The University Of Toledo

New Graduate Course Proposal

* denotes required fields

1. College*: Coll Nat Sci and Mathematics
 Department*: Biology

2. Contact Person*: Deborah Vestal
 Phone: 383-4134 (xxx - xxxx)
 Email: Deborah.Vestal@utoledo.edu

3. Alpha/Numeric Code (Subject area - number)*: BIOL - 6830

4. Proposed title*: Molecular and Cellular Biology
 Proposed effective term*: 201430 (e.g. 201140 for 2011 Fall)

5. Is the course cross-listed with another academic unit?
 ○ Yes ○ No

 Approval of other academic unit (signature and title) ____________________________

 Is the course offered at more than one level?
 ○ Yes ○ No

 If yes, an undergraduate course proposal form must also be submitted. If the undergraduate course is new, complete the New Undergraduate Course Proposal; if the undergraduate course is existing, submit an Undergraduate Course Modification Proposal.

6. Credit hours*: Fixed: 4
 to
 or
 Variable:

7. Delivery Mode:
 a. Activity Type *
 Online
 b. Minimum Credit Hours *
 4
 Maximum Credit Hours *
 4

Date Added:
Council Approved: 3-20-14 4-14
To Provost: 4-8-14
c. Weekly Contact Hours *

8. Terms offered: ☑ Fall ☑ Spring ☑ Summer

Years offered: ☑ Every Year ☑ Alternate Years

9. Are students permitted to register for more than one section during a term? ☑ No ☑ Yes

May the courses be repeated for credit? ☑ No ☑ Yes

Maximum Hours

 ☑ Passing Grade/No Credit (A-C, NC)

 ☑ Credit/No Credit

 ☑ Grade Only (A-F, PR, I)

 ☑ Audit Only

 ☑ No Grade

11. Prerequisites (must be taken before): i.e. C or higher in (BIOE 4500 or BIOE 5500) and C or higher in MATH 4200

Must be enrolled in one of the following levels: Graduate. Students who have received credit for either BIOL 6010 or BIOL 6090 cannot receive credit for BIOL 6830.

 ☑ PIN (Permission From Instructor) ☑ PDP (Permission From Department)

Co-requisites (must be taken together):

nenone

12. Catalog Description* (75 words Maximum)

Essential concepts of molecular genetics and cell biology. Major topics include gene structure and composition, transcription, translation, protein structure and function, cell cycle, cell movement, and cell signaling. Primarily intended for Master students enrolled in a non-laboratory research based degree program.

13. Attach a syllabus and an electronic copy of a complete outline of the major topics covered. Click here for template.

Syllabus: * [Browse...] MOLECULAR AND CELLULAR BIOLOGY final draft 2-1.docx

Additional Attachment 1: [Browse...] No file selected.
Course Approval:

Department Curriculum Authority: [Signature] Date 3/13/14

Department Chairperson: [Signature] Date 3-13-14

College Curriculum Authority or Chair: [Signature] Date 3/18/14

College Dean: [Signature] Date 3/18/14

Graduate Council: [Signature] Date 4-1-2014

Dean of Graduate Studies: [Signature]

Office of the Provost: [Signature]

Submit New Course Proposal

Administrative Use Only

Effective Date: [Date] (YYYY/MM/DD)

CIP Code:

Subsidy Taxonomy:

Program Code:

Instructional Level:

The University of Toledo • 2801 W. Bancroft • Toledo, OH 43606-3390 • 1.800.586.5336
© 2006-2007 The University of Toledo. All rights reserved. • Send all feedback / comments to webMaster
MOLECULAR AND CELLULAR BIOLOGY
BIOL 6830 – 901

Instructor: Dr. Deborah J. Vestal
Office: BHS 391/B01098
PH: 1-419-383-4134
Deborah.Vestal@utoledo.edu

Course Organization:

BIOL 6830 Molecular and Cellular Biology is an online course, also called distance learning (DL). Course information can be accessed through the University of Toledo’s Blackboard 9.1 site (www.utoledo.edu/dl). You must be registered for the course and have a UTAD ID and password to log into the site. All course materials, except for the textbook, will be found within this site. Through this site you will also be able to communicate with me and other students in the class.

Prerequisite: Must be enrolled in one of the following levels: Graduate. Students who have received credit for either BIOL 6010 or BIOL 6090 cannot receive credit for BIOL 6830.

Required Text:

A free companion website accompanies the book at http://bcs.whfreeman.com/lodish7e/#t_800911___.

Learning Outcomes:

BIOL 6830 is a 4 credit hour graduate level course. Taking this course you should:

1) Become familiar with the fundamental concepts of molecular genetics. These include the properties of nucleic acids and basic molecular genetics mechanisms, such as transcription and generation of functional mRNA, decoding of mRNAs by tRNAs, translation of proteins at the ribosomes, and DNA replication and repair.
2) Become acquainted with basic molecular genetic techniques and how they are they have provided us with important information in our understanding of molecular genetics.
3) Gain a greater understanding of gene structure and the composition and structure of chromosomes.
4) Understand how gene expression is regulated at multiple levels, including transcriptional, posttranscriptional, and translational.
5) Develop a deeper understanding of cell structure and how it relates to cell functions.
6) Understand cell movement and how it is accomplished.
7) Understand how cells grow, divide, and die and how these important processes are regulated.
8) Understand cell signaling and how it regulates cellular functions. Also how its dis-regulation leads to cancer and other diseases.

Important Dates:

TBA

Student Evaluation:

There will be three exams during the semester and a comprehensive final. These will be proctored.

Each exam will consist of fill-in-the blank, matching, short answer, and essay questions.

The three exams during the semester will only cover new material (material covered since the last exam).

The final exam will be comprehensive and approximately 50% of the material will be new and 50% will be from topics covered from the start of the semester.

If an exam is missed, the instructor must be notified within 48 hours. Acceptable excuses include a death in the immediate family and documented illness of the student.

Make-up exams will be given at the discretion of the instructor.

Grading:

The breakdown of grades is shown below:

<table>
<thead>
<tr>
<th>Exam</th>
<th>% of final grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam I</td>
<td>20%</td>
</tr>
<tr>
<td>Exam II</td>
<td>25%</td>
</tr>
<tr>
<td>Exam III</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
</tbody>
</table>

Grading Scale:

Grade equivalents will be assigned as follows:

<table>
<thead>
<tr>
<th>% of available marks</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>92-100</td>
<td>A</td>
</tr>
<tr>
<td>89-91</td>
<td>A-</td>
</tr>
</tbody>
</table>
Schedule of Topics (Tentative):

Week 1 Chemical Foundations Chapter 2
 Protein Structure and Function Chapter 3
 Basic Molecular Genetic Mechanisms Chapter 4

Week 2 Molecular Genetic Techniques Chapter 5
 Exam I
 Genes, Genomics, and Chromosomes Chapter 6
 Transcriptional Control of Gene Expression Chapter 7

Week 3 Post-Transcriptional Gene Control Chapter 8
 Biomembrane Structure Chapter 10
 Membrane Transport Chapter 11

Week 4 **Exam II**
 Cellular Energetics Chapter 12
 Moving Proteins into Membranes and Organelles Chapter 13
 Vesicular Traffic, Secretion, and Endocytosis Chapter 14

Week 5 Microfilaments Chapter 17
 Microtubules and intermediate filaments Chapter 18
 Cells into Tissues Chapter 20

Week 6 **Exam III**
 Stem Cells, Cell Asymmetry, and Cell Death Chapter 21
 Cell Cycle Chapter 19

Week 7 Signal Transduction and G protein-coupled receptors Chapter 15
 Signaling Pathways that control gene activity Chapter 16
STATEMENT OF ACADEMIC DISHONESTY

Department of Biological Sciences

Academic dishonesty by students enrolled in undergraduate and graduate courses and programs offered by the Department of Biological Sciences will not be tolerated. Academic dishonesty includes but is not limited to:

1. Obtaining assistance from another individual during an examination.

2. Giving assistance to another individual during an examination.

3. The unauthorized use of study material or textbooks during an examination.

4. Changing answers on an examination after it has been returned and then submitting it for regard.

5. Plagiarizing written assignments. Plagiarizing includes but is not limited to: a) Copying laboratory reports from previous years, b) copying or paraphrasing reports, term papers, or these prepared by other students, c) unauthorized collaboration in the preparation of reports, term papers, or theses, and d) use of another author’s materials without appropriate acknowledgement through quotation and citation.

6. Attempting to bribe or otherwise induce an instructor to alter either a grade or examination score.

7. Obtaining or attempting to obtain a copy of an examination prior to its administration.

In accordance with policies presented in The Student Handbook and The University Catalog, Instructors have the responsibility and right to report cases of alleged dishonesty to departmental, college, and university administrative units. Students involved in academic dishonesty may expect to receive a grade of F on specific assignments as well as in the course where the assignment was made. In addition, disciplinary action may be recommended through appropriate college and university disciplinary committees. Please consult your instructor for instructions on the implementation of this policy.