The University Of Toledo

New Graduate Course Proposal

* denotes required fields

1. College*: Coll Nat Sci and Mathematics
 Department*: Mathematics

2. Contact Person*: Paul Hewitt
 Phone: 530-2138 (xxx - xxxx)
 Email: paul.hewitt@utoledo.edu

3. Alpha/Numeric Code (Subject area - number)*: MATH - 6860

 Proposed effective term*: 201340 (e.g. 201140 for 2011 Fall)

5. Is the course cross-listed with another academic unit? ☐ Yes ☐ No
 Approval of other academic unit (signature and title)
 Is the course offered at more than one level? ☐ Yes ☐ No
 If yes, an undergraduate course proposal form must also be submitted. If the undergraduate course is new, complete the New Undergraduate Course Proposal; if the undergraduate course is existing, submit an Undergraduate Course Modification Proposal.

6. Credit hours*: Fixed: 3 or Variable:

7. Delivery Mode: Primary*
 a. Activity Type *
 Lecture
 b. Minimum Credit Hours *
 3
 Maximum Credit Hours *
 3
 Secondary
 --SelectType--
 Tertiary
 --SelectType--

Date Added: 11-26-13
Council Approved: 1-21-14
To Provost: 2-7-14

https://curriculumtracking.utoledo.edu/GradNewCourse.aspx?Mode=View&ID=MATH696
c. Weekly Contact Hours *

8. Terms offered: ✔ Fall ☐ Spring ☐ Summer

Years offered: ☐ Every Year ☐ Alternate Years

9. Are students permitted to register for more than one section during a term? ☐ No ☐ Yes

May the courses be repeated for credit? ☐ No ☐ Yes Maximum Hours

 ☐ Passing Grade/No Credit (A-C, NC)
 ☐ Credit/No Credit
 ☐ Grade Only (A-F, PR, I)
 ☐ Audit Only
 ☐ No Grade

11. Prerequisites (must be taken before): i.e. C or higher in (BIOE 4500 or BIOE 5500) and C or higher in MATH 4200

MATH 5680

☐ PIN (Permission From Instructor) ☐ PDP (Permission From Department)

Co-requisites (must be taken together):

MATH 6800 recommended

12. Catalog Description* (75 words Maximum)

Focus on measure theory and probability. Measures and their extensions, integration, convergence theorems, product measures. Probability spaces, random variables and distribution functions, independence, expectation, law of large numbers, central limit theorem, zero-one laws, characteristic functions.

13. Attach a syllabus and an electronic copy of a complete outline of the major topics covered. Click here for template.
Course Approval:

Department Curriculum Authority: Alessandro Arsie Date 2012/12/06

Department Chairperson: Paul Hewitt Date 2012/12/06

College Curriculum Authority or Chair: Anthony Quinn Date 2013/03/04

College Dean: Brian P. Ashburner Date 2013/10/24

Graduate Council: Date 1-31-2014

Dean of Graduate Studies: Date 1-31-2014

Office of the Provost:

Administrative Use Only

Effective Date: (YYYY/MM/DD)

CIP Code:

Subsidy Taxonomy:

Program Code:

Instructional Level:

The University of Toledo • 2801 W. Bancroft • Toledo, OH 43606-3390 • 1.800.586.5336
© 2006-2007 The University of Toledo. All rights reserved. • Send all feedback / comments to webMaster
University of Toledo
Math 6860/8860 Measure Theoretic Probability I
Fall 2013

SYLLABUS

Instructor:
Faculty Office:
Faculty/Department web site:
Office Hours:
Phone:
E-Mail:
Class Meetings Location:

*Required for new course approval

Course Description including course pre-requisites or co-requisites
Prerequisite: MATH 5680 Corequisite: MATH 6800 recommended

Texts (Required and Recommended, Reserve Materials, etc.)

Course Requirements: Expectations of students in course

Grading policy or criteria
The final grade is based on weekly homework assignments, the midterm exam (s) and the final exam.

Assessment of Learning: Identification of methods used to assess student learning in the course
Weekly homework assignments, the midterm exam (s) and the final exam.

Classroom Procedures: Expectations of classroom behaviors including UT policies

Tentative Class Schedule/Activities/List of Topics Covered
- General Measures
- Sets and Events
- Probability Spaces
- Probability Measures
- Random Variables, Elements, and Measurable Maps
- Independence
- Integration and Expectation
- Convergence Concepts
- Laws of Large Numbers and Sums of Independent Random Variables
- Convergence in Distribution