a Mohr’s circle of strain. The corresponding principal stresses, \(f_{c1} \) and \(f_{c2} \), are calculated based on the constitutive relationships of the DSFM.

The concrete material secant moduli are then calculated based on Fig. 9(a) as follows

\[E_{c1} = \frac{f_{c1}}{\varepsilon_{c1}} \]
\[E_{c2} = \frac{f_{c2}}{\varepsilon_{c2}} \]
\[C_c = \frac{E_{c1} \times E_{c2}}{E_{c1} + E_{c2}} \]

In Fig. 9(a), \(\varepsilon_c \) is the concrete net strain (that is, the strain that causes stress); \(\varepsilon_{c1}^{o} \) is the concrete elastic offset strain due to lateral expansion, thermal, shrinkage and prestrain effects; \(\varepsilon_{c2}^{p} \) is the concrete plastic offset strain due to cyclic loading and damage; and \(\varepsilon_{c2}^{s} \) is the concrete crack slip offset strain due to shear slip.

As the DSFM considers reinforced concrete as an orthotropic material in the principal stress directions, it is necessary to formulate the concrete material stiffness matrix \([D_c]\) relative to those directions as follows

Fig. 8—Longitudinal and shear strain distribution across cross section depth \(h_s \).
The concrete material stiffness matrix can then be transformed to the global axes as follows

\[
[D_c] = [T_c]^T \times [D_c'] \times [T_c]
\]

(17)

The resulting composite material stiffness matrix is calculated as

\[
[D] = [D_c] + [D_s]
\]

(23)

The layer stresses can then be found as

\[
[\sigma] = [D] \times [\epsilon] - [\sigma^o]
\]

(24)

In Eq. (24), both the \([D]\) matrix and the \([\epsilon]\) vector are based on total strains, necessitating the deduction of \([\sigma^o]\), a pseudo stress matrix arising from the strain offsets shown in Fig. 9.

\[
[S_{01} \quad S_{02} \quad S_{03}]
\]

(25)

\[
[S_{01} \quad S_{02} \quad S_{03}]
\]

(26)

\[
[\sigma^o] = [D_c] \times (([\epsilon^o] + [\epsilon^p] + [\epsilon^s]) =
\]

\[
[D_c] \times \begin{bmatrix}
\epsilon^o_{xx} \\
\epsilon^o_{xy} \\
\epsilon^p \\
\epsilon^s \\
\end{bmatrix} + [D_s] \times \begin{bmatrix}
0 \\
0 \\
[\epsilon^o_{xy} + \epsilon^p_{xy}] \\
0 \\
\end{bmatrix}
\]

(27)

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} =
\begin{bmatrix}
D_{11} & D_{12} & D_{13} \\
D_{21} & D_{22} & D_{23} \\
D_{31} & D_{32} & D_{33}
\end{bmatrix}
\begin{bmatrix}
\epsilon_x \\
\epsilon_y \\
\gamma_{xy}
\end{bmatrix} -
\begin{bmatrix}
S_{01} \\
S_{02} \\
S_{03}
\end{bmatrix}
\]

(28)

Taking advantage of the assumption that there is no clamping stress in the transverse direction, Eq. (28) can be expanded as

\[
\sigma_y = D_{21} \times \epsilon_x + D_{22} \times \epsilon_y + D_{23} \times \gamma_{xy} - S_{02} = 0
\]

(29)

This assumption permits the calculation of the total strain in the transverse direction, which is the basic unknown of the procedure.

\[
\epsilon_y = \frac{-D_{21} \times \epsilon_x - D_{23} \times \gamma_{xy} + S_{02}}{D_{22}}
\]

(30)

Using the calculated \(\epsilon_y\) value, the new principal stresses \((f_{c1} \text{ and } f_{c2})\) are determined from the corresponding principal strains \((\epsilon_{c1} \text{ and } \epsilon_{c2})\) using the DSFM constitutive models; the aforementioned calculations are repeated until the \(\epsilon_y\) value converges or the specified maximum number of iterations is reached (100 iterations by default). At the conclusion of these calculations, the required stress values are calculated as follows
The reinforcement response must be superimposed on the concrete response to obtain the resultant nonlinear sectional forces, which require the determination of net reinforcement strains. In the most general case, the total longitudinal forces, which require the determination of net reinforcement concrete response to obtain the resultant nonlinear sectional reinforcement response given in Fig. 8. In this calculation, the strain values layer is determined from the longitudinal strain distribution is, the strain that causes stress), prestrain offset strains due to prestressing, elastic offset strains similarly decomposed into its components except that no prestrains are considered, as defined as follows

\[\varepsilon_{sj} = \varepsilon_{j}^{net} - \Delta \varepsilon_{pj} + \varepsilon_{sj}^{th} + \varepsilon_{sj}^{p} \]

The total strain \(\varepsilon_{sj} \) for each reinforcing or prestressing steel layer is determined from the longitudinal strain distribution given in Fig. 8. In this calculation, the strain values corresponding to the center of the bar are considered. As for the transverse reinforcement, the total strain \(\varepsilon_{yi} \) is similarly decomposed into its components except that no prestrains are considered, as defined as follows

\[\varepsilon_{yi} = \varepsilon_{yi}^{net} + \varepsilon_{yi}^{th} + \varepsilon_{yi}^{p} \]

In Eq. (34), subscript \(i \) refers to the concrete layer number as the reinforcement is smeared into concrete layers.

After determining the net strains for the reinforcement components, the reinforcement responses, whether in the longitudinal (x) or transverse (y) directions in compression or in tension, is calculated by a trilinear relationship as shown in Fig. 10, with corresponding stresses defined as follows

\[f_s = E_s \times \varepsilon_s \quad \text{for} \ 0 \leq \varepsilon_s < \varepsilon_u \]
\[f_s = f_y \quad \text{for} \ \varepsilon_y \leq \varepsilon_s \leq \varepsilon_{sh} \]
\[f_s = f_y + E_{sh} \times (\varepsilon_s - \varepsilon_{sh}) \quad \text{for} \ \varepsilon_{sh} < \varepsilon_s < \varepsilon_u \]
\[f_s = 0 \quad \text{for} \ \varepsilon_u \leq \varepsilon_s \]

In Eq. (35) to (38), \(f_s \) is the stress, \(f_y \) is the yield stress, \(f_u \) is the ultimate stress, \(\varepsilon_s \) is the net strain, \(\varepsilon_y \) is the yield strain, \(\varepsilon_{sh} \) is the strain at the onset of strain hardening, and \(\varepsilon_u \) is the ultimate strain of the reinforcement.

Local crack calculations

The consideration of local crack conditions is an essential component of the procedure. These calculations are performed to make sure that the average concrete stresses can be transmitted across cracks by the reserve capacity of the reinforcement. In addition, the shear stresses \(\varepsilon_{cs} \) developed at the crack interface are calculated for each concrete layer to determine the magnitude of the shear slip along the crack surfaces. The local crack calculations are performed within each sectional analysis iteration for each concrete layer using the formulations of the DSFM as described by Vecchio (2000). A detailed description of the adaptation into the frame analysis algorithm is provided by Guner (2008).

Resultant sectional member forces

After determining both the concrete and reinforcement responses, the resultant sectional forces are obtained by superposition as shown below, where \(ncl \) is the total number of concrete layers and \(nsl \) is the total number of reinforcing and prestressing steel layers.

\[N_{sec} = \sum_{i=1}^{ncl} \sigma_{xi} \times b_i \times h_i + \sum_{j=1}^{nsl} f_{s,xy} \times A_{sj} \]
\[M_{sec} = \sum_{i=1}^{ncl} \sigma_{xi} \times b_i \times h_i \times y_{ci} + \sum_{j=1}^{nsl} f_{s,xy} \times A_{x,js} \times y_{sj} \]
\[V_{sec} = \sum_{i=1}^{ncl} \tau_{xy} \times b_i \times h_i \]

The calculated forces are returned to the global frame analysis algorithm, where they are checked with the member forces obtained from the global frame analysis to determine the unbalanced forces. The objective of the global frame analysis is to reduce all unbalanced forces to zero before proceeding to a new load or time stage.

ADDITIONAL CONSIDERATIONS

Concrete dilatation (Poisson’s effect)

Under biaxial stress conditions, it is common to assume that Poisson’s effects are negligible for cracked concrete. If the concrete is uncracked or if the tensile strain in the cracked concrete is relatively small, however, the lateral expansion of concrete due to Poisson’s effects can account for a significant portion of the total strains, requiring these effects to be taken into account. Due to internal micro-cracking, Poisson’s ratio increases as the acting compressive stress increases, causing concrete expansion to accelerate. When confined by transverse or out-of-plane reinforcement, the lateral expansion results in passive confining stresses that considerably improve the strength and ductility of the reinforced concrete under compression. This phenomenon is taken into account in the sectional analyses of the proposed procedure as concrete elastic offset strains \(\varepsilon_{c,0} \) based on the lateral expansion model of Kupfer et al. (1969). Details of these calculations are provided by Guner (2008).

Concrete prestrains

Concrete prestrains, such as shrinkage strains \(\varepsilon_{sh} \), are also considered as a loading and can be assigned to desired
members. These prestrains are treated as elastic concrete offsets (that is, \(\varepsilon_{cxy}^o = \varepsilon_{sh}^o \) and \(\varepsilon_{cxy}^o = \varepsilon_{shr}^o \) while \(\gamma_{cxy}^o = 0 \)) and are included in the sectional analyses.

Out-of-plane (confinement) reinforcement

Lateral expansion causes passive confining pressures in the transverse and out-of-plane reinforcement, which may considerably improve the strength and ductility of the concrete. In the analytical procedure proposed, the stress in the transverse reinforcement due to lateral expansion is inherently taken into account by the use of concrete elastic offset strains, as formulated previously. Stresses in the out-of-plane reinforcement are calculated separately in the sectional analyses. The calculated confining stress is taken into account to enhance the concrete compressive response, as described in Guner (2008).

SUMMARY AND CONCLUSIONS

Although modern design codes typically require reinforced concrete frames to be designed for ductile and flexure-critical behavior, situations often arise in practice where shear-related mechanisms play a significant role in structural response. Omission of shear effects for such structures typically results in severely unconservative and unsafe calculation of strength and ductility. Most available tools, however, either ignore shear mechanisms altogether, employ unclear or overly simplistic formulations, or require complex precalculation of shear hinge properties using separate software, as well as selection of numerous analysis options and parameter values.

A computer-based analytical procedure, VecTor5, has been developed for the nonlinear analysis of frame-related structures consisting of beams, columns, and shear walls, under monotonic and pushover loads. Based on the disturbed stress field model (DSFM), the procedure is capable of capturing shear-related effects coupled with flexural and axial behaviors. The proposed procedure is based on two interrelated analyses, using an iterative total load, secant stiffness formulation. A classical stiffness-based linear-elastic frame analysis is performed as the main framework of the procedure. Rigorous sectional analyses of concrete member cross sections are then undertaken, using a distributed-nonlinearity fiber model and the constitutive relations of the DSFM. The computed responses are then enforced with the use of an unbalanced force approach, where the unbalanced forces are reduced to zero in an iterative process. The procedure allows for the analysis of frames with unusual or complex cross sections under a large range of static and thermal load conditions. The formulations presented herein can be incorporated into most linear-elastic frame analysis procedures.

The procedure is capable of considering significant second-order effects such as material and geometric nonlinearities, time- and temperature-related effects, membrane action, nonlinear degradation of concrete and reinforcement at elevated temperatures, concrete compression softening, tension stiffening and tension softening, shear slip along crack surfaces, nonlinear concrete expansion, confinement effects, previous loading history, effects of slip distortions on element compatibility relations, concrete prestrains, and reinforcement dowel action. Furthermore, new or improved formulations can be adopted as they become available. Currently, however, the procedure does not account for reinforcement bond slip and compression bar buckling mechanisms. Furthermore, as is typical in frame analysis of this type, the procedure uses centerline dimensions of cross sections together with stiffened joint panel zone members. Therefore, failure modes involving beam-column panel zones cannot be captured. A nonlinear member type should be developed for beam-column joints to further improve the capabilities of the proposed procedure. Future work will be directed toward addressing these limitations.

The advantage of the proposed method over others is its inherent and accurate consideration of shear-related mechanisms within a simple modeling process suitable for practical applications. Unlike other methods, decisions regarding the expected behavior and failure mode, or selection of appropriate analysis options and parameter values, are not required in the modeling process prior to the analysis, nor are additional calculations, such as the moment-axial force, moment-curvature, or shear force-shear deformation responses of the cross sections. Furthermore, the procedure exhibits excellent convergence and numerical stability characteristics, requiring little computational time, as demonstrated in a companion paper (Guner and Vecchio 2010) through verification and application studies.

REFERENCES

