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SUMMARY

The pathways that distinguish transport of
folded and misfolded cargo through the exo-
cytic (secretory) pathway of eukaryotic cells
remain unknown. Using proteomics to assess
global cystic fibrosis (CF) transmembrane con-
ductance regulator (CFTR) protein interactions
(the CFTR interactome), we show that Hsp90
cochaperones modulate Hsp90-dependent sta-
bility of CFTR protein folding in the endoplasmic
reticulum (ER). Cell-surface rescue of the most
common disease variant that is restricted to
the ER, DF508, can be initiated by partial siRNA
silencing of the Hsp90 cochaperone ATPase
regulator Aha1. We propose that failure of
DF508 to achieve an energetically favorable
fold in response to the steady-state dynamics
of the chaperone folding environment (the
‘‘chaperome’’) is responsible for the pathophys-
iology of CF. The activity of cargo-associated
chaperome components may be a common
mechanism regulating folding for ER exit, pro-
viding a general framework for correction of
misfolding disease.

INTRODUCTION

A major challenge in cell biology is to understand the role

of protein energetics and chaperone function in the folding

of cargo for export from the endoplasmic reticulum (ER)
C

(Kelly and Balch, 2006; Sekijima et al., 2005). The ER is

a specialized folding environment in which nearly one-

third of the proteins coded for by the eukaryotic genome

are translocated and folded as either lumenal secreted

proteins or transmembrane proteins. Proteins are ex-

ported from the ER by the coatomer complex II (COPII)

machinery, which generates transport vesicles for delivery

of cargo to the Golgi (Lee et al., 2004; Stagg et al., 2006;

Gurkan et al., 2006). The metabolic basis for the function

of the abundant ER lumenal and cytosolic chaperone ma-

chineries remains to be fully elucidated. These ER-associ-

ated folding (ERAF) pathways are also coordinated with

ER-associated degradation (ERAD) pathways whereby

misfolded proteins are targeted for retrotranslocation to

the cytosolic proteasome system (Young et al., 2003).

Numerous misfolding diseases occur in which variants

of either lumenal or transmembrane cargo do not fold

properly, fail to engage the COPII export machinery, and

are degraded in the ER, resulting in loss-of-function phe-

notypes. We have recently demonstrated the importance

of both the kinetic and thermodynamic properties of the

protein fold in defining a minimal energetic threshold

required for export of cargo responsible for misfolding dis-

ease (Sekijima et al., 2005). These results raised the possi-

bility that the chaperone environment may play a critical

role in establishing the export threshold whereby energet-

ically destabilized (misfolded) cargo fails to be exported

efficiently.

Cystic fibrosis (CF) is an inherited childhood disease pri-

marily triggered by defective folding and export of CFTR

from the ER (Riordan, 2005). The cystic fibrosis transmem-

brane conductance regulator (CFTR) is a multidomain

cAMP-regulated chloride channel found in the apical mem-

brane of polarized epithelia lining many tissues. CFTR
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consists of two transmembrane domains (TMD1 and 2)

separated biosynthetically by cytosol-oriented N- and

C-terminal domains and the NBD1, R, and NBD2 domains

that regulate channel conductance. Transport of CFTR in-

volves both lumenal and cytosolic chaperones that facili-

tate folding and export from the ER (Amaral, 2006; Rior-

dan, 2005), as well as adaptor proteins that direct

trafficking from the trans-Golgi and recycling through en-

docytic pathways to maintain the proper level of chlo-

ride-channel activity at the cell surface (Guggino and

Stanton, 2006). In addition, a number of proteins regulate

CFTR channel conductance through both cAMP and G

protein-coupled signaling mechanisms, and a variety of

effectors are critical to allow CFTR to regulate other ion

transporters involved in Na2+ and HCO3� transport to

maintain normal cellular ion balance in tissues (Guggino

and Stanton, 2006). The full extent of these protein inter-

actions and their importance for CFTR function in tissue

remain to be elucidated.

Over 90% of CF patients carry at least one allele of the

Phe508 deletion (DF508 CFTR) in the cytosolic NBD1

ATP-binding domain that leads to severe forms of dis-

ease. Loss of Phe508 disrupts the folding pathway of

CFTR in the ER (Qu et al., 1997; Riordan, 2005). In vitro

biochemical and biophysical experiments with purified

NBD1 have demonstrated that the thermodynamic stabil-

ity of the wild-type and mutant domain is similar, a result

consistent with recent structural studies in which both

wild-type and DF508 are found to have nearly identical

folds (Lewis et al., 2004). In contrast, the folding of

DF508 NBD1 is kinetically impaired (Qu et al., 1997). As

a consequence of this energetic defect in folding, DF508

fails to achieve a wild-type fold in the ER, fails to engage

the COPII ER export machinery (Wang et al., 2004), and

is targeted for ERAD (Nishikawa et al., 2005).

Chaperone components that are currently thought to

significantly affect CFTR ERAF pathways include cal-

nexin, found in the lumen of the ER, as well as the cytosolic

chaperone complexes Hsc-Hsp40/70 and Hsp90 (Amaral,

2006; Riordan, 2005). The specific mechanism (or mecha-

nisms) by which the Phe508 deletion disrupts folding of

CFTR remains a topic of considerable debate but likely in-

volves the Hsc-Hsp70 pathway and its coregulators. Past

biochemical studies suggest that these chaperones func-

tion in co- and posttranslational processes to help inte-

grate the folds of TMD1 and 2 and the cytosolic NBD1,

R, and NBD2 domains that could be disrupted by the mu-

tation. In addition, the Hsp90 inhibitor geldanamycin (GA)

has been shown to destabilize wild-type CFTR during na-

scent synthesis (Loo et al., 1998), targeting the protein for

rapid degradation. Hsp90-dependent modification of the

folding properties of a variety of client proteins is regulated

by cyclical interactions with a variety of different cocha-

perones. These cochaperones have been studied exten-

sively for their roles in modulating Hsp90-client interac-

tions such as found for steroid hormone receptors

(SHRs) and signaling kinases (Wegele et al., 2004). Thus,

it is apparent that Hsp90 and its cochaperones may also
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play important but unknown roles in folding for export. Al-

though the loss of Phe508 kinetically disrupts stability in

the ER, the destabilized protein still retains significant

chloride-channel conductance (Amaral, 2006). Such re-

sults suggest that insight into the molecular machinery di-

recting folding and export could play an important role in

both understanding the molecular basis for disease and

achieving correction by promoting folding and transport

of DF508 to the cell surface.

Herein, we have applied mass spectrometry through

use of multidimensional protein identification technology

(MudPIT) (Washburn et al., 2001) to begin to define the

global protein interactions (the CFTR interactome) re-

quired for folding, trafficking, and function of CFTR in

the exocytic and endocytic pathways. The interactome

reveals a cohort of known and unknown regulators and

effectors in ER and post-ER compartments that guide

CFTR function. Given the importance of identifying the

critical interactions defective in DF508 disease, we have

focused in this study on the key differences in the wild-

type and DF508 proteomes affecting ER export. Consis-

tent with previous studies, we find that both wild-type

and DF508 CFTR have robust interactions with lumenal

chaperones including calnexin and the cytosolic chaper-

one machineries Hsc-Hsp70 and 90. We now show that

the cochaperone interactions of DF508 and wild-type

CFTR with Hsp90 differ, suggesting that the DF508 is ki-

netically restricted to a folding intermediate in the ER.

Strikingly, modest siRNA reduction of the Hsp90 cocha-

perone Aha1 rescues trafficking of DF508 to the cell sur-

face and restores channel function, suggesting that the

chaperone pool governing the folding of the cytosolic do-

mains of DF508 can be adjusted physiologically to achieve

export. Our results are consistent with the view that the

cellular chaperone pool (the ‘‘chaperome’’) does not sim-

ply prevent aggregation but can also contribute to local

folding environments (Albanese et al., 2006), controlling

the success or failure of the protein fold for function and

export. We raise the possibility that rescue of misfolding

diseases may be achievable through understanding the

cargo-specific roles of chaperome components facilitat-

ing stabilization of energetically unstable folds found in

the wide range of polymorphisms and mutations observed

in health and disease. By rescuing the protein fold, we si-

multaneously correct the many downstream interactions

that are contributing to disease (Kelly and Balch, 2006).

RESULTS

The CFTR Interactome

To define global protein interactions involved in CFTR traf-

ficking and function in the exocytic and endocytic path-

ways, CFTR-containing protein complexes were immu-

noisolated from heterologous lung and intestine cell lines

expressing wild-type CFTR and were protease digested,

and the composition of the peptide mixture was deter-

mined using MudPIT (Washburn et al., 2001). Proteins

identified in the CFTR immunoprecipitates that were not
.



Figure 1. The CFTR Interactome

All components comprising the CFTR interactome are depicted as nodes (ovals) in the network. Components identified in previous studies as CFTR

interactors are highlighted with bold lines surrounding the ovals. Straight blue lines are edges in the network that show direct or indirect protein in-

teractions between CFTR and the indicated component identified by MudPIT. Straight red lines illustrate edges that define interactions based on the

BIND (http://www.bind.ca/Action) and DIP (http://dip.doe-mbi.ucla.edu/) protein interaction databases and the Tmm coexpression database (http://

microarray.cpmc.columbia.edu/tmm/), which were accessed using the Cytoscape platform (http://www.cytoscape.org/). Proteins involved in folding

and export from the ER are illustrated as gray nodes; green nodes highlight protein interactions involved in post-ER trafficking and activity. Yellow

nodes indicate interactors with unknown function. See the Supplemental Discussion for a more complete description of proteins defined by green

and yellow nodes. The network also includes proteins previously demonstrated to modulate CFTR folding and function that were not detected in

the cell lines analyzed in the current study (Amaral, 2006; Guggino and Stanton, 2006).
observed in control immunoprecipitates from cell lines

lacking CFTR or in immunoprecipitates prepared from

CFTR-expressing cell lines using nonspecific antibody

provide us with a comprehensive network of CFTR-inter-

acting components (Figure 1; see also Tables S1–S7 in

the Supplemental Data available with this article online),

which we refer to as the CFTR interactome. Whereas

high sequence and spectra coverage of interactors likely

reflect a strong, persistent interaction with CFTR (Liu

et al., 2004), interactors identified with high fidelity using

at least two spectra either reflect molecules that have in-

direct, weak, or transient interactions or reflect tissue-

specific differences in trafficking, function, and regulation.

Proteins comprising the CFTR interactome belong to a va-

riety of functional groups that include components re-
C

quired for folding and export from in the ER (Figure 1,

gray), those that have functional relevance for trafficking

and activity at the cell surface (Figure 1, green) (Guggino

and Stanton, 2006), and proteins that have as yet to be de-

fined roles with respect to their potential role in CFTR fold-

ing and function (Figure 1, yellow). Proteins highlighted in

green are described in further detail in the Supplemental

Discussion. In addition to new interactors, components

previously documented to interact with CFTR (Figure 1,

bolded ovals) validate the current shotgun proteomics ap-

proach to define a comprehensive database for address-

ing CFTR function.

The critical step for understanding the most common

form of CF is to define the basis for the loss of export of

DF508 from the ER that reflects a key step (or steps) in
ell 127, 803–815, November 17, 2006 ª2006 Elsevier Inc. 805
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Figure 2. The ER Chaperone Network

(A) Proteins involved in folding (yellow) and degradation (green) in BHK cells not expressing CFTR (control) or those expressing either DF508 or wild-

type CFTR are shown as an array and are arranged in order of fractional sequence coverage by mass spectrometry (bar at base of array). Gray in-

dicates absence of the protein in the proteome data set. Chaperone components observed in the control were routinely recovered with low spectral

coverage when compared to DF508 CFTR, with the exception of Hsc70, which is detected in most immunoprecipitates analyzed by MudPIT given its

very high cellular abundance. Proteins thought to be involved in CFTR function (purple) are associated with DF508 in the ER, suggesting a possible

role in folding or export. A full description of each protein identified by the number and abbreviation listed to the right side of the array can be found in

the complete data set in Table S2.

(B) Network view of the components involved in CFTR folding (see Tables S1 and S2 for full descriptions). Components demonstrated previously to

facilitate folding are shown in pink. Blue lines indicate potential direct or indirect interactions with CFTR; red lines indicate confirmed physical inter-

actions between components based on data from the HPRD (http://www.hprd.org/), IntAct (http://www.ebi.ac.uk/intact/site/), BIND, and DIP.

(C) SDS-PAGE immunoblot showing the typical steady-state levels of bands B and C observed in wild-type and DF508 CFTR-expressing cells used in

the present study.
protein folding events that direct ER export through either

ERAF (Sekijima et al., 2005) or degradation pathways.

Consistent with these results, the proteomes of wild-

type CFTR-expressing cells showed robust linkage based

on total spectra recovered to calnexin and the Hsc-
806 Cell 127, 803–815, November 17, 2006 ª2006 Elsevier Inc.
Hsp40/70 and Hsp90 cytosolic ‘‘core’’ chaperones

(Figure 2B, inner circle of components; Table 1; Table

S1). To identify components in the interactome that may

be involved in the failure of DF508 to couple to the ER fold-

ing and export machinery, likely a step common to all cell

http://www.hprd.org/
http://www.ebi.ac.uk/intact/site/


Table 1. The CFTR ER-Associated Folding Proteome

DF508 CFTR WT CFTR

RefSeq AC Protein Name
Sequence
Coverage (%)

Unique
Spectra

Total
Spectra

Sequence
Coverage (%)

Unique
Spectra

Total
Spectra

NM_000492 CFTR 57 229 2481 60 333 4172

NM_024351 Hsc70 60 66 369 48 39 132

NM_022310 GRP78a 40 30 85 33 17 37

NM_021979 Hsp70-2 16 23 57 8 7 17

NM_001746 calnexina 16 13 52 10 4 7

NM_008302 Hsp90b 36 24 49 21 11 18

NM_010481 GRP75 34 23 40

NM_005348 Hsp90a 39 24 37 6 4 5

NM_022934 DnaJ-like protein 34 11 35

NM_001539 Hsp40-A1 (Hdj2) 31 10 33 40 13 25

NM_005345 Hsp70-1A 19 12 20 8 4 6

NM_004282 BAG-2 28 7 20 10 2 2

NM_005880 Hsp40-A2 (Hdj3) 32 9 19 28 6 16

NM_002155 Hsp70B0 10 8 14 3 3 5

NM_013559 Hsp105 10 5 6

NM_013686 TCP1 10 3 5 9 3 5

NM_010223 FKBP8 17 4 5

NM_013863 BAG-3 12 4 5

NM_016737 Hop 11 4 4

NM_016742 Cdc37 8 2 3

NM_000942 cyclophilin Ba 13 2 2

NM_006601 p23 16 2 2

NM_012111 Aha1 15 7 15 34 10 20

NM_009037 reticulocalbina 27 5 8 50 14 19

NM_011992 reticulocalbin 2a 9 3 4 22 6 12

NM_001219 calumenina 7 3 3

Indicated are the interacting proteins in BHK cells, their percentage sequence coverage, number of unique spectra, and number of

total spectra as detected by mass spectrometry in cell lines examined (Figure 1).
a ER lumenal chaperones.
types, we compared the CFTR-specific proteomes immu-

noprecipitated from matched BHK cell lines heterolo-

gously expressing wild-type or DF508 CFTR; the parent

BHK cell line lacking CFTR was used as a negative control

for nonspecific interactions (Figure 2A). At physiological

temperature (37�C), wild-type CFTR is principally in the

band C Golgi-processed glycoform found at the cell sur-

face, with the band B ER-associated core-glycosylated

glycoform comprising <10%–20% of the total CFTR

pool (Figure 2C). In contrast, in cells expressing DF508

at 37�C, generally only 5%–20% of the protein (reflecting

cell type and growth conditions) can be detected in band

C due to significantly reduced stability and folding for ex-

port. Thus, DF508 is largely restricted to the immature
C

core-glycosylated band B ER glycoform (Figure 2C),

where it is efficiently targeted for ERAD.

Like wild-type CFTR, DF508 showed strong interactions

with the core lumenal chaperone calnexin and Hsc-

Hsp40/70 and Hsp90 cytosolic core components. Regula-

tory interactions by cochaperones may be difficult to cap-

ture in proteome experiments in which the wild-type CFTR

folding population may be only transiently populated and

therefore nonabundant (Kelly and Balch, 2006). In con-

trast, because previous studies have suggested that

folding of DF508 is kinetically impaired (Qu et al., 1997),

components recovered in the DF508 interactome may in-

clude those associated with a kinetically impaired folding

intermediate (or intermediates) sensitive to the Phe508
ell 127, 803–815, November 17, 2006 ª2006 Elsevier Inc. 807



deletion. Consistent with this prediction, we not only de-

tected an increase in spectra and sequence coverage of

core chaperone components (Figure 2A; Table 1) but

also detected a number of cochaperone components in

the DF508 ER interactome that were not generally recov-

ered in the wild-type proteome (Figure 2B, outer circle of

components; Table 1). Cytosolic chaperone coregulators

of Hsc-Hsp70 detected included BAG-2/3, involved in

the degradation of CFTR, and Hsp105, which modulates

Hsc70 function (Amaral, 2006). Strikingly, we noted a num-

ber of Hsp90 cochaperones. These included, for example,

the Hsc-Hsp70/Hsp90 organizing protein (HOP), p23,

Cdc37, the immunophilin FKBP8, and Aha1, an ATPase

regulator of Hsp90. Thus, the CFTR interactome reveals

important physiological changes in the chaperone binding

to misfolded proteins that need to be understood.

Hsp90 Cochaperones Can Modulate CFTR Stability

in the ER

To begin to define the role of Hsp90 in folding and export

of DF508 CFTR, we used siRNA and transient transfection

to control the level of protein expression of select Hsp90

cochaperones including p23 (Figure 3) and the immuno-

philin FKBP8 (Figure 4), which have been previously docu-

mented to regulate ATP-dependent folding steps in the

cyclic Hsp90-client interaction pathway (Wegele et al.,

2004). Following initial recognition of a folding client mol-

ecule such as CFTR by Hsc-Hsp40/70, the ubiquitous co-

chaperone HOP links the nascent Hsc-Hsp40/70-client

complex to Hsp90 in the ADP state. Subsequently, the

cochaperone regulator p23, in the presence of ATP,

displaces Hsc-Hsp40/70 and HOP to form the mature

Hsp90-p23-client complex in the ATP-bound state. The

cycling of Hsp90-client chaperone complexes containing

p23 are further regulated by immunophilins.

We first examined the role of the cochaperone regulator

p23 in HEK293 cells stably expressing DF508. In each ex-

periment, the total amount of band B or C recovered was

standardized using SDS-PAGE by loading identical levels

of total protein in each lane, and the immunoblot was de-

veloped under identical conditions (see Supplemental Ex-

perimental Procedures). siRNA reduction of p23 levels by

�70% resulted in a comparable (60%–70%) reduction in

the steady-state pools of both the band B ER glycoform

and the small pool of the band C cell-surface glycoform

when compared to the scrambled mock control (Figure 3A,

left panel). Conversely, overexpression (3- to 5-fold) par-

tially stabilized band B but did not result in a significant in-

crease in band C (Figure 3A, right panel). siRNA reduction

of p23 had a similar effect on stability of both band B and C

wild-type CFTR in HEK293 cells (data not shown). Thus,

as has been observed in numerous other client-chaperone

interactions, the steady-state level of p23 in the general

chaperone pool of the cell affects the overall folding prop-

erties of CFTR with respect to Hsp90 function.

Because DF508 CFTR is a temperature-sensitive fold-

ing mutant, incubation of cells at the permissive tempera-

ture (30�) instead of 37�C provides a more energetically fa-
808 Cell 127, 803–815, November 17, 2006 ª2006 Elsevier Inc.
vorable folding environment leading to significant levels of

cell-surface-localized DF508. At steady state (15 hr post

temperature shift from 37�C to 30�C), 40%–50% of the to-

tal DF508 pool in HEK293 cells is typically found in band C

(Figure 3B, left panel). This likely reflects the fact that, at

reduced temperature, the DF508 folding pathway is

more stabilized. Notably, even at the permissive folding

temperature (30�C), siRNA reduction of p23 resulted in

a significant decrease in the stability of band B and pro-

cessing to band C (Figure 3B, left panel) as was observed

Figure 3. Effect of the Hsp90 Cochaperone p23 on Folding

and Export of DF508 from the ER

(A) Human siRNA to p23 (left panel) was used to reduce expression of

the indicated protein at 37�C as described in the Supplemental Exper-

imental Procedures. The steady-state pool of band B (ER glycoform)

and band C (cell-surface glycoform) was determined using immuno-

blotting as described in the Supplemental Experimental Procedures.

Scrambled siRNA was used as a control. Human cDNA to p23 (right

panel) was used to overexpress the indicated protein at 37�C as de-

scribed in the Supplemental Experimental Procedures. The steady-

state pools of bands B and C were determined using immunoblotting.

In the inset, a representative immunoblot illustrates experimental var-

iation between triplicate samples. In this and all other figures, error

bars represent standard error of the mean.

(B) Conditions were as described for (A), except that cells were incu-

bated at the permissive temperature (30�) to promote folding and ex-

port from the ER as described in the Supplemental Experimental Pro-

cedures. *p % 0.05 by unpaired, two-tailed t test (triplicate samples).

Experiments were repeated independently in triplicate at least three

times, with representative results shown. All lanes were loaded with

equivalent levels of total protein, and the immunoblot containing

both the control (scrambled) and siRNA/cDNA was developed identi-

cally and quantified as described in the Supplemental Experimental

Procedures.



at 37�C. Interestingly, at 30�C, overexpression had no ef-

fect on stabilization of band B as observed at 37�C but

markedly prevented processing to band C (Figure 3B,

right panel). Thus, the folding properties of 37�C and tem-

perature-corrected DF508 show different dynamics with

respect to the Hsp90 cochaperone machinery. The dom-

inant-negative effect of p23 overexpression on CFTR

transport and conversion to band C may reflect what

has been observed for other Hsp90-dependent signaling

pathways where signaling is inhibited in response to ex-

cessive stabilization of the mature client complex (Pratt

and Toft, 2003). One possibility is that a block in Hsp90 cy-

cling in the presence of excess p23 could inhibit access of

CFTR to the ER export machinery. Thus, p23 is a modular

component that can affect DF508 folding, yet it does not

appear to promote access of DF508 to the ER export

machinery.

Although we were unable to identify FKBP52, an immu-

nophilin involved in SHR folding (Pratt and Toft, 2003), in

the DF508 CFTR interactome, we detected the family

member FKBP8 (Nielsen et al., 2004; Shirane and Na-

kayama, 2003). FKBP8 is a membrane-associated immu-

nophilin that has been reported to be localized to both the

Figure 4. Effect of the Hsp90 Cochaperone FKBP8 on Folding
and Export of DF508 from the ER

(A) Human siRNA to FKBP8 (left panel) was used to reduce expression

of the indicated protein at 37�C. The steady-state pool of band B (ER

glycoform) and band C (cell-surface glycoform) was determined using

immunoblotting. Scrambled siRNA was used as a control. Human

cDNA to FKBP8 (right panel) was used to overexpress the indicated

protein at 37�C. The steady-state pools of bands B and C were deter-

mined using immunoblotting.

(B) Conditions were as described for (A), except that cells were incu-

bated at the permissive temperature (30�) to promote folding and ex-

port from the ER. *p % 0.05 by unpaired, two-tailed t test (triplicate

samples). Experiments were repeated independently in triplicate at

least three times, with representative results shown.
C

mitochondria and the ER. Consistent with these results,

we have found that FKBP8 has substantial overlap with

the ER marker protein calnexin (data not shown). Similar

to the effect of p23 siRNA, we observed significant desta-

bilization of DF508 in response to siRNA reduction of

FKBP8 at 37�C (Figure 4A, left panel). Interestingly, over-

expression at 37�C also destabilized CFTR (Figure 4A,

right panel), raising the possibility that FKBP8 function

and expression are tied to the steady-state concentration

of Hsp90 to insure optimal performance of the CFTR-

specific Hsp90-client folding pathway. siRNA reduction of

FKBP8 expression also reduced (to 30%–40%) the stabil-

ity of DF508 CFTR at the permissive folding temperature

(30�C), with a corresponding reduction in the level of

band C (�50%) (Figure 4B, left panel). In contrast, overex-

pression at 30�C had only a modest effect on stability and

interfered with processing to band C (Figure 4B, right

panel). Thus, like p23, interaction of the immunophilin

FKBP8 with the Hsp90-CFTR client complex appears to

differentially regulate the folding pathway, reflecting the

concentration of the chaperone, yet fails to rescue export

at 37�C.

In summary, the combined analysis of under- or overex-

pression of p23 and FKBP8 is consistent with an interpre-

tation in which these cochaperones can act as folding

modulators that influence DF508 stability in the ER yet

do not participate in steps leading to delivery of a folded

form of CFTR to the ER export machinery.

Aha1 Downregulation Rescues Delivery of DF508

to the Cell Surface

A recently recognized member of the Hsp90 cochaperone

family is Aha1. Aha1 binds the middle domain of Hsp90

and is proposed to function as an ATPase-activating pro-

tein that competes with p23 and other cochaperones for

Hsp90 binding (Harst et al., 2005; Lotz et al., 2003; Meyer,

2004; Panaretou et al., 2002). siRNA reduction of the en-

dogenous level of Aha1 in HEK293 cells by 50%–70% re-

sulted in a marked 3- to 4-fold stabilization of DF508 band

B (Figure 5A, upper left panel). An even more pronounced

stabilization (4- to 5-fold) was observed at 30�C (Figure 5A,

lower left panel). Strikingly, at both 37�C and 30�C, stabi-

lization was accompanied by a corresponding increase in

band C reflecting significant cell-surface delivery (Fig-

ure 5A, left panels), a result not observed with the other

cochaperones examined (Figure 3 and Figure 4). The res-

cued band C was resistant to processing by endoglycosi-

dase H (Figure S1), a hallmark of transport through the

Golgi complex. In contrast to the effects of siRNA, overex-

pression (�4-fold) of Aha1 in HEK293 cells expressing

DF508 significantly destabilized band B at both 37�C

(�60%) and 30�C (>90%) with a corresponding loss of

processing to band C (Figure 5A, right panels).

Because HEK293 cells do not normally express DF508

and therefore may represent a special condition that is

uniquely sensitive to the level of Aha1 activity, we exam-

ined the effect of Aha1 siRNA at 37�C in a lung cell line

(CFBE41o�) that expresses DF508. Similar to the result
ell 127, 803–815, November 17, 2006 ª2006 Elsevier Inc. 809



observed in HEK293 cells, reduction of Aha1 resulted in

stabilization of band B (�4-fold) compared to the scram-

bled control, with a corresponding 4- to 5-fold increase

of band C either at 37�C (Figure 5B, left panel) or 30�C

(Figure 5B, right panel). This level was even greater than

Figure 5. DF508 Export to the Cell Surface in HEK293 Cells
Can Be Rescued by Downregulation of Aha1

(A) Human Aha1 siRNA (left panels) or human Aha1 cDNA (right panels)

was used to reduce or overexpress, respectively, Aha1 in HEK293 cells

expressing DF508 at 37�C (upper panels) or 30�C (lower panels), and

the steady-state pools of bands B and C were determined using immu-

noblotting as described in Figure 2.

(B) Human Aha1 siRNA was used to reduce Aha1 expression in

CFBE41o� cells expressing DF508 at 37�C (left panel) or 30�C (right

panel), and the steady-state pools of bands B and C were determined

using immunoblotting as described in Figure 2. *p % 0.05 by unpaired,

two-tailed t test (triplicate samples). Representative results are shown

in triplicate from four independent experiments.
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that typically observed in the corrected CFBE41o� cell

line (HBE) that expresses wild-type CFTR.

Using pulse-chase analysis to analyze the short-term

effects of overexpression of Aha1 (�4-fold), we observed

a significant decrease in the stability of band B in both

wild-type and DF508-expressing cells (Figure S2), indicat-

ing the general importance of Aha1 in regulating Hsp90-

dependent folding of CFTR. In contrast, no effect of

Aha1 siRNA (70% knockdown) was observed on the

short-term synthesis or stabilization of wild-type CFTR in

HBE cells (Figure S3, upper panel) or on the steady-state

cell-surface levels of band C (data not shown). Using

a similar short pulse-chase protocol, siRNA significantly

stabilized the nascent pool of DF508 in CFBE41o� cells

(Figure S3, lower panel), although efficient processing to

band C was not apparent during the chase as was ob-

served for wild-type CFTR (Figure S3). These results are

consistent with the interpretation that the pulse-labeled

DF508 equilibrates with the unlabeled pool of DF508 that

has accumulated in the ER during siRNA treatment, inter-

fering with detection of radiolabeled processing interme-

diates (Figure 5B). Thus, the stabilization of band B and re-

covery of DF508 band C in response to reduced levels of

Aha1 suggest that Aha1 activity may facilitate folding dy-

namics that favor stability and coupling of DF508 to the

ER export machinery.

Hsp90 Binding to CFTR Is Responsive

to Aha1 Activity

To determine the effect of Aha1 knockdown on the inter-

action of DF508 with Hsp90, we analyzed the recovery

of Hsp90 bound to CFTR following treatment of cells

with Aha1 siRNA. Cells expressing DF508 at 37�C were in-

cubated in presence of scrambled or Aha1 siRNA. Cells

were harvested, CFTR was immunoprecipitated, and the

amount of Hsp90 associated with DF508 was quantitated

by immunoblotting. Under conditions where we observed

an �60% knockdown of Aha1 (Figure 6A, right panel),

when we analyzed the ratio of Hsp90 to CFTR recovered

in the immunoprecipitate to determine the relative amount

of Hsp90 bound to CFTR under control or knockdown

conditions, we observed a 50%–60% decrease of bound

Hsp90 at reduced levels of Aha1 (Figure 6A, left panel). In

contrast, we detected no change in the cellular levels of

calnexin, BiP, Hsp40, Hsc-Hsp70, Hsp90, HOP, FKBP8,

and p23 compared to the scrambled control under these

conditions (see Figure S4), suggesting that a reduction in

Aha1 alters the steady-state pool of DF508 associated

with Hsp90 in the ER. This result is consistent with the ob-

servation that Hsp90 and Hsp90 cochaperone recovery in

the CFTR wild-type interactome is reduced relative to the

DF508 interactome despite comparable levels of band B

(Figure 2; Table 1). The combined results raise the possi-

bility that, by lowering the level of the Aha1 cochaperone

regulator, we modify the kinetic interactions of DF508

with Hsp90 to facilitate more efficient progression through

the folding pathway to favor export.



Figure 6. Effect of siRNA Aha1 on Hsp90 and Iodide Efflux

(A) HEK293 cells expressing DF508 at 37�C were incubated in the ab-

sence or presence of Aha1 siRNA as described in Figure 2. Cells were

harvested, CFTR was immunoprecipitated, and the amount of Hsp90

recovered with DF508 was quantitated by immunoblotting. Ratio of

Hsp90 to CFTR recovered in the immunoprecipitate is shown in the

left panel; fraction of Aha1 remaining in cells following Aha1 siRNA

treatment compared to scrambled control is shown in the right panel.

(B) Iodide efflux (see Supplemental Experimental Procedures) was

monitored in HBE cells expressing wild-type CFTR (-) or in DF508-ex-

pressing CFBE41o� cells that had been incubated at 37�C or, where

indicated, at the permissive temperature of 30�C (final 15 hr) (C) or

transfected with Aha1 (B) or scrambled (control) (,) siRNA. CFTR

channels were activated by addition of 10 mM forskolin and 50 mM gen-

istein over a 4 min period starting at 1 min and subsequently washed

out with efflux buffer. The effect of temperature shift and siRNA on

CFTR maturation (band B to band C glycoforms) and Aha1 stability

is shown in the inset.
C

Aha 1 siRNA Restores Halide Conductance

to CFBE41o� Cells Expressing DF508

While processing to the endo H-resistant band C glyco-

form is a hallmark of transport from the ER to the cis-/

medial Golgi compartments, there remained the possibility

that the rescued protein was trapped in late trans-Golgi

or endocytic compartments, reflecting a potential contri-

bution (or contributions) of the Phe508 deletion to abnor-

mal sorting in post-ER pathways (Figure 1B) (Guggino

and Stanton, 2006). To test for this possibility, CFBE41o�
cells expressing DF508 were treated with Aha1 siRNA,

and surface halide conductance was measured using an

iodide efflux assay. As a positive control, we examined

the halide conductance of the corrected HBE cell line

expressing wild-type CFTR and temperature-corrected

CFBE41o� cells. Treatment of the CFBE41o� cell line

with Aha1 siRNA resulted in �70%–80% knockdown of

endogenous Aha1, leading to stabilization of DF508

band B and C at levels �1.5-fold greater than the 30�C

temperature-corrected control and a 4-fold stabilization

of band B over the scrambled siRNA-treated cells

(Figure 6B, inset). Whereas HBE cells showed strong ha-

lide conductance, no conductance was detected in con-

trol CFBE41o� cells that were treated with scrambled

siRNA (Figure 6B). Shift of CFBE41o� to 30�C resulted

in recovery of 80%–90% of the conductance observed

in HBE cells (Figure 6B). Strikingly, CFBE41o� cells

treated with Aha1, but not scrambled, siRNA showed on

average from multiple experiments a 50% recovery of ha-

lide conductance compared to that observed in tempera-

ture-corrected cells (Figure 6C). This was not a statistically

significant difference from that observed for the control

30�C temperature-shift value (Figure 6C). The �2-fold

higher level of band C observed in response to Aha1

siRNA relative to that observed in the temperature-

corrected control (Figure 6B, inset) suggests either that the

channel activity of temperature-corrected (30�C) DF508

is more responsive to cAMP stimulation than that of

Aha1-corrected CFTR at 37�C or that the Aha1-corrected

CFTR occupies, in part, endosomal compartments that

are not accessible to the cell surface for halide conduc-

tance. The latter interpretation is consistent with the al-

tered endocytic trafficking pathways encumbered by tem-

perature-corrected DF508 when shifted to 37�C following

delivery to the cell surface. It is now apparent that modu-

lation of the Hsp90-client interaction in the ER through

alteration of cochaperone pools can achieve functional

rescue of CFTR. Whether manipulation of Aha1 to effect

(C) The ratio of halide conductance prior to addition of forskolin/genis-

tein (0 min) and at 2 min, the peak period of halide flux. *p % 0.05 by

unpaired, two-tailed t test (triplicate samples) between the tempera-

ture-corrected (first lane) and siRNA-treated (third lane) CFBE41o�
cells compared to the scrambled siRNA-treated control (second

lane). There was no statistically significant difference between halide

conductance for temperature-corrected (first lane) and siRNA-treated

CFBE41o� cells (third lane) (p = 0.2). Experiments were repeated inde-

pendently at least three times, with representative results shown.
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rescue of DF508 export will also alter in a more global way

other Hsp90-sensitive folding pathways remains to be ex-

plored. Modest alteration to partially or fully correct desta-

bilized folds may have little impact on normal cellular func-

tion given the inherent energetic stability of the wild-type

fold (Kelly and Balch, 2006).

DISCUSSION

We have taken a systems biology approach aided by the

sensitivity of MudPIT proteomics to identify transient inter-

actions that contribute to CFTR folding, trafficking, and

regulatory pathways—the CFTR interactome. The global

interactome (Figure 1) illustrates what should now be con-

sidered the anticipated complexity of CFTR interaction

pathways facilitating normal function. It is important to

emphasize that a number of interactors identified in the

screen are currently under intense investigation and there-

fore provide important validation of the approach (Amaral,

2006; Guggino and Stanton, 2006). The relative impor-

tance of the many uncharacterized interactions, whether

direct or indirect, remains to be elucidated. Intriguingly,

we found that changes in the Hsp90 cochaperone folding

environment markedly altered the stability and export of

DF508 from the ER. This emphasizes the role of the folding

environment in distinguishing between a mutation and

a polymorphism, a result that has important implications

for tissue-specific physiology and the correction of gen-

eral misfolding disease. The CFTR interactome predicts

that genetic modifiers that affect presentation of CF in

the clinic (Cutting, 2005) are now likely to include a number

of cellular components, in particular cellular chaperones

that either directly or indirectly promote folding for export.

We suggest the possibility that the folding capacity de-

fined by Aha1 activity, and potentially other Hsc-Hsp40/

70 regulators and Hsp90 cochaperones, is a likely target

for therapeutic approaches using small molecular correc-

tors or siRNA reagents.

Folding and Export of CFTR from the ER

Multiple lines of biochemical and biophysical evidence

emphasize that folding of DF508 is kinetically impaired

and that CFTR requires both interdomain and intradomain

interactions to achieve the native state (Riordan, 2005).

While the core cytosolic folding machinery components

(Hsc-Hsp40/70 and Hsp90) were found in both wild-type

and DF508 CFTR proteomes, Hsp90 cochaperones

were most abundant in the DF508 CFTR proteome based

on the number of recovered spectra, a measure of the ro-

bustness of the level of protein interactions (Liu et al.,

2004). These results provide strong support for the in-

terpretation that DF508 CFTR is kinetically trapped in

an on-pathway, metastable folded state (or states) (Qu

et al., 1997). As such, and as was previously observed,

stalled intermediates in the DF508 folding pathway are

likely targets for recruitment of components such as

CHIP and the regulatory factors HspBP1 and Bag that

bind the Hsc-Hsp70/40 complex and target CFTR to
812 Cell 127, 803–815, November 17, 2006 ª2006 Elsevier Inc.
ERAD (Alberti et al., 2004; Dai et al., 2005; Meacham

et al., 2001; Younger et al., 2006) (Figure 7A).

From the wealth of interactions observed in the CFTR

interactome, we focused our attention on the molecular

basis for the failure of DF508 to exit the ER. As has been

observed in correction of amyloid disease (Johnson

et al., 2005; Kelly and Balch, 2006), folding is the key event

that needs to be understood if effective therapies are to

be achieved. In addition to transient interactions with

Hsc-Hsp70/40 complexes, we demonstrated that altered

expression of the cochaperones p23 and FKBP8 can

differentially affect stabilization of CFTR in the ER. p23,

a cochaperone that can stabilize Hsp90-client interactions

in the ATP state (Pratt and Toft, 2003), was found to be

important to prevent destabilization and degradation of

DF508. Thus, a decrease in p23 activity and, potentially,

its interacting partner FKBP8 may lead to enhanced cou-

pling to the Hsc-Hsp40/70 pathway and ERAD through

HOP (Figure 7A).

In contrast to the apparent requirement for p23 and

FKBP8 for controlling the stability of the band B glyco-

form of CFTR in the ER, siRNA reduction of Aha1, a co-

chaperone that is proposed to function as an Hsp90

ATPase activator (Harst et al., 2005; Lotz et al., 2003;

Meyer, 2004; Panaretou et al., 2002), provided a new

folding environment that favored DF508 export by the

COPII export machinery (Stagg et al., 2006; Gurkan

et al., 2006). Under these conditions, we have not de-

tected a change in the total pools of Hsc-Hsp70 or BiP,

indicating that it is unlikely that we induce a general

stress response (Schroder and Kaufman, 2005) by siRNA

reduction of Aha1. Similarly, we did not detect a change

in the cellular levels of Hsp90, HOP, p23, FKBP8, or cal-

nexin in response Aha1 siRNA, indicating that a change in

expression of these cochaperones is not responsible for

the observed effect of Aha1 reduction. Strikingly, in the

presence of Aha1, the level of band C approached that

observed for expression of D508 CFTR in temperature-

corrected CFBE41o� cells. In this case, halide con-

ductance was restored to a level, on average, that was

equivalent to that found in the temperature-corrected

CFBE41o� cell line. Our results suggest that even a mod-

est change in the Hsp90 chaperone environment may be

sufficient for long-term functional rescue of DF508 given

that patients expressing low levels of functional CFTR

display a mild disease phenotype (Welsh and Ostedg-

aard, 1998). This conclusion is also consistent with the

widespread observation that ER stability and cell-surface

availability of DF508 is highly variable between cell types

in culture (Varga et al., 2004), likely reflecting differences

in chaperone pools.

Energetics of Folding and Misfolding in the ER

Aha1 has been proposed to stimulate the ATPase of activ-

ity of Hsp90, thereby regulating the dynamics of chaper-

one-client interaction (Panaretou et al., 2002). Thus, our

results with Aha1 suggest that energetic destabilization

of the folding pathway by the Phe508 deletion leading to



Figure 7. Hsp90 Chaperone/Cochaper-

one Interactions Directing CFTR Folding

(A) The cartoon highlights components in-

volved in wild-type and DF508 CFTR folding.

They consist of lumenal chaperones (yellow)

and a two-state cytosolic system linked by

HOP that consists of the Hsc-Hsp40/70 (gray)

and Hsp90 (blue) chaperone complexes, which

are regulated by a number of Hsc-Hsp70 (gray)

and Hsp90 (blue) cochaperones. One or more

of these protein interactions are kinetically dis-

rupted by the Phe508 deletion, leading to dis-

ruption of the Hsc-Hsp70/Hsp90 chaperone-

linked cycles and CF pathophysiology.

(B) Illustration of the potential role of Hsp90 and

its cochaperones in folding and rescue of

DF508 CFTR. The ATP/ADP cycle regulating

folding for export through ERAF or targeting

for ERAD can be dynamically controlled by co-

chaperone regulators (X and Y) to adjust the ki-

netics of the chaperone cycle to the kinetics

and energetics of the folding pathway.

(C) A 3D plot illustrating the relationship be-

tween the (co)chaperone concentration in the

cytosol (x axis), a hypothetical ‘‘folding stabil-

ity score’’ defined by global protein energetics

(Sekijima et al., 2005) (z axis), and ‘‘export ef-

ficiency’’ reflecting the level of transport to the

cell surface (y axis). Whereas the more ener-

getically stable wild-type CFTR (green curve)

responds to the folding activity of the CFTR

chaperome at the normal concentration of

Aha1 (yellow box, ‘‘normal chaperome’’), the

reduced folding energetics of DF508 (orange

curve), being outside the normal chaperome

pool, favors misfolding and targeting for deg-

radation. A change in Hsp90 cycling afforded

by modest downregulation of Aha1 (pink box

partially overlapping with normal chaperome,

‘‘rescue chaperome’’) provides a more pro-

ductive solvent (Kelly and Balch, 2006) for

the folding of DF508, promoting export. The

overlap region (beige box) of the normal and

rescue chaperome pools in this situation

may retain full functionality of the wild-type CFTR fold and other cellular components given their more robust folding energetics. Geldanamycin

(GA; lower left corner), an Hsp90 inhibitor, blocks both wild-type and DF508 CFTR folding and export by directly binding to Hsp90 and arresting

the folding cycle in the ADP state (Loo et al., 1998).
poor export and enhanced degradation of the DF508

mutant may be kinetically uncoupled from the normal reg-

ulated ATPase activity of the Hsp90-dependent client

folding cycle. The availability of chaperones and cocha-

perones for folding of cargo will be sensitive to the global

cellular pool that we now define as the chaperome, a gen-

eral term to define the unique steady-state composition of

chaperones and their regulators in a given cell type. It is

well established that the chaperome can be altered by

multiple signaling pathways to accommodate cellular

stress and misfolding load. By modulating the chaperome

through siRNA or overexpression as shown herein, we al-

tered the dynamic relationship between those chaperone

components specifically required for folding of CFTR. As

a cargo-specific collection of chaperome components

(the CFTR chaperome), it is now apparent that, while the
C

steady-state balance of the folding components in the

cell required for the CFTR chaperome likely defines the

success or failure of the wild-type fold, it can be adjusted

to modulate the success or failure of the DF508 mutant

fold for export.

The capacity of the cellular chaperome to specifically

facilitate protein folding is consistent with recent observa-

tions that chaperones regulate specific cellular protein

folding pathways (Albanese et al., 2006) rather than simply

functioning as inhibitors of protein aggregation. Moreover,

recent studies now directly show that the GroEL-GroES

chaperonin cage complex provides a physical environ-

ment optimized to catalyze protein assembly (Tang

et al., 2006). The Hsp90 chaperone complex could be

viewed in a similar vein, despite its assembly state being

more dynamic and flexible in composition. As illustrated
ell 127, 803–815, November 17, 2006 ª2006 Elsevier Inc. 813



in Figure 7B, our results now raise the possibility that

a modified CFTR-Hsp90 chaperone complex defined by

reduced levels of Aha1 favors DF508 folding in a fashion

that supports stabilization from ERAD pathways and di-

rects coupling to the ER export machinery. One possibility

is that reduction of Hsp90 cycling in response to reduced

Aha1 activity might allow additional time for the kinetically

challenged DF508 mutant to a achieve a more export-

competent fold and mature to an Hsp90-dependent step

required for coupling to the COPII ER export machinery.

This conclusion is consistent with the observation that

Aha1 reduced the steady-state level of Hsp90 bound to

DF508. Thus, an ordered folding pathway linked to the in-

trinsic energetics of the wild-type or mutant CFTR fold

might be coordinated with the Hsp90 ATPase cycle.

These results, when combined with the effects of p23

and FKBP8, suggest that Hsp90 cochaperone component

activities are likely integrated. This may differ substantially

between cell types and therefore may be differentially

sensitive to specific Aha1 modulation.

To help visualize the complex relationships between

folding energetics, the chaperome, and export machiner-

ies (Kelly and Balch, 2006), we can now arbitrarily assign

a ‘‘folding stability score’’ to wild-type and mutant CFTR

folding pathways (Sekijima et al., 2005). The folding sta-

bility score (Figure 7C, z axis) reflects both the kinetic

and thermodynamic properties of the CFTR fold. For

wild-type CFTR, this is illustrated as the green curve in

Figure 7C. Folding of wild-type CFTR is likely evolution-

arily optimized relative to the normal cellular chaperome,

illustrated as the yellow box in Figure 7C. This chaperome

would therefore support efficient folding for export. In con-

trast, the energetically destabilized DF508 variant, illus-

trated as the orange curve in Figure 7C, is defective in ex-

port from the ER because its folding energetics lie outside

the capacity of the normal Hsp90-dependent chaperone

environment to promote folding, resulting in targeting for

ERAD through Hsc-Hsp40/70-mediated pathways. How-

ever, an alteration in the activity of Aha1 and potentially

other cochaperones can provide new capacity to the cel-

lular chaperome to create a CFTR ‘‘rescue chaperome’’

that can support folding and export, illustrated as the

pink box overlapping with the yellow normal chaperone

pool in Figure 7C. We suggest that the inability of a variant

protein to achieve a more native (functional) fold in re-

sponse to a particular cellular chaperome is a general fea-

ture of conformational diseases (Moyer and Balch, 2001;

Ulloa-Aguirre et al., 2004) that can be altered by adjusting

its composition. Thus, the chaperone environment can

dictate the difference between a deleterious mutation

and a tolerated polymorphism. This is consistent with re-

cent results showing that global alteration of Ins2- and

HSF1-mediated stress-response pathways arrest and re-

verse onset of aggressive misfolding amyloid diseases in

C. elegans (Gidalevitz et al., 2006; Morley and Morimoto,

2004). While we have focused on CFTR folding and ER ex-

port, knowledge of the global interactome (Figure 1) pro-

vides an initial roadmap to explore more completely
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CFTR folding, trafficking, and function in health and

human disease.

EXPERIMENTAL PROCEDURES

Immunoprecipitation

CFTR and coimmunoprecipitated proteins in whole-cell detergent ly-

sates were bound to Sepharose beads coupled with the anti-CFTR

monoclonal antibody M3A7 as described in detail in the Supplemental

Experimental Procedures.

Digestion of Protein Complexes of CFTR for MudPIT

Following immunoprecipitation, protein complexes were digested and

subjected to LC/LC-MS/MS analysis using MudPIT, and tandem mass

spectra were analyzed sequentially and annotated as described in

detail in the Supplemental Experimental Procedures.

siRNA and Overexpression

siRNA solutions were prepared by mixing serum and antibiotic-free

DMEM or MEM-a with the indicated siRNA at a working concentration

of 0.6 mM human p23 (Ambion, Austin, TX, USA, catalog #16704 ID

18391), 0.6 mM human FKBP8 (Ambion, catalog #16704 ID 45182),

or 2 mM human Aha1 using 1 mM each of two siRNAs (Dharmacon,

Lafayette, CO, USA) directed to hAha1 sequences ATTGGTCCACG

GATAAGCT and GTGAGTAAGCTTGATGGAG and 6 ml of HiPerFect

(QIAGEN, Valencia, CA, USA) per well of a 12-well dish. Control siRNA

(Dharmacon, catalog #CONJB-000015) was added at a concentration

equal to p23, FKBP8, and Aha1 siRNA in each experiment. The siRNA

mixture was added to cells and cells were cultured as described in

detail in the Supplemental Experimental Procedures. Overexpression

was performed as previously described (Wang et al., 2004). SDS-

PAGE and immunoblotting were performed as described in the

Supplemental Experimental Procedures.

Iodide Efflux Assay

The detailed protocol used for the iodide flux assay is described in the

Supplemental Experimental Procedures.

Supplemental Data

Supplemental Data include Supplemental Discussion, Supplemental

Experimental Procedures, Supplemental References, seven tables,

and four figures and can be found with this article online at http://

www.cell.com/cgi/content/full/127/4/803/DC1/.
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