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ABSTRACT

Motivation: Logistic regression is a standard method for building

prediction models for a binary outcome and has been extended

for disease classification with microarray data by many authors.

A feature (gene) selection step, however, must be added to

penalized logistic modeling due to a large number of genes and a

small number of subjects. Model selection for this two-step

approach requires new statistical tools because prediction error

estimation ignoring the feature selection step can be severely

downward biased. Generic methods such as cross-validation and

non-parametric bootstrap can be very ineffective due to the big

variability in the prediction error estimate.

Results: We propose a parametric bootstrap model for more

accurate estimation of the prediction error that is tailored to

the microarray data by borrowing from the extensive research in

identifying differentially expressed genes, especially the local false

discovery rate. The proposed method provides guidance on the

two critical issues in model selection: the number of genes to include

in the model and the optimal shrinkage for the penalized logistic

regression. We show that selecting more than 20 genes usually helps

little in further reducing the prediction error. Application to Golub’s

leukemia data and our own cervical cancer data leads to highly

accurate prediction models.

Availability: R library GeneLogit at http://geocities.com/jg_liao

Contact: jl544@drexel.edu

1 INTRODUCTION

DNA microarray is a new technology that measures

the expression levels of thousands of genes simultaneously

and has emerged as an important tool in biomedical research.

Golub et al. (1999) show that microarray gene expression

can be used to classify between acute myeloid leukemia (AML)

and acute lymphocytic leukemia. Since then, disease classifica-

tion using microarray data has been the focus of intensive

research with the aim of providing more accurate diagnostic

tools than what the traditional pathological method alone can

provide. Gene expression can also be used to predict survival

time, disease prognostics and response to treatment, all with

important clinical implications.
The mathematical and statistical methodologies for building

such classification models, from the classical statistical methods

to machine learning theory to classification trees, are reviewed

and compared by Dudoit et al. (2002), Lee et al. (2005)

and Li et al. (2004). This article considers the logistic regression

approach, a standard method for binary classification that

has been extended for use in microarray data in Eilers et al.

(2001), Fort and Lambert-Lacroix (2005), Nguyen and Rocke

(2002), Shen and Tan (2005), Zhou et al. (2004), Zhu and

Hastie (2005). Let y be an array’s binary disease status (1 for

cancer and 0 for normal as a general example) and let

x ¼ (x1, . . . , xp) be the expression vector, where xj is

the expression level of the jth gene. A logistic prediction

model for � (x), the probability of y¼1 given x, is constructed

from a training dataset, which can then be applied to the gene

expression of a new array to estimate its cancerous probability.

Building a logistic prediction model using microarray

data, however, is fundamentally different from standard logistic

modeling because the number of genes (predictors)

p can be thousands while the number of arrays (subjects) n is

usually no more than 100. A popular approach is to combine a

gene selection step with penalized likelihood inference (Eilers

et al., 2001; Shen and Tan, 2005; and Zhu and Hastie, 2004).

Step 1, called feature selection, selects a subset of genes to

include in the logistic regression. For ease of exposition, we will

focus on the method of selecting the q most univariately

significant genes (Dudoit et al., 2002) and let x*j; j ¼ 1; . . . ; q, be
the expression of the jth selected gene. Let yi, i¼1, . . . , n, be

the binary disease status of the ith array in the training dataset

and let xi¼(xi1, . . . , xip) be its gene expression vector. Step 2

fits the logistic model

logit �ðxÞ
� �

¼ �0 þ
Xq
j¼1

�jx
*
j ð1Þ

by maximizing the penalized log-likelihood

lð�0; �Þ ¼
Xn
i¼1

yi log �ið Þ þ 1� yið Þ log 1� �ið Þ
� �

�
1

2�2
�

�� ��2; ð2Þ

where �i ¼ � (xi) as given by model (1), I�I is the Euclidean

length of �¼ (�1, . . . , �q), and � 2 (0, 1) is the shrinkage*To whom correspondence should be addressed.
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parameter that controls the degree of shrinkage of � toward 0

(Cessie and Van Houwelingen, 1990; Van Houwelingen, 2001).

There are two key unresolved model selection issues here.

The first is how to choose the number of genes q in Step 1.

A smaller q makes the prediction model (1) easier and less

costly to use but may lead to a larger prediction error.

The second is how to find the optimal shrinkage parameter

� for a chosen q. To address these issues, we need to be able to

estimate the prediction error of a model building strategy.

Ambroise and McLachlan (2002) and Simon et al. (2003) show

that methods in earlier publications that ignored the feature

selection step in the evaluation can severely underestimate

the prediction error. To incorporate both Steps 1 and 2

for valid assessment, they use the generic cross-validation

and non-parametric bootstrap. Recently, however, Braga-Nato

and Dougherty (2004) demonstrated that the prediction error

estimation using cross-validation can be too variable to be

useful. Efron (2004), in a significant theoretical advance, shows

that cross-validation and non-parametric bootstrap, while

broadly applicable, pay a substantial price in terms of decreased

estimating efficiency, which is especially acute for a large

p and small n problem. The parametric bootstrap method,

based on models tailored to the specific problem, can offer

substantially better accuracy if the model is justified.
This article proposes and develops a parametric bootstrap

method for more accurate and reliable estimation of

the prediction error for the two-step procedure of building a

logistic model, which provides the critically needed guidance on

the choice of q and �. For any given q, our method finds

the optimal � and the corresponding prediction error. We show

that including q ¼ 20 genes in the model is usually sufficient

as additional genes help little in further reducing the prediction

error. Application to Golub’s leukemia data (Golub et al.,

1999) and our own breast cancer data (Wong et al., 2003 ) leads

to highly accurate prediction models. A carefully crafted

R library, GeneLogit, is supplied on our web-site (http://

geocities.com/jg_liao) that can be readily used for data analysis.

2 PARAMETRIC BOOTSTRAP MODEL
SELECTION

2.1 A parametric bootstrap model

The parametric bootstrap (Efron and Tibshirani, 1993), unlike

cross-validation and non-parametric bootstrap, requires a

more detailed model for the underlying process that generated

data y ¼ (y1, . . . , yn). We now propose such a model in

a hierarchical form.
Stage 1: given the gene expression vector xi, yi � Bernoulli (�i)

with

logit �ið Þ ¼ b0 þ
Xp
j¼1

bjxij; i ¼ 1; . . . ; n; ð3Þ

where b1, . . . , bp are the regression coefficients to be

further modeled in Stage 2 and b0 is the intercept. Note

that Equation (3) is different from Equation (1) in that (3) is the

assumed true model for �i while (1) is the working model for

building a prediction rule. In Section 2.1, �1, . . . , �n are always

as given in (3). Usually, only a small percentage of genes from

(3) are needed in (1) because the expression levels of many genes

are collinear.
Let n1 be the total number of cancer arrays and n0 ¼ n � n1

be the total number of normal arrays in the training sample.

It can often be more appropriate to model y as drawn

conditional on y1 þ, . . . , þ yn ¼ n1 because n1 and n0
are fixed by design (see Section 4 for more discussion). Let

Pr yj�ð Þ ¼
Yn
i¼1

�yi
i 1� �ið Þ

1�yi ;

where �¼(�1, . . . , �n). Let u ¼ (u1, . . . , un), where each ui is

either 0 or 1, and let S ¼ u :
Pn

i¼1 ui ¼ n1
� �

. The conditional

probability of y given y1 þ, . . .,þ yn ¼ n1 is then

Pr yj�ð ÞP
u2S Pr uj�ð Þ

; ð4Þ

which depends on b1, . . . , bp but not on intercept b0 and is often

the likelihood of choice in statistical inference when n1 is fixed

by design or when the intercept b0 is considered a nuisance

parameter (Agresti, 2002, McCullagh and Nelder, 1989;

Chapter 6.7.1). We will therefore use this conditional distribu-

tion for the inference and simulation subsequently.
Stage 2: to develop a model for coefficients b1, . . ., bp in (3),

let M ¼ fj : bj 6¼ 0} be the subset of genes with a non-zero

regression coefficient. Rewrite (3) as

logitð�iÞ ¼ b0 þ
X
j2M

sj bj
�� ��xij; ð5Þ

where sj ¼ |bj| /bj is the sign of bj for j 2 M. Note that Equation

(3) is ill-posed in that infinitely many solutions of b0, . . . , bp exist

for any given �. To put a reasonable structure on bj, we shall

seek insight from a formulation of the gene expression vector x

that leads to logistic regression (3). Assume that x �N (�1, V )

for a tissue drawn from the cancer group and x �N (�0, V )

for a tissue drawn from the normal group, where �1 ¼ (�11, . . . ,

�1p) and �0 ¼ (�01, . . . , �0p). This leads to logistic regression

(3) with (b1, . . . , bp)
t
¼ V �1 (�1 � �0) and intercept b0

that depends on the relative sampling probabilities

from the normal and cancer groups (Hastie, et al., 2001).

Assume further that the gene expression is independent

across genes so that V ¼ diag (v1, . . . , vp). We then have

bj ¼ (�1j � �0j)/vj. Note that bj is a multivariate regression

coefficient in (3) while �1j � �0j represents the marginal

relationship between the jth gene’s expression and the

outcome y. Let Hj, j¼1, . . . , p, be the hypothesis that the jth’s

gene expression has no difference between the cancer

and normal arrays, Hþ
j be the alternative hypothesis that

expression is stronger in the cancer arrays and H�
j be

the hypothesis that the expression is stronger in

the normal arrays. It follows that Hj, H
þ
j and H�

j correspond

to bj ¼ 0, sj ¼ 1 and sj ¼ �1, respectively. We can now borrow

from the extensive research on identifying differentially

expressed genes based on the false discovery rate (FDR)

framework (Benjamini and Hochberg, 1995). Let zj be the

P-value from testing Hj that summarizes the strength

of statistical evidence against Hj. Efron et al. (2001) and

J.G.Liao and K.V.Chin
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Efron and Tibshirani (2002) model zj, j ¼ 1, . . . , p, as generated

from the mixture distribution

�0 f0 zð Þ þ 1� �0ð Þ f1 zð Þ;

where �0 is the proportion of genes that do not express

differentially, f0 is the uniform density on [0, 1] for P-values

under the null hypothesis and f1 is the density for P-values

under the alternative. The local FDR, which quantifies

the plausibility of individual Hj being true, is given by

fdrj ¼ Pr Hjis true jzj
� �

¼
�0

�0 þ 1� �0ð Þf1 zj
� � ; ð6Þ

and can be estimated using the method either in Liao et al.

(2004) or in Scheid and Spang (2005). To model the subset M,

we shall generate it as a random set so that each j

has probability 1� cfdrj of being in M independently for

j ¼ 1, . . . , p. To determine a reasonable value for sj, for j 2 M,

or to choose between Hþ
j and H�

j after Hj is rejected, note that

it is common practice to conclude that the direction of

difference in the population is the same as what it is in

the sample when a two-sided null hypothesis is rejected

(Leventhal and Huynh, 1996). We will thus assign, for j 2 M,

sj ¼ 1 or sj ¼ � 1 depending on the direction of the gene’s

expression in the training dataset. Because of the adjustment

for multiple comparisons, a gene is only usually included in M

when the P-value zj is much smaller than the usual cut point

0.05. This way of modeling bj 6¼ 0 and assigning sj is based on

the marginal relationship between the outcome y and the jth

gene’s expression level. We show that it is justified by assuming

normal distribution for gene expression vector x and by

assuming independent expression across genes within the

normal group and within the cancer group. While this is

somewhat a strong assumption, we think it provides a useful

approximation to an otherwise intractable problem. Similar

approach is adopted in Barbieri and Berger (2002) and

Ishwaran and Rao (2005) where variables in a multivariate

model are selected based on their individual performance

instead of their joint posterior distribution in Bayesian

analysis of large p and small n data. Further research is

needed on the best ways to model bj for a group of highly

correlated genes.

To complete the specification for bj, we shall model |bj|, j 2

M, as independent random effects from normal distribution

N 0; �20
� �

truncated on (0, 1). The variance component �0, to
be estimated from the data, quantifies the size of |bj|. This

follows the established statistical tradition of modeling para-

meters of similar characteristics as random effects (Laird and

Ware, 1982) and also naturally motivates penalized like-

lihood (2) (Cessie and Van Houwelingen, 1990; Van

Houwelingen, 2001).
It is easy to draw a bootstrap sample y* ¼ y*1; . . . ; y

*
n

� �
from the proposed two-stage model. To do this, first get an

estimate of the local FDR as cfdrj. Obtain an estimate of �0
as �̂0 by maximizing (7) as discussed subsequently.

We can then draw y* as follows.
Step 1: generate M so that each j has probability of 1� cfdrj

of being in M. Assign, for j 2 M, sj ¼ 1 if the gene’s expression

is stronger in cancer arrays for the training dataset and sj ¼ �1

otherwise. Draw |bj| from N 0; �̂20

� �
truncated on (0, 1) for

j 2 M. Model (3) or (5) is now specified except the intercept b0.

Step 2: draw y* from the conditional logistic distribution

(4) with � given by model (5) as generated in Step 1. Note that

both Steps 1 and 2 need to be performed for each bootstrap

sample y* as Step 1 models the uncertainty in regression

coefficients in (3) or (5).

Finally, to estimate the variance component �0, let ey be a

bootstrap sample generated with |bj| in Step 1 drawn from

the truncated N (0, �2) instead. Let h (�) be the probability ofey ¼ y, where the probability incorporates both Steps 1 and 2 in

drawingey. Our estimate �̂0 maximizes

��1=3h �ð Þ; ð7Þ

where the factor ��1/3 is added to the likelihood function h (�)
to improve the stability of the maximization and can be seen

as the kernel of a prior density on, say [10�6, 1], that mildly

favors a smaller �.

2.2 Estimation of the prediction error

With what is proposed in Section 2.1, the prediction error of

a model building procedure can be easily evaluated using

parametric bootstrap. For ease of exposition, we will denote

the two-step procedure for building a logistic model in

Section 1 by logistic (q, � ), where q is the number of the

most significant genes included in working model (1) and � is

the shrinkage parameter in penalized likelihood (2). For

any given pair (q, � ), the prediction error of procedure logistic

(q, � ) can be estimated as follows:
Step 1: draw a bootstrap sample y* ¼ y*1; . . . ; y

*
n

� �
as

described in Section 2.1. Note that the intercept b0 in (5) was

left unspecified there but its value is needed here. Given the

generated M, sj and |bj|, we will choose b0 so that (5) satisfies

�1 þ, . . . ,þ �n ¼ n1, which is the maximum likelihood estimate

of b0. The �1, . . . , �n are now completely specified in (5).
Step 2: apply the two-step procedure logistic (q, � ) to

bootstrap sample y*. To be more specific, first test the gene

expression difference between arrays with y�i ¼ 1 and arrays

with y�i ¼ 0 for each of the p genes and select the q most

significant genes. Then fit logistic regression (1) with y in

penalized likelihood (2) replaced by y*. Let �̂* ¼ �̂*
1; . . . ; �̂

*
n

� �
be the estimated �1, . . . , �n from the resulting model.
Step 3: compute the expected Brier score

n�1
Xn
i¼1

�̂*
i � �i

� �2
þ�i 1� �ið Þ

n o
; ð8Þ

which is smaller if the estimate �̂* is closer to the true �.
To derive (8), let y0 ¼ y

0

1; . . . ; y
0
n

� �
be n independent

Bernoulli trials with each y0i having success probability �i.

The Brier score (Brier, 1950) of using �̂* to predict y0 is

Brier score ¼ n�1
Xn
i¼1

�̂�
i � y0i

� �2
:

Formula (8) is the expected Brier score over y0.
Repeat Steps 1–3 here a large number of times (10 000

times for the two examples below) and the average of (8) over

Logistic regression using microarry data
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these replications serves as an estimate of the prediction error

of procedure logistic (q, � ).
As mentioned earlier, the closer the bootstrap estimate �̂? is

to the underlying true �, the smaller the expected Brier score (8)

is. The true � from Step 1, however, is a random quantity

determined by the generated values of M, sj and |bj|, which

models our uncertainty about �. The prediction error estimate

of procedure logistic (q, � ) averages (8) over �. Our parametric

bootstrap method can therefore be alternatively motivated

from the perspective of Bayesian model averaging (Hoeting

et al., 1999).

2.3 Software implementation

Our proposed method is implemented in software library

GeneLogit that runs on the open source R environment

(R Development Core Team, 2006) and is available at http://

geocities.com/jg_liao For our implementation, the local

FDR estimator in Liao et al. (2004) is used. The conditional

probability (4) is generally computationally onerous because

the probability of y1 þ, . . . ,þ yn ¼ n1 in the denominator may

involve the sum of a large number of terms. To simplify the

computation, normal approximation �(n1 þ 0.5)��(n1 � 0.5)

is used, where � is the cumulative distribution of normal

distribution with mean �1þ, . . .,þ�n and variance

�1(1��1)þ, . . . ,þ�n(1��n). The free parameter b0 in (3) is

chosen so that �1 þ, . . . ,þ �n¼n1 for more accurate approx-

imation, which works well when n>30 and n1 is not too close

to 0 or n. The likelihood h(�) in (7) is computed by averaging

conditional probability (4) over 5000 simulated b1, . . . , bp,

where b1, . . . , bp are generated as in Step 1 in Section 2.1 except

|bj| are drawn from N (0,�2) truncated on (0, 1). The resulting

library GeneLogit is easy to use but still computationally

intensive (�20 hours of total computing time on today’s dual

core CPU from Intel or AMD for either the leukemia or the

cervical cancer dataset subsequently). As input, it requires the

disease outcome y as a vector and the gene expression as an n �

p matrix. No missing values are allowed. The gene expression

matrix needs to be standardized so that each column

(the expression of a gene across all subjects) has variance

of 1. There is no need, however, to center the gene expression to

0 as it does not impact on the regression coefficients b1, . . . , bp.

The program seems numerically stable as same result is

obtained from many different runs. We now illustrate the

use of the library in two datasets.

3 TWO EXAMPLES

3.1 Golub leukemia data: classification between

ALL and AML

Golub et al. (1999) use gene expression to classify between

acute lymphoblastic leukemia (ALL) and AML. Their data

have since been analyzed by many authors using different

classification methodologies. The training dataset consists of

27 ALL and 11 AML subjects and the test dataset consists of

20 ALL and 14 AML subjects. The expression of 7129 genes

were originally measured. We applied the pre-processing

procedures in Dudoit et al. (2002) to filter out genes that do

not exhibit significant variation across the samples, followed by

thresholding and the logarithmic transformation. A total of

3051 genes remain after the pre-processing. Our proposed

method is applied to the training dataset (n ¼ 38 and p ¼3051)

in the following steps using GeneLogit library:

(1) Run function localFDR to estimate fdrj and assign sj.

(2) Run function model.estimation to estimate �0 by max-

imizing (7), which gives �̂0 ¼ 0:0123.

(3) Use function bootstrap.prediction to find the optimal �
and the corresponding prediction error for different

values of q. The result for q ¼ 1, 10, 20, 50 and 100 is

given in Table 1. For example, the optimal � for q ¼ 1 is

found to be 4.542 with a corresponding prediction error

estimated to be 0.0191 and the optimal � for q ¼ 20

is 0.628 with a corresponding prediction error of 0.0152.

A larger q leads to a smaller optimal � (more shrinkage)

and smaller prediction error. Increasing q beyond 20,

however, does not help much in further reducing

the prediction error. Note that the estimated prediction

error is the average over 10 000 expected Brier scores

defined in Equation (8) from 10 000 bootstrapped

models. For q ¼ 20 and � ¼ 0.628, the 5th and 95th

percentiles of these expected Brier score are 0.0116

and 0.0381, respectively.

(4) Based on the result in Table 1, we choose procedure

logistic (q ¼ 20, � ¼ 0.628) to build our prediction model

by running function pena.logit. The 20 selected genes and

the penalized logistic regression coefficients are given in

Table 2. Note that the regression coefficients are all close

to 0 due to the shrinkage effect.

To assess the prediction capacity of the model in Table 2 for

independent samples, we apply it to Golub’s test dataset of 20

ALL and 14 AML subjects. For each of the 34 subjects in the

test dataset, we compute �̂i, the estimated probability of the ith

subject being ALL, by applying the prediction model to the

array’s expression vector. Note, however, the number of cases

over the number of normal subjects is 27/11 for the training

dataset and 20/14 for the test dataset. The estimated intercept

�0.278 needs to be adjusted to �0.278 � log(27/11) þ

log(20/14) to account for the different sampling ratios

(McCullagh and Nelder, 1989, Chapter 4.3.3). The �̂i and the

true disease status yi (1 for ALL and 0 for AML) are given

in Table 3 for i ¼1, . . . , 34. We see that �̂i > 0:5 for every

subject with yi ¼1 and �̂i < 0:5 for every subject with yi ¼ 0

except one with �̂i ¼ 0:506. The Brier Score for predicting

y1, . . . , y34 using �̂1; . . . ; �̂34 is 0:015: As comparison, Nguyen

and Rocke (2002) report 1–3 classification errors; Lee et al.

Table 1. The optimal � and the prediction error for different q,

leukemia data

q 1 10 20 50 100

Optimal � 4.542 1.041 0.628 0.524 0.487

Prediction error 0.0191 0.0167 0.0152 0.0142 0.0141

J.G.Liao and K.V.Chin
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(2003) and Zhou et al. (2004) report one classification error and

Yeung et al. (2005) have two classification errors. The result

reported here can be reproduced by running the R code

included in our GeneLogit library.

3.2 Classification between cervical cancer and

normal tissues

Wong et al. (2003) study the gene expression of 26 cervical

cancer tissues and 9 normal cervical tissues. The data is

also analyzed in Liao et al. (2004) in the context of

estimating the local FDR. We now use the data to build a

logistic prediction model for classifying between cervical cancer

and normal tissues. We use the 3670 genes, among

10 692 assessed, that have complete data for all the 35 subjects.

Applying our GeneLogit library using the same steps as

for the Golub’s data, we obtain �̂0 ¼ 0:00901. The optimal

� and the corresponding prediction error for q ¼ 1, 10, 20, 50

and 100 are given in Table 4. Again, the optimal � decreases as

q increases and choosing q beyond 20 does not help much

in further reducing the prediction error. We thus choose

procedure logistic (q ¼ 20, � ¼ 0.384) to build our prediction

model with result given in Table 5. For this dataset, however,

there is no separate test dataset to reliably assess the prediction

error for independent samples. To overcome this problem,

we shall borrow idea from cross-validation. For i ¼ 1, . . . , 35,

we apply procedure logistic (q ¼ 20, � ¼ 0.384) to the cervical

dataset with data from the ith subject removed. The resulted

logistic model is then applied to the ith tissue’s gene expression

to compute the estimate �̂�i
i . The result is given in Table 6.

We see that all the cervical cancer tissues (yi ¼ 1) have �̂�i
i > 0:5

and all the normal tissues (yi ¼ 0) have �̂�i
i < 0:5. The Brier

score for predicting y1, . . . , y35 using �̂�i
i ;i ¼ 1; . . . ; 35, is 0.023.

Note that yi does not contribute to the value of �̂�i
i . The high

agreement between yi and �̂�i
i in Table 6 for all 35 subjects

indicates that the procedure logistic (q ¼ 20, � ¼ 0.338) is

a good choice.

4 CONCLUSION AND DISCUSSION

Building a logistic prediction model using microarray data

poses considerable technical challenge because of the larger

p and small n. Infinitely number of solutions of b0, b1, . . ., bp
exist for any given �1, . . ., �n for logistic model (3).

Consequently, any observed data y1, . . ., yn is subject to

infinitely many interpretations. Additional structure on b0,

b1, . . . , bp is required for effective data analysis. We propose

such a structure in Section 2.1 by writing (3) in the form

of (5) and by borrowing from the extensive research on FDR.

In our model, the probability of bj 6¼ 0 or j 2 M is taken

to be 1� cfdrj with the sign sj; j 2 M, obtained from the

Table 2. Logistic prediction model using procedure logistic(q ¼ 20, � ¼ 0.629), leukemia data

Gene Intercept M55150.at X95735.at M27891.at HG1612-HT1612.at M16038.at

coefficient �0.278 �0.261 �0.240 �0.265 0.223 �0.252

Gene M27783.s.at M31523.at Z15115.at D88422.at X51521.at M21551.rna1.at

coefficient �0.165 0.224 0.260 �0.177 0.257 �0.240

Gene U22376.cds2.s.at M23197.at X62320.at Y12670.at U50136.rna1.at M63138.at

coefficient 0.263 �0.268 �0.177 �0.365 �0.246 �0.256

Gene L09209.s.at M31166.at M31166.at

coefficient �0.237 �0.268 �0.299

Table 3. The true disease status yi and the estimated �i for the 34 arrays in Golub’s test dataset

yi 1 1 1 1 1 1 1 1 1 1 1 1

�̂i 0.991 0.914 0.983 0.845 0.991 0.963 0.995 0.965 0.993 0.979 0.991 0.987

yi 1 1 1 1 1 1 1 1 0 0 0 0

�̂i 0.939 0.960 0.986 0.980 0.728 0.903 0.961 0.986 0.012 0.034 0.008 0.004

yi 0 0 0 0 0 0 0 0 0 0

�̂i 0.046 0.027 0.036 0.244 0.212 0.122 0.506 0.023 0.035 0.021

Table 4. The optimal � and the prediction error for different q, cervical

cancer

q 1 10 20 50 100

Optimal � 2.73 0.795 0.384 0.279 0.207

Prediction error 0.082 0.059 0.057 0.054 0.053

Logistic regression using microarry data
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direction of the jth gene expression in the training dataset and

|bj| modeled as random effects. The prediction error of

procedure logistic (q, �) can then be estimated using parametric

bootstrap to guide the choice of q and �. Application of the

proposed method to the leukemia and cervical cancer datasets

results in excellent prediction models. Biomedical researchers,

we interacted with, found the method intuitive and easy to

understand.
We now briefly discuss a few issues. First, the number of

cancer arrays n1 and the number of normal arrays n0 in a

microarray study are often chosen to be of similar size to

increase statistical efficiency even though the underlying

normal population can be much larger than the cancer

population. This is similar to the case-control design in

epidemiology in which individuals in the disease population

are often sampled for inclusion in study in greater proportion

than subjects in the control population. For such design,

the intercept �0 in (1) depends on the ratio of the sampling

proportions but �1, . . . , �q do not (Agresti, 2002; McCullagh

and Nelder, 1989, Chapter 6.7.1). In applying the logistic
prediction model to new arrays, it is prudent to find out if

the same ratio of sampling proportions is used as in the training

dataset. The relatively cancerous risk, however, can be

determined from only �1, . . . , �q. Second, we have focused on

the model-building procedure logistic(q, �) in which the q

univariately most significantly genes are included in the logistic

model. Other feature selection methods can also be used.

One may consider, e.g. to include the q jointly most significant

genes. Our proposed bootstrap method can be used in the

same way in evaluating its prediction error. Computationally,

however, it is much more intensive to find the q jointly most

significant genes. Third Yeung, et al. (2005) use Bayesian model

averaging for building microarray classification models.

As discussed in Section 2.2, our proposed bootstrap method

can also be motivated from the same perspective. But Yeung

et al. method is, in our opinion, a somewhat ad hoc adaptation

of standard Bayesian model averaging to the large p and small

n microarray data while we have developed a coherent model

specifically tailored to such data. Indeed, they report more

misclassified arrays for Golub’s leukemia data.
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