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A refined constitutive model (called “RDM model”) is proposed 
for simulating the complete stress-strain response of longitudinal 
reinforcing bars, including the onset of inelastic buckling and 
subsequent degradation in the post-buckling regime. This model 
accounts for interactions between lateral ties and longitudinal 
bars, and is verified using 45 experimental and 58 analytical spec-
imens previously tested by nine research groups. The RDM model 
is incorporated into a global modeling procedure and validated 
with six axially loaded columns, 16 axially and laterally loaded 
columns, and four beams previously tested by nine research groups. 
The validated procedure is used to study the influences of global 
second-order mechanisms such as geometrical nonlinearities, 
shear effects, and confinement effectiveness on the local buckling 
behavior. The proposed RDM model is shown to provide accurate 
response simulations for the buckling of reinforcing bars with a 
wide range of mechanical and geometrical properties. This model 
employs simple equations and defines full-range compressive 
response from well-known tensile material properties.

Keywords: inelastic buckling; nonlinear analysis; reinforced concrete 
elements; reinforcing bar; seismic performance; shear failure; steel 
reinforcement.

INTRODUCTION
The success of performance-based earthquake engineering 

(PBEE) hinges on accurately predicting the deformation 
response of structures under multiple seismic load levels. 
This requires computational simulation models that are 
capable of capturing significant post-peak behaviors at both 
global and local levels. The accuracy of the local response 
simulation is heavily influenced by the material models used 
in the definition of the stress-strain relations.

The longitudinal reinforcing bar response plays a crucial 
role in the seismic response of concrete buildings. Subjected 
to increasing compressive stresses, reinforcing bars undergo 
lateral displacements called “buckling” and exhibit signifi-
cantly softened post-peak response, which signifies the 
end of the usable deformation capacity of a member. Many 
studies have examined the effects of buckling and provided 
experimental data, analytical data, and numerical models 
(refer to Table 1) offering invaluable insights into the buck-
ling behavior of bare bars and isolated concrete elements.

Some studies proposed sophisticated constitutive models 
to simulate the buckling phenomenon; there are, however, 
challenges in incorporating these models into finite element 
analysis methods for the global modeling of buildings and 
bridges for PBEE. These challenges include: 1) compati-
bility issues between the buckling model formulations and 
the solution algorithm in the global analysis procedure; 2) 
limited applicability of each buckling model to reinforcing 

bars with certain mechanical and geometrical properties; 
3) the necessity of experimentally-determined special 
input parameters used in some buckling models; and 4) the 
prohibitive computational time required to perform buckling 
calculations for each finite element during each iteration. To 
address these challenges, a simple model with general appli-
cability is required for engineers to accurately and effec-
tively simulate the buckling behavior of reinforcing bars 
when performing the global analysis of structures.

RESEARCH OBJECTIVES
The objectives of this study are threefold: 1) establish a 

simple buckling model with a wide range of applicability; 
2) incorporate it into a nonlinear global analysis proce-
dure; and 3) study the influences of significant second-
order mechanisms (for example, geometrical nonlinearity, 
shear effects, and confinement effectiveness) on the global 
response of concrete members, extending the present study 
beyond the influences tested experimentally in the litera-
ture. Other research goals include providing the engineering 
and research communities with the computer code of the 
established buckling model in an open-source format for 
incorporation into other computational simulation platforms 
(Akkaya et al. 2018), as well as the open-access version 
of the global analysis procedure VecTor5 (2018) with the 
proposed buckling model.

RESEARCH APPROACH
As the first step, a comprehensive literature review was 

conducted to categorize studies and computational models 
related to reinforcing bar buckling (refer to Table 1). In 
this process, the Dhakal and Maekawa model (2002a,b,c) 
(called “DM model” hereafter) was determined to be suit-
able for implementation into existing global analysis proce-
dure VecTor5 (Guner and Vecchio 2010a,b) because: 1) it 
uses well-known tensile response parameters in defining the 
compressive response of reinforcing bars; 2) it has cyclic 
loading and unloading rules; 3) it has simple formulations 
that are compatible with the global analysis formulations 
to be employed; and 4) it was shown to provide accurate 
simulations of the post-buckling compression response of 
reinforcing bars. Dhakal and Maekawa (2002a) verified 
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the formulations of the DM model based on analytically 
generated data from 75 specimens using “COM3” (Concrete 
Model in 3D), a three-dimensional nonlinear finite element 
program (Tsuchiya et al. 1999; Maekawa et al. 2003).

Many more experimental and analytical buckling studies 
have been conducted since the introduction of the DM 
model in the literature; however, there have been no assess-
ments of the accuracy and applicability of the DM model 
in simulating the response of these new specimens. As 
such, in this study the DM model was implemented into the 
computational procedure VecTor5 (2018) to model 45 exper-
imental specimens tested by five research groups, as well 
as 58 analytical specimens tested by three research groups 
(refer to Fig. 1; refer to Tables A-1 and A-2 in the Appendix* 
for more details). At the conclusion of this process, the DM 
model was found to provide accurate response simulations 
without significantly increasing overall computational time 
or causing numerical problems. However, it was noted that 
the accuracy of the DM model diminishes for specimens 
with certain material properties and bar configurations, as 
will be discussed later.

To increase the applicability and accuracy of the DM 
model, three formulation refinements were made to create 

*The Appendix is available at www.concrete.org/publications in PDF format, 
appended to the online version of the published paper. It is also available in hard copy 
from ACI headquarters for a fee equal to the cost of reproduction plus handling at the 
time of the request.

the Refined Dhakal-Maekawa (RDM) model. The refined 
formulations were verified by modeling 103 reinforcing bar 
specimens available in the literature. In the final part of this 
study, the RDM model was implemented into the global 
simulation procedure VecTor5 (2018) to model 26 large-
scale reinforced concrete specimens, which validated the 
entire procedure and enabled analysis of the influences of 
global second-order effects on the local buckling response of 
longitudinal bars. This paper presents details of the refined 
formulation and verification studies, discusses the simulation 
accuracy improvements, and examines the critical parame-
ters and limits that govern the inelastic buckling mechanism 
of reinforcing bars.

RESEARCH SIGNIFICANCE
Reinforcement buckling has been observed in structures 

damaged from recent earthquakes—even in buildings and 
bridges designed according to modern standards. Thus, it is 
important that numerical simulation methods are developed 
to account for this phenomenon and accurately determine 
the usable deformation capacities. Most existing buckling 
models are developed for a certain range of mechanical and 
geometrical properties, which limits their general applicability. 
In addition, most models are only available as research 
papers with no implementation into nonlinear analysis software. 
As such, this study aims to contribute to: 1) the creation of a 
simple and accurate buckling model with general applica-
bility; 2) its incorporation into a global analysis procedure; 
and 3) the development of an open-source computer subroutine 
for the use of the community.

FORMULATION OF INELASTIC BUCKLING MODEL
The refined formulations of the RDM model are presented 

in Table 2 as compared with the original DM model. Defi-
nitions of variables are provided in the list of notations. In 
both models, the non-dimensional reinforcing bar buckling 
parameter rb is calculated from Eq. (1) as a function of the 
square root of the yield stress (fy), as well as the unsupported 
length-to-diameter ratio (L/D, shown in Fig. 2(a)) obtained 
using the procedure contained in Dhakal and Maekawa 
(2002c). The average compressive stress-strain response is 
derived from rb and the tensile stress-strain response. When 

Fig. 1—Experimental and analytical database used in this 
study.

Table 1—Previous studies on reinforcing bar 
buckling

Monotonic loading Cyclic loading

Bae et al. 2005*,†,‡ Cosenza and Prota 2006†

Bayrak and Sheikh 2001†,‡,§ Dhakal and Maekawa 
2002c*,§,||,#, ††

Berry and Eberhard 2005*,§ Dodd and Restrepo-Posada 
1995#

Bresler and Gilbert 1961# Gomes and Appleton 1997*

Gil-Martín et al. 2006‡,|| Kim and Koutromanos 2016*

Korentz 2010|| Kunnath et al. 2009*,**

Korentz and Marcinowski 2016|| Mander et al. 1994†,**

Mander et al. 1984†,# Monti and Nuti 1992*,†

Mau and El-Mabsout 1989||,# Nojavan et al. 2017†

Massone and López 2014*,‡,†† Pantazopoulou 1998§,#,††

Massone and Moroder 2009‡ Prota et al. 2009†

Shanley 1947, 1950# Rodriguez et al. 1999†

Urmson and Mander 2012*,# Su et al. 2015†,††

Zong et al. 2013, 2014*,§ Yang et al. 2016*

*Buckling model.
†Experimental data.
‡Initial imperfection.
§Application.
||Analytical data.
#Theory.
**Low-cycle fatigue.
††Prediction for unsupported length.
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defining the strain-hardening region of the tensile response 
from the yield point (fy, εsh) up to the ultimate point (fu, εu), 
the strain-hardening parameter P is taken as 4 in the RDM 
model as opposed to 2 in the DM model, as will be discussed 
later.

It is assumed that a reinforcing bar begins to 
buckle when the unsupported L/D is greater than or equal to 
5 (L/D ≥ 5). The minimum reinforcing bar buckling param-
eter rbmin is calculated from Eq. (2) for the minimum L/D in 
the RDM model, as opposed to a constant value of 8 used 
in the DM model. The refined rbmin calculation provides 
advantages when analyzing reinforcing bars with high yield 
strengths and small tie spacings, which are becoming more 
common in practice. For the maximum value of the rein-
forcing bar buckling parameter (rbmax ≈ 56 and L/D ≈ 28 for 
fy = 400 MPa [58 ksi]), both models consider the residual 
post-buckling compressive strain at an intermediate point of 
(fi = 0.2fy, εi = 7εy) as shown in Fig. 2(b).

The RDM model introduces three sets of formula-
tion refinements. The first set is proposed with the aim of 
improving the simulation accuracy for bars with small ulti-
mate strain values (εu < εimax) and small slenderness ratios 
(rb < 21). For this case, using the original DM formulations, 
one can calculate the maximum intermediate strain εimax = εi

0 
from Eq. (1) for rbmin = 8. However, if εu < εimax, the average 
stress-strain point cannot reach the maximum intermediate 
point, which creates a theoretical gap (shown in Fig. 3(a) and 
(b)). To bridge this gap, the RDM model uses refined Eq. (3), 
where the εimax ≥ εi ≥ 7εy condition is always satisfied, along 
with a new definition of the minimum buckling parameter 
rbmin in Eq. (2). This study also considered the analysis 
results of the specimens tested by Monti and Nuti (1992), 
which will be discussed later to show the improvements in 
simulation accuracy obtained with this refinement.

The second set of proposed refinements improves the 
simulation accuracy for reinforcing bars with a high hard-

Table 2—Comparison between formulations of DM and RDM models

DM model RDM model

Input: fy, fu, εy, εsh, εu, and L/D

P = 0, 1, and 2 (Selected) P = 0, 1, and 4 (Selected)

r L D fb y= ( ) ( )100  (fy in MPa) and � �i y br
0

55 2 3� �� �. (1)

rbmin = 8 r fb ymin
( )= 5 100  (fy in MPa) for (L/D)min = 5 (2)

εi = εi
0 and εi ≥ 7εy

εi = εi
0εu/εimax for εi

0 < εu < εimax; εi = εi
0 otherwise

εimax = εy(55 – 2.3rbmin) and εi ≥ 7εy
(3)

fs = fy for εs ≤ εsh; fs = fu for εs ≥ εu; fs = fu + (fy – fu)([εu – εs]/[εu – εsh])P for εsh < εs < εu

where If εs = εi → fs = fit; If εs = εsc → fs = fst
(4)
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α2 = (1.1 – 0.016rb) and fit ≥ fi ≥0.2fy (6)

fsc = Esεsc for εsc ≤ εy; fsc = fst{1 – (1– fi/fit)[(εsc – εy)/(εi – εy)]} for εy < εsc ≤ εi (7)

fsc = fi – 0.02Es(εsc – εi) for εi < εsc ≤ εu
fsc = fi – 0.02Es(εsc – εi) for εi < εsc ≤ εii; εii = εi + 0.25fi/(0.02Es)

fsc = 0.75fi – 0.01Es(εsc – εii) for εii < εsc ≤ εu
(8)

Output: fsc ≥ 0.2fy

Fig. 2—Compressive stress-strain response of reinforcing 
bar as function of parameter rb. Fig. 3—Reinforcing bars with small ultimate strains.
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ening parameter (P = 4) and relatively small values for the 
buckling parameter (rb < 21). Many commonly used bars 
fall into this category; thus, this refinement has significant 
practical importance. Consider the determination of the 
intermediate stress (fi

0) using the original DM formulations 
of Eq. (4), (5), and (6): fit

0 is the stress on the tension curve 
corresponding to the intermediate strain (εi), and α1

0 and α2 
are coefficients. α2 was originally derived from an analytical 
parametric study by Dhakal and Maekawa (2002a). Coeffi-
cient α1

0 was proposed by Dhakal and Maekawa (2002b) to 
account for the effects of material nonlinearity for P = 2 (0.75 
≤ α1

0 ≤1). While modeling the specimens tested by Bayrak 
and Sheikh (2001) and Bae et al. (2005) (which had P = 4 
and rb < 21), it was noted that the DM formulations exhibit 
reduced prediction accuracy in the calculated responses. 
Kunnath et al. (2009) and Urmson and Mander (2012) also 
reported similarly reduced accuracy for such bars.

To overcome this issue while more effectively capturing 
the intermediate stress-strain point (fi, εi), the RDM model 
proposes refined Eq. (5) and (6) based on an analytical study 
including all 103 specimens examined in this study. The 
refined formulations introduce a new coefficient α based 
on the location of the intermediate strain (εi) on the tension 
curve, as per Eq. (5). In the definition of α, a new coeffi-
cient α1 is proposed to account for material nonlinearities. 
The last line of Eq. (5) includes a special case for εu ≤ εimax 
and εi = 7εy, for which the original DM formulation with 
the hardening parameter P of 1 is used. In the other two 
cases, a hardening parameter of 4 is used, which represents 
a more generalized formulation considering a wider variety 
of mechanical bar properties. As such, the RDM formulation 
does not use the εu, fit, and P parameters for the calculation 
of the intermediate stress fi (Eq. (5)) except for the special 
case of εu ≤ εimax and εi = 7εy. Consequently, the RDM model 
calculates the average compressive stress-strain (fsc, εsc) 
response, as per Eq. (7) and (8). The analysis results of the 
specimens tested by Bayrak and Sheikh (2001) and Bae et al. 
(2005) will be discussed later to show the simulation accu-
racy improvements obtained with these refinements.

The third set of proposed refinements improves the general 
calculation accuracy when considering the entire dataset of 
103 specimens. The original DM formulation uses a linear 
descending branch with a constant negative slope of 2% of 
Es after the intermediate stress-strain point (fi, εi). Compar-
isons with the entire experimental database and the model 
proposed by Bae et al. (2005) shows that bilinear response 
provides more accurate response simulations. As such, the 
RMD model proposes bilinear negative post-buckling stiff-
nesses, as per Eq. (8).

VERIFICATION WITH REINFORCING BAR 
SPECIMENS

Experimental specimens
The experiment dataset found in the literature consists 

of 45 reinforcing bar specimens—three specimens tested 
by Mander et al. (1984), five by Monti and Nuti (1992), 
six by Bayrak and Sheikh (2001), 16 by Bae et al. (2005), 
and 15 by Prota et al. (2009). These specimens incorporate 
the following ranges: unsupported length ratios of 5 ≤ L/D 

≤ 20; yield stresses of 295 MPa (42.8 ksi) ≤ fy ≤ 540 MPa 
(78.3 ksi); and ultimate strength-to-yield strength ratios of 
1.2 ≤ fu/fy ≤ 1.6. Refer to Table A-1 for complete details of 
experiment dataset.

To evaluate the improvements achieved with the first set 
of refinements, consider Fig. 4(a) and (b), which includes 
three bar diameters of 16, 20, and 24 mm (0.63, 0.79, and 
0.95 in.), as well as three L/D ratios of 5, 8, and 11. While the 
ultimate strain εu was approximately 16εy, the maximum 
intermediate strain εimax was 30εy for the specimens with L/D 
= 5. For these specimens, when using the DM model formu-
lations, the ultimate stress-strain point is reached before 
reaching the intermediate point; this phenomenon results in 
premature failures due to material nonlinearity, not rein-
forcing bar buckling (refer to Fig. 4(a)). As seen in Fig. 4(b), 
the revised formulations rectify this anomaly and improve 
the simulation accuracy for reinforcing bars with small ulti-
mate strains in tension (for example, εu < εimax where εimax 
= 39εy for fy = 200 MPa [29 ksi] and εimax = 20εy for fy = 
900 MPa [130 ksi]).

To demonstrate the improvements achieved by the second 
and third sets of refinements, consider Fig. 4(c) and (d). 
The specimens contained in both experimental sets had 
tensile stress-strain curves with a highly nonlinear hard-
ening response (that is, P = 4). As shown in Fig. 4(c), the 
DM model could not accurately capture the intermediate 
stress-strain points for the different unsupported length 
ratios (L/D). In addition, the experimentally obtained nega-
tive slopes were not constant after the intermediate point, 
unlike the assumption made in the DM model. The RDM 
model more accurately calculates the intermediate point and 

Fig. 4—Verification with experimental data.
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the post-buckling negative stiffnesses, as shown in Fig. 4(c) 
and (d). The improvement in the prediction accuracy is more 
significant for specimens with small unsupported length 
ratios (that is, L/D = 5 and 6). Refer to Fig. A-1(a) for vali-
dation with another experiment-based dataset.

Figure 5 compares the responses obtained from the DM 
and RDM models in terms of the normalized intermediate 
stress (fi/fy) for the entire experiment dataset of 45 speci-
mens. The normalized intermediate stresses (that is, α in Eq. 
(5)) for each specimen are calculated from the formulations 
of the DM and RDM models. In addition, the normalized 
experimental stresses are extracted from the experimental 
average compressive stress-strain curves of the specimens 
for the same intermediate strain (εi) and the same reinforcing 
bar buckling parameter (rb). Figure 5 demonstrates that the 
RDM model provides more accurate response simulations, 
especially for specimens with buckling parameters smaller 
than 21.

Analytical specimens
To verify that the refinements do not result in any reduced 

accuracy, the original analytical database used in the devel-
opment of the DM model was analyzed using the RDM 
model. Figure 6 presents the analysis results for the spec-
imens with a yield stress of 400 MPa (58 ksi) and two 
different response characteristics, including elastic-plastic 
and elastic-plastic-linear hardening responses in tension; 
refer to Fig. A-1(b) for the analysis results of the other speci-
mens with a yield stress of 800 MPa (116 ksi). It is clear that 
the results obtained from the RDM model provides a similar 
accuracy to those obtained from the DM model. In addition, 
the results of the RDM model are independent of the value 
of the hardening parameter P.

To further test the RDM model, a new dataset with 41 
additional analytical specimens was modeled, using the data 
produced by Mau and El-Mabsout (1989), Gil-Martín et al. 
(2006), and Korentz (2010). Table A-2 provides the mechan-
ical properties of the specimens. The tension responses of 
the analytical specimens were defined to be the same up to 
the maximum intermediate strain (εimax) level while applying 
the formulations of both models to these analytical speci-

mens. Figure A-2 shows the simulation results obtained from 
these specimens. It was observed that the difference between 
the results is only a function of the reinforcing bar buckling 
parameter (rb) or L/D in the applications of DM and RDM 
models, supporting the findings of Dhakal and Maekawa 
(2002a). Therefore, it can be stated that the inelastic buck-
ling mechanism and the ductility capacity of reinforcing bars 
are mainly controlled by rb and support conditions, while 
material nonlinearity has a relatively small effect. Addition-
ally, Fig. A-3 compares the normalized intermediate stress 
(fi/fy) values obtained from both models to show the differ-
ences in the region of rb < 21.

VERIFICATION WITH REINFORCED CONCRETE 
SPECIMENS

Global modeling process
To further verify the established formulations, as well as 

study the influence of the global mechanisms on the local 
buckling response, both the DM and RDM reinforcing bar 
buckling models were implemented into the global modeling 
procedure VecTor5 (Guner and Vecchio 2008, 2010a,b), 
which is a specialized nonlinear analysis method for two-
dimensional RC frame structures. VecTor5 employs six-
degree-of-freedom, distributed-plasticity elements (as shown 
in Fig. 7(a)) and uses an iterative, total-load, secant-stiffness 
formulation. The nonlinear sectional analysis algorithms can 
model the concrete response, including the shear effects 
coupled with axial and flexural responses, based on the 
Disturbed Stress Field Model (DSFM) (Vecchio 2000).

The DSFM accounts for local crack conditions as well as 
yielding and strain hardening of the reinforcement at a crack. 
A fiber discretization of the cross-section is employed, as 
illustrated in Fig. 7(b). Each concrete and longitudinal rein-
forcing bar layer is defined as a discrete element. The triaxial 
concrete core confinement is accounted for through in- and 
out-of-plane reinforcement components; refer to Fig.  7(c) 
for a sample response. The main sectional compatibility 
requirement is that “plane sections remain plane,” while the 
sectional equilibrium requirements include balancing the 
axial force, shear force, and bending moment. To compen-
sate for the clamping stresses in the transverse direction 
(assumed to be zero) and prevent premature failures of 
D-regions, a shear protection algorithm is employed. In 
addition, the procedure incorporates several second-order 

Fig. 5—Comparisons of calculated intermediate points with 
experimental data.

Fig. 6—Verification with original analytical data.
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material behaviors that are specific to reinforced concrete 
structures, as listed in Table A-3.

The numerical models were created using the published 
specimen details, with the help of a pre-processor program 
FormWorks-Plus (Sadeghian 2012; Blosser et al. 2016). The 
default models used for the material modeling throughout 
this study are listed in Table A-3. The results studied 
included the load-deflection responses, member deforma-
tions, concrete crack locations propagation and widths, rein-
forcement stresses and strains, and the failure modes and 
displacements. The analysis results were visually studied 
through the graphical post-processor program Janus (Chak 
2013; Loya et al. 2016).

Axially loaded columns
An experiment dataset including six large-scale columns 

(LS1, LS4, and LW1 through LW4), tested by Hoshikuma et 
al. (1997), were examined to verify the RDM model as 
implemented into the global analysis program VecTor5 

(2018), and to study the influence of the confinement effec-
tiveness of the lateral ties after the initiation of bar buck-
ling. All columns had L/D ratios greater than 5, and thus 
exhibited reinforcement buckling in the experimental tests. 
The sectional details of the specimens are presented in 
Fig. A-4(a).

The numerical models were created using the reported 
material properties. The following values were assumed for 
any unreported longitudinal reinforcement properties: ulti-
mate strength fu = 1.5fy, yield strain εy = 0.00164, initial hard-
ening strain εsh = 6εy, and ultimate strain εu = 110εy. Formu-
lations by Mander et al. (1988) were used when defining the 
out-of-plane reinforcement ratio (ρz). As shown in Fig. 8, the 
analysis results captured the experimental behaviors well. 
Both DM and RDM models provided similar global response 
simulation results with limited reinforcing bar buckling due 
to the low longitudinal reinforcement ratios (that is, 1%) 
contained by these specimens. The analysis results indicate 
that the reinforcing bar buckling mechanism results in a 
decrease in the confinement effectiveness of the lateral ties 
by approximately 1/3ρz. This decrease was determined using 
the confinement effectiveness factor ke, a method proposed 
by Mander et al. (1988).

Axially and laterally loaded columns
An experiment dataset totaling 16 columns, tested by 

seven research groups—Tanaka and Park (1990), Bayrak 
and Sheikh (1997), Saatcioglu and Ozcebe (1989), Soesi-
anawati et al. (1986), Xiao and Martirossyan (1998), Sezen 
and Moehle (2002), and Lynn et al. (1996)—were modeled 
to further test the RDM model and to study the influence 
of buckling on the confinement effectiveness on the core 
concrete.

Based on the test configurations, the columns are cate-
gorized into three geometrical groups, namely: the flexi-
ble-base (CFB), the double curvature (DC), and the double-
ended (DE) models (as shown in Fig. 9), as well as two 
behavior modes, namely: flexure- and shear-critical. Refer 
to Tables A-4 to A-6 for complete geometrical and mechan-
ical properties.

Figure 10 shows the analysis results for four columns 
exhibiting flexure-critical behavior; refer to Fig. A-5(a) for 
the remaining four specimens. Specimens S3 and U3 had 

Fig. 7—Global modeling procedure.

Fig. 8—Axially loaded column specimens.



201ACI Structural Journal/March 2019

sectional details that were particularly vulnerable to rein-
forcing bar buckling, despite being subjected to low levels 
of axial loads. Specimen S3 had open U-shaped stirrups (that 
is, DE-Type II in Fig. 9), while Specimen U3 had closed 
stirrups (that is, CFB-Type III) with a high longitudinal rein-
forcement ratio of 3.2% and a large bar diameter of 25 mm 
(1 in.). The global simulation procedure was able to capture 
the buckling phenomenon and associated post-buckling soft-
ening behavior for both specimens, as shown in Fig. 10(a) 
and (c). Examination of the analysis output revealed that the 
buckled bars resulted in a decrease of approximately 1/3ρz in 
the confinement effectiveness of lateral ties on the confined 
concrete core.

Specimens AS-2HT and SNo2 had DE-Type IV and 
DE-Type VI sections, respectively, with well-confined cores, 

a longitudinal reinforcement ratio of 2.6% and 1.5%, and an 
axial load ratio of 0.36 and 0.30. In the experimental study, 
reinforcing bar buckling took place shortly after reaching a 
lateral displacement of 70 mm (2.8 in.) in both specimens 
(refer to Fig. 10(b) and (d)). The analyses successfully 
captured the buckling effects and demonstrated that high 
levels of axial loads coupled with bending effects domi-
nated the responses of both columns. Moreover, the anal-
ysis results of Specimen AS-2HT in Fig. 10(b) demonstrate 
the influence of the axial load ratios (ALR) on the ductility 
capacity of the specimen.

Figure 11 shows the analysis results for two columns 
exhibiting shear-critical behavior; refer to Fig. A-4(b) and 
A-5(b) for the remaining six columns. In all columns, the 
longitudinal reinforcing bars had large slenderness ratios 
with L/D ratios ranging from 10 to 15, and thus exhibited 
significant reinforcement buckling in the experimental 
studies. The analyses successfully captured the buckling 
effects (refer to Fig. 11) and demonstrated that having an 
accurate reinforcing bar buckling model is not enough to 
capture the ductility capacities of these columns without 
considering the shear-critical behaviors.

Beams in bending
Four reinforced concrete beams (S1B2, S1B3, S3B2, and 

S3B3), tested by Lopes et al. (2012), were modeled. The 
test program included a four-point bending setup, where the 
compression bars were subjected to buckling in the middle 
regions with pure bending conditions. Refer to Fig. A-6(a) 
and Tables A-7 to A-9 for the complete details of the spec-
imens. It should be noted that the tension reinforcement 
ratio used in these specimens (2.5%) was greater than the 
balanced reinforcement ratio.

Analysis results (with and without accounting for rein-
forcing bar buckling) are compared with the experimental 
results for each beam in Fig. 12, where the tension, trans-
verse, and out-of-plane reinforcement ratios (ρ, ρt, and ρz) of 
each specimen are also shown. Refer to Fig. A-6(b) for the 
other two beams. The global analysis procedure captured the 
reinforcing bar buckling effects well. The most significant 
strength softening was observed in Specimen S1B3, where 
reinforcing bar buckling and confinement effects were high 
due to the reinforcement configurations. Parametric analyses 
performed showed that the confinement effectiveness of the 

Fig. 9—Numerical models of axially and laterally loaded 
columns.

Fig. 10—Verification with columns in flexural failure.

Fig. 11—Verification with columns in shear failure.
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lateral ties on the confined concrete core is reduced up to 
two-thirds due to reinforcing bar buckling.

SUMMARY AND CONCLUSIONS
This paper presents a new constitutive model (RDM) for 

simulating the buckling response of compression bars in 
concrete members, based on the refinement of the Dhakal-
Maekawa (DM) model. The material-level studies conducted 
in this study support the following conclusions:

1. The RDM model is shown to provide more accurate 
stress-stain response simulations, as compared to the DM 
model, for reinforcing bars experiencing lateral deforma-
tions (that is, buckling) with a wide range of mechanical and 
geometrical properties—for example, 200 MPa (29 ksi) < fy 
< 900 MPa (131 ksi), 10 mm (0.4 in) < D < 36 mm (1.4 in.), 
fu/fy < 2, P ≤ 4, εu >14εy, 8 < rb < 56, and L/D ≥ 5.

2. The RDM model provides modeling simplifications as 
compared to the DM model by not using the strain hardening 
parameter (P) and ultimate strain (εu) values in the determi-
nation of the intermediate stress-strain point, as well as by 
using a fixed strain hardening parameter in the remaining 
parts of the response.

3. The RDM model provides advantages for the cases 
where the ultimate strain εu on the tension curve is unknown 
or approximated, because the formulation of the RDM 
model is less sensitive to the εu value.

4. It is confirmed that the average compressive stress-
strain curve can be obtained from a single non-dimensional 
parameter rb (a function of the unsupported length-to-diam-
eter ratio and the yield stress of the reinforcing bar) when the 
tension stress-strain curve, material properties, and support 
conditions are known.

The member-level global modeling studies conducted 
support the following conclusions:

1. Accurate simulation of the force-deflection, shear, and 
confined concrete behaviors are crucial pre-requisites for 
accurately capturing the reinforcing bar buckling mecha-
nisms, which typically occur towards the end of the post-
peak softening region of the global response.

2. The confinement effectiveness of stirrups on the confined 
concrete core was found to decrease by approximately 
one-third once reinforcing bar buckling takes place for flex-
ure-controlled columns. For shear-controlled columns, both 

shear and reinforcing bar buckling effects should be taken 
into account for accurate response simulations.

3. A simple, non-iterative buckling model is required to 
keep the computational demand within reasonable limits. In 
this study, the longest analyses required took approximately 
one minute of computational time, for both DM and RDM 
models, when obtaining the complete monotonic load-defor-
mation response using a high-speed processor (3M cache, 
2.40 GHz) and 3 GB RAM.

4. The direct stiffness method was found to be an effec-
tive platform for incorporating the geometric and material 
nonlinearity formulations, without a need for an implicit 
solution algorithm.

5. For compression-controlled sections subjected to 
bending, reinforcing bar buckling effects are found to influ-
ence the post-peak softening behavior significantly. For 
sections in the transition zone, buckling effects had some 
influence on the post-peak behavior. For tension-controlled 
sections, the effects of reinforcing bar buckling were found 
to be insignificant in most cases.

6. Further numerical and experimental studies should be 
undertaken to verify the simulation accuracy when modeling 
the influence of bar buckling on the holistic response of large-
frame buildings subjected to seismic ground excitation.

AUTHOR BIOS
Yildir Akkaya is a Research Assistant in the Department of Civil Engi-
neering, Faculty of Civil Engineering, at Istanbul Technical University, 
Istanbul, Turkey, where he received his PhD. His research interests include 
analysis, design, performance assessment, repairing, and strengthening 
of reinforced concrete structures for earthquake resistance; finite element 
modeling; and nonlinear analysis of reinforced concrete structures.

ACI member Serhan Guner is an Assistant Professor in the Department of 
Civil Engineering at the University of Toledo, Toledo, OH. He received his 
PhD from the University of Toronto, Toronto, ON, Canada. He is a member 
of Joint ACI-ASCE Committee 447, Finite Element Analysis of Reinforced 
Concrete Structures. His research interests include finite element modeling 
of concrete and wood structures, shear effects in concrete, structural 
response to extreme loads, and development of analysis tools for use in 
practice.

Frank J. Vecchio, FACI, is a Professor in the Department of Civil Engi-
neering at the University of Toronto. He is a member of Joint ACI-ASCE 
Committees 441, Reinforced Concrete Columns, and 447, Finite Element 
Analysis of Reinforced Concrete Structures. He received the following ACI 
awards: Structural Research Award in 1998; Structural Engineering Award 
in 1999; Wason Medal for Most Meritorious Paper in 2011; and the Joe W. 
Kelley Award in 2016. His research interests include advanced constitutive 
modeling and analysis of reinforced concrete, assessment and rehabilita-
tion of structures, and response to extreme loads.

ACKNOWLEDGMENTS
The writers gratefully acknowledge the Scientific and Technolog-

ical Research Council of Turkey (TUBITAK), Science Fellowships and 
Grant Programs-in-aid for scientific research No. 2219 (BIDEB-2219) for 
providing financial support to accomplish this research.

NOTATION
D	 =	 diameter of longitudinal reinforcing bar
dt	 =	 diameter of transverse reinforcing bar
fi

0, εi
0	=	 stress and strain at intermediate point in DM model

fi, εi	 =	 stress and strain at intermediate point in RDM model
fit

0, fit	=	 stresses corresponding to intermediate strain εi on tension stress-
strain curve 

fsc, εsc	=	 current compressive stress and strain of reinforcing bar including 
buckling

fst	 =	 stress corresponding to current strain εsc on tension stress-strain 
curve

Fig. 12—Verification with beams tested by Lopes et al. 
(2012).
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fu, εu	 =	 ultimate strength and strain on tension stress-strain curve
L	 =	 unsupported length of longitudinal reinforcing bar
Lc	 =	 length of column specimen
rb	 =	 non-dimensional reinforcing bar buckling parameter
rbmin	 =	 minimum value of reinforcing bar buckling parameter, calcu-

lated from (L/D = 5)
s	 =	  spacing of transverse reinforcing bars or stirrups
α	 =	 intermediate stress to yield stress ratio (fi/fy)
α1

0	 =	 coefficient to determine fi
0 in DM model

α1	 =	 coefficient to determine fi in RDM model
α2	 =	 coefficient used in both DM and RDM models
εii	 =	 strain corresponding to stress of 0.75fi in RDM model
εimax	 =	 maximum strain at intermediate point and calculated from rbmin
εsh	 =	 initial hardening strain on tension stress-strain curve
ρ	 =	 longitudinal reinforcement ratio
ρt	 =	 transverse reinforcement ratio
ρz	 =	 out-of-plane reinforcement ratio
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Appendix to ACI Paper 

Paper Title: A Constitutive Model for the Inelastic Buckling Behavior of Reinforcing Bars 

Authors: Yildir Akkaya, Serhan Guner, Frank J. Vecchio 

Summary: This appendix provides: in Table A-1, the data of 45 experimental reinforcing bars; in 

Table A-2, the data of 41 analytical reinforcing bars; in Table A-3, the default material model 

properties for the global analysis procedure; in Tables A-4 to A-6, the data of 16 axially and laterally-

loaded columns; in Tables A-7 to A-9, the data from 4 beams; in Fig. A-1, verification of the DM and 

RDM models with the experimental and analytical data of reinforcing bars; in Fig. A-2, the analytical 

data from 29 reinforcing bar specimens produced by three different research groups, used to verify the 

DM and RDM models; in Fig. A-3, the data produced from the RDM and DM models for reinforcing 

bars having various geometric and material properties; in Fig. A-4(a), the details of axially-loaded 

columns; in Fig. A-4(b) and A-5, the data used for verification with 10 axially and laterally-loaded 

columns; in Fig. A-6, the details and verification of the beams; and references cited in this appendix. 

Table A-1 – Reinforcing bar specimens in the experiment dataset 

Geometric and material properties 
Specimens Diameter (D) L/D fy εy εsh /εy εu /εy fu/fy 

* ** (mm) (in) - (MPa) (ksi) (x10-3) - - - 
A 3 16 0.63 6,10,15 295.0 42.8 1.48 16.9 129.0 1.47 
B1 3 16,20,24 0.63,0.79,0.95 5,8,11 480.0 69.6 2.40 1.0 16.0 1.40 
B2 1 16 0.63 11 430.0 62.4 2.40 2.9 29.2 1.29 
B3 1 16 0.63 11 430.0 62.4 2.70 3.7 25.9 1.47 
C 6 20 0.79 5-10 520 75.4 2.60 3.8 57.7 1.34 
D1 8 25.4 1.00 5-12 437.0 63.4 2.20 4.2 66.8 1.67 
D2 8 32.3 1.27 5-12 444.0 64.4 2.20 4.1 71.8 1.44 
E1 1 12 0.47 15 327.0 47.4 1.60 2.0 144.4 1.34 
E2 4 12 0.47 5,10,15,20 338.4 49.1 1.80 13.9 111.1 1.39 
E3 2 14 0.55 5,8 351.5 51.0 2.10 1.1 95.2 1.26 
E4 4 14 0.55 5,10,15,20 534.0 77.4 2.80 2.2 71.4 1.58 
E5 4 14 0.55 5,10,15,20 540.0 78.3 3.00 8.2 38.3 1.18 
* A=Mander (1984), B=Monti and Nuti (1992), C=Bayrak and Sheikh (2001),  
* D=Bae et al. (2005), E=Prota et al. (2009) ** Number of specimens tested experimentally 
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Table A-2 – Reinforcing bar specimens in the analytical dataset 

Geometric and material properties 
Specimens Diameter (D) L/D fy εy εsh /εy εu /εy fu/fy 

* ** (mm) (in) - (MPa) (ksi) (x10-3) - *** - 
F1 7 25.4 1.00 6-14 476.0 69.0 2.38 4.7 25.2 1.74 
F2 8 25.4 1.00 6-15 410 60.0 2.05 50.0 50.0 1.00 
G1 4 16 0.63 6.3-18.8 400.0 58.0 2.00 5.0 60.0 1.50 
G2 3 25 0.99 6-12 400.0 58.0 2.00 5.0 60.0 1.50 
H1 4 16 0.63 10 200-800 29-116 1.0-4.0 24.0 24.0 1.00 
H2 4 16 0.63 10 200-800 29-116 1.0-4.0 5.0 20.0 1.25 
H3 4 16 0.63 10 200-800 29-116 1.0-4.0 10.0 50.0 1.50 
H4 4 16 0.63 10 200-800 29-116 1.0-4.0 15.0 135.0 1.75 
H5 3 16 0.63 5 800 116.0 4.0 5-15 20-135 1.25-1.75 
* F=Mau and El-Mabsout (1989), G=Gil-Martin et al. (2006), H=Korentz (2010) 
** Number of specimens tested analytically, ***εu was chosen to obtain similar tension curve with P=4  

 

Table A-3 – Default material models used (Wong et al. 2013). 
Material behaviour Default model Material behaviour Default model 
Compression base curve Popovics Concrete hysteresis Nonlinear w/ plastic offsets 
Compression post-peak Modified Park-Kent Slip distortion Walraven 
Compression softening Vecchio 1992-A Strain rate effects fib Model Code - Malvar 
Tension stiffening  Modified Bentz 2003 Rebar hysteresis Seckin w/ Bauschinger 
Tension softening Linear Rebar dowel action Tassios (Crack slip) 
Confinement strength Kupfer / Richart Rebar buckling  DM or RDM (as noted) 
Cracking criterion Mohr-Coulomb (Stress) Geometric nonlinearity  Considered 
Crack width check Agg/5 Max crack width Previous loading history  Considered 
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Table A-4 – Axially- and laterally-loaded column specimens 

 RC column  Analy. Sect.  Lc h=b fc′ 
* Specimen name model type **ALR mm in. mm in. MPa ksi 
A S2, S3 DE I, II 0.2 1600 63.0 400 15.8 25.6 3.7 
B AS-2HT, AS-3HT DE IV 0.36, 0.50 1473 58.0 305 12.0 71.7 10.4 
C U3 CFB III 0.14 1000 39.4 350 13.8 34.8 5.1 
C U4 CFB III 0.15 1000 39.4 350 13.8 32.0 4.6 
D SNo1 DE VI 0.10 1600 63.0 400 15.8 46.5 6.7 
D SNo2 DE VI 0.30 1600 63.0 400 15.8 44.0 6.4 
E HC48L16T601P DC I 0.1 1016 40.0 254 10.0 86.0 12.5 
E HC48L16T602P DC I 0.2 1016 40.0 254 10.0 86.0 12.5 
F SMNo-1, SMNo-4 DC IV 0.15, 0.14 2946 58.0 457 18.0 21.4 3.1 
G 2CLH18 DC V 0.07 2946 58.0 457 18.0 33.1 4.8 
G 2CMH18 DC V 0.28 2946 58.0 457 18.0 25.5 3.7 
G 3CLH18, 3CMH18  DC V 0.09, 0.26 2946 58.0 457 18.0 27.3 4.0 
* A: Tanaka and Park (1990), B: Bayrak and Sheikh (1997), C: Saatcioglu and Ozcebe (1989),  
  D: Soesianawati et al. (1986), E: Xiao and Martirossyan (1998), F: Sezen and Moehle (2002),  
  G: Lynn et al. (1996)     ** ALR= Axial load ratio 

 

Table A-5 – Longitudinal reinforcing bars for columns 

RC column Longitudinal reinforcement 
Specimen no Ratio Diameter (db) fy εy ∗εsh ∗εu *fu/fy 

  (%) (mm) (in) (MPa) (ksi) (x10-3) - 
S2, S3 1.57 20 0.79 474.0 68.7 2.37 10 160 1.52 
AS-2HT, AS-3HT 2.58 19.5 0.77 454.0 65.8 2.27 7 130 1.54 
U3 3.21 25 0.99 430.0 62.4 2.15 10 180 1.35 
U4 3.21 25 0.99 438.0 63.5 2.19 10 180 1.35 
SNo1, SNo2 1.51 16 0.63 446.0 64.7 2.23 10 160 1.57 
HC48L16T601P 2.46 15.9 0.63 510.0 74.0 2.55 10 80 1.30 
HC48L16T602P 2.46 15.9 0.63 510.0 74.0 2.55 10 50 1.30 
SMNo-1, SMNo-4 2.47 28.7 1.13 434.4 62.9 2.17 5 40 1.49 
2CLH18, 2CMH18 1.94 25.4 1.0 331.0 48.0 1.66 10 80 1.50 
3CLH18, 3CMH18  3.03 31.8 1.25 331.0 48.0 1.66 10 40-50 1.50 
  * Assumed values in the analysis  
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Table A-6 – Transverse reinforcing bars for columns 

RC column Transverse reinforcement 
Specimen no s Diameter (dt) fy *fu/fy 
 (mm) (in.) (mm) (in.) (MPa) (ksi) - 
S2, S3 80 3.2 12 0.47 333.0 48.3 1.44 
AS-2HT, AS-3HT 90 3.5 11.3 0.45 542 78.6 1.26 
U3, U4 75, 50 3.0, 2.0 10 0.39 470.0 68.1 1.45 
SNo1 85 3.3 7 0.28 364.0 52.8 1.43 
SNo2 78 3.1 8 0.32 360 52.2 1.37 
HC48L16T601P-02P 51 2.0 6.4 0.25 449 65.1 1.30 
SMNo1, SMNo4 305 12.0 9.5 0.37 476 69.0 1.52 
2CLH18, 2CMH18 457 18.0 9.5 0.37 400 58 1.4 
3CLH18, 3CMH18  457 18.0 9.5 0.37 400 58 1.4 
  * Assumed values in the analysis (experimental values are not reported).  
     Es=200 GPa (2.9x104 ksi), εsh=0.01 

 

Table A-7 – Longitudinal reinforcing bars in tension and concrete strength of S-beams 

RC beam Longitudinal reinforcing bars in tension Concrete strength 
Specimen ρ ρb Diameter (db) fy fu/fy fc′ 
*No  (%) (%) (mm) (in) (MPa) (ksi) - (MPa) (ksi) 
S1B2 2.50 1.38 20 0.79 619 89.8 1.17 24.0 3.5 
S1B3 2.46 1.73 16 0.63 531 77.0 1.22 24.0 3.5 
S3B2, S3B3 2.50 1.74 20 0.79 619 89.8 1.17 31.0 4.5 
*All specimens were tested and reported by Lopes et al. (2012). 

 

Table A-8 – Longitudinal reinforcing bars in compression of S-beams 

RC beam Longitudinal reinforcing bars in compression Buckling 
parameters 

Specimen ρ′ Diameter (D) fy fu/fy *L/D rb 

No  (%) (mm) (in) (MPa) (ksi) - - - 
S1B2 0.11 6 0.24 587 85.1 1.13 9 22 
S1B3 0.80 16 0.63 531 77.0 1.21 12 28 
S3B2, S3B3 0.11 6 0.24 571 82.8 1.07 15, 8 36, 19 
 *Calculated value from the proposed method by Dhakal and Maekawa (2002c).   
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Table A-9 – Transverse reinforcing bars of S-beams 

RC beam *Transverse reinforcing Bars  Reinforcement ratios 
Specimen Tie spacing (s) fy fu/fy ρt ∗∗ρz 
No (mm) (in) (MPa) (ksi) - (%) (%) 
S1B2 50 2.0 587 85.1 1.13 0.566 0.146 
S1B3 45 1.8 587 85.1 1.13 0.629 0.210 
S3B2, S3B3 90, 45 3.6, 1.8 571 82.8 1.07 0.314, 0.629 0.063, 0.170 
 *Diameter of transverse reinforcing bars is 6 mm (0.24 in.) for all specimens   
 ** Values of ρz were calculated from the proposed method by Mander et al. (1988) 

 

 
Fig. A-1 – Verification results with the experimental and analytical data of reinforcing bars 
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Fig. A-2 – Verification with analytical data produced by various researchers 
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Fig. A-3 – Comparison of the normalized intermediate stress (fi/fy) values for various geometric and 

material properties of the reinforcing bars. 

 

 
Fig. A-4 – Geometry details and verification results with column specimens 
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Fig. A-5 – Verification results with the axially- and laterally-loaded columns 

 

 
Fig. A-6 – Beams Tested by Lopes et al. (2012) 
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