<table>
<thead>
<tr>
<th>Present</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Person: E. Ishmael Parsai</td>
<td>Phone (XXX-XXXX): 383-5109</td>
</tr>
<tr>
<td>Email: e.parsai@utoledo.edu</td>
<td></td>
</tr>
<tr>
<td>College: Medicine</td>
<td>College:</td>
</tr>
<tr>
<td>Dept/Academic Unit: Radiation Oncology</td>
<td>Dept/Academic Unit:</td>
</tr>
<tr>
<td>Course Alpha/Numeric: MPHY 6020</td>
<td>Course Alpha/Numeric: Survey of Diagnostic Medical Imaging II</td>
</tr>
<tr>
<td>Course title: Radiation Physics II</td>
<td>Course title:</td>
</tr>
<tr>
<td>Credit hours: Fixed 3 or Variable:</td>
<td>Credit hours: Fixed 3 or Variable:</td>
</tr>
</tbody>
</table>

Cross Listings:
- MPHY-8020

Prerequisites(s) (if more than 50 characters, please place it in Catalog Description):
None

Co-requisites(s) (if more than 50 characters, please place it in Catalog Description):
None

Catalog Description (only if changed) 75 words max:
This course is a continuation of Radiation Physics I and includes the radioactive decay principles, basics of nuclear medicine imaging including SPECT and PET, basic concepts of NMR and MR imaging, and the principles of ultrasound including Doppler ultrasound.

Catalog Description (only if changed) 75 words max:
This course builds on the material taught in MPH6010/8010, and discusses advanced concepts in medical imaging including functional MRI, SPECT, and PET imaging. Details of radioactivity & nuclear transformation, radionuclide production & radiopharmaceuticals, radiation detection and measurement and scintillation camera will be covered. advanced discussions on CT and US will also be presented.

Date Added: 4-28-14
Graduate Council Approved: 4-29-14
To Provost: 5-8-14
Has course content changed? Yes

This course was second course following the Radiation Physics I where it was not clear that it is a diagnostic survey course. Moreover we are restructuring our course curriculum to be more in line with CAMPEP and ABR requirements for national accreditation and to better prepare our students for board certification. The new course has specific title and content to reflect the course curriculum.

Proposed Effective Term 2014 40 (Fall) List any course(s) to be deleted

Attach new syllabus reflecting course modifications.
Attach additional documents if necessary.

Course Approval
Department Curriculum Authority
Department Chairperson
College Curriculum Authority or Chair
College Dean
Graduate Council
Dean of Graduate Studies
Office of the Provost

For Administrative Use Only
Effective Date
CIP Code
Subsidy Taxonomy
Program Code
Instruction Level
18. RADIOACTIVITY AND NUCLEAR TRANSFORMATION
 18.1. Radionuclide Decay Terms and Relationships
 18.2. Nuclear Transformation

19. RADIONUCLIDE PRODUCTION & RADIOPHARMACEUTICALS
 19.1. Radionuclide Production
 19.2. Radiopharmaceuticals
 19.3. Regulatory Issues

20. RADIATION DETECTION AND MEASUREMENT
 20.1. Types of Detectors
 20.2. Gas-Filled Detectors
 20.3. Scintillation Detectors
 20.4. Semiconductor Detectors
 20.5. Pulse Height Spectroscopy
 20.6. Nonimaging Detector Applications
 20.7. Counting Statistics

21. NUCLEAR IMAGING-THE SCINTILLATION CAMERA
 21.2. Computers in Nuclear Imaging
22. NUCLEAR IMAGING-EMISSION TOMOGRAPHY
 22.1. Single Photon Emission Computed Tomography (SPECT)
 22.2. Positron Emission Tomography (PET)

14. NUCLEAR MAGNETIC RESONANCE
 14.1. Magnetization Properties
 14.2. Generation and Detection of the MR Signal
 14.3. Pulse Sequences
 14.4. Spin-Echo
 14.5. Inversion Recovery
 14.6. Gradient Recalled Echo
 14.7. Signal from Flow
 14.8. Perfusion and Diffusion Contrast
 14.9. Magnetization Transfer Contrast

15. MAGNETIC RESONANCE IMAGING (MRI)
 15.1. Localization of the MR Signal
 15.2. k-space Data Acquisition and Image Reconstruction
 15.3. Three-Dimensional Fourier Transform Image Acquisition
 15.4. Image Characteristics
 15.5. Angiography and Magnetization Transfer Contrast
 15.6. Artifacts
 15.7. Instrumentation
 15.8. Safety and Bioeffects

16. ULTRASOUND
 16.1. Characteristics of Sound
 16.2. Interactions of Ultrasound with Matter
 16.3. Transducers
 16.4. Beam Properties
 16.5. Image Data Acquisition
 16.6. Image Quality and Artifacts
 16.7. Doppler Ultrasound
 16.8. System Performance and Quality Assurance
 16.9. Acoustic Power and Bioeffects