Chapter 10
The Interaction of Single Beams
of X and Gamma Rays with a
Scattering Medium
Radiation Dosimetry |

Text: H.E Johns and J.R. Cunningham, The
physics of radiology, 4" ed.
http://www.utoledo.edu/med/depts/radther

Outline

« System of dosimetric calculations
— TAR/TMR, Backscatter factor, PDD

« Effect of energy on photon beam dose
deposition — PDDs and dose profiles

« Miscellaneous: equivalent square, blocking
and scatter

Dosimetric system

« Established a procedure for calculating dose
at a point based on the measurement

» Now need to be able to calculate the dose at
any point based on the known dose at the
reference point

« A set of functions was developed to enable
these calculations

Parameters for calculation of
absorbed dose

* Field width W

+ Distance from the source F

 Depth in phantom d

+ Depth of the maximum dose
in phantom d,,

» Dose deposited at a certain
point Dy, Dy, etc.

 Dose is obtained under
condition of electronic
equilibrium (for air: enough
phantom-like material
surrounding the point)

Functions used in dose calculation

/& « Tissue-air ratio

/“,‘ /\\ T,(d,Wy,hv) =Dy /Dy
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Relationship between functions

» Dose at one point can

/& / \ be calculated based
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on the known dose at

[ 1) /,« ‘ '\\ PE Backscatter factor [\ / | \\ ‘ a different point using
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Relationship between functions

» More than one function can be
involved in relating doses at
different points:

Tissue-phantom ratio

+ For high-energy beams
solid phantom is usually

D, =D, -B-P used for dosimetry
D, =D,.-1-T, + Tissue-phantom ratio:
+ Relationship between functions: Tp(d,d; Wgy,hv) =Dy /Dy~
100-T,1
P(d.W,,F)= == « It can be related to T,:
1ooTel@Wo)(F+d, Y’ i i =
BW,) \ F+d T,(d,,Wy,hv)
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- . : Tissue-air ratio
Tissue-air ratio ) SN A
« Introduced to simplify calculations for
rotational therapy with tumor located at the
rotational axis
* In such arrangement the source-to-axis
distance is fixed
« For distances larger than 50 cm T, is
independent of the distance to the source Dy =Dy T, (d,W,,hv)
e Uerermie T e o ety * T, values are tabulated for different field sizes,
depths, and energies (Table B-5d)
9 10
_Lisste=alr Fatio ‘ Backscatter factor
" BW, hv) =T,(d,,,W,,,hv)
» Depends on the field size and quality of
radiation
+ Position of the maximum dose d,, depends
primary only on the field size and quality of radiation
‘ + In general d, is not the same as the depth
o T : where electronic equilibrium occurs: for
* Decreases Ialmost exponentially with depth (Co-60 large field sizes the scatter contribution
source is almost mono-energetic) determines the position of d,
* Increases continuously with field size at all depth
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Backscatter factor

» The dependence on the
radiation quality is
non-monotonical,
depends on field size

For higher energies
most of the scatter is
forward-peaked: the
amount of backscatter
decreases
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« For higher energy beams there is a build-up region due to
electrons scattered in forward direction

« After reaching its maximum dose deposition follows

exponential attenuation
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Percentage depth dose

exponential decrease

« A useful quantity to use as an index of the penetration is the
depth at which the dose falls to 50% of its peak value

Percentage depth dose

» For smaller filed sizes scatter contribution is small

« For high energy beams scatter contribution is small, therefore
PDD is less dependent on the field size
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Example 1 PDD with extended SSD
- Al of the following are true regarding percentage PDD increases with increasing SSD: ISL input decreases
: as distance increases through increase in SSD
depth dose (PDD) except:
1/r? D(d)
- : PDD(d) = :
A. Increases with increasing energy D(dp)  Mayneord’s F Factor
B. Depends on field size S0 _ (85D, + dyax)? (SSD; + d)?
C. Is the dose at depth expressed as a percentage of the os (S5Dy + diax)? (SSD; + d)?
dose Oy s 2 ° Quantitative example: for 6MV
(D) Decreases with increasing SSD beam (d,,=1.5cm) changing SSD
E. Decreases as depth increases from 100 to 150cm will result in
== PDD(10cm) increase by ~5%
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Equivalent field size

T@A =23 T,E0)

A—area of the field
i atdepthd

r —radius of the
circular beam

« Rectangular field can be divided into segments of circular fields
 Functions (T, or P) can be calculated for irregular field sizes

« Smaller angular segments increase the accuracy (10° is
typically enough)

Equivalent field size

A rectangular field gives a smaller depth dose and

tissue-air ratio than does a circular or square field

of the same area

Rule of thumb method: Square fields and

rectangular fields are equivalent if the ratios formed

by dividing area by perimeter are the same (a/p)

» Tables 10.3 and 10.4 show radii of circular field
and side length of square field corresponding to
equivalent rectangular fields
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Equivalent field size
— —— Example 2
+ A field measuring 5 x 25 cm at SSD has an
"equivalent square" field of side cm.
A.50 -
a- C
2'132 2(a+b) Tac
2 > a-b 5.25
D. 16.1 2o
« In practice the output of the machine needs to be E.25.0
carefully measured for rectangular field sizes, due
to the scatter from accelerator head
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Dose profile

Geometric penumbra at depth d
s+(S5D+d—f)
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Figure 10-22. Diagrams illustrating properties of the primary component of a radiation
that lead to beam penumbra. (b) A dose profile as
f a

« Finite source size and beam shaping devices introduce
geometric penumbra for primary radiation profile
« Scatter and flattening filter soften the edges of the beam

Dose profile

« For field size (beam width) at depth d, W,
geometrical penumbra width p, the beam profile
can be describe by a function:

f(x) = 1. — 0.5 g{-o/pi(We:
f(x) = t + (0.5 — 1) e-o/Pllx

I for x| = wy/2

WDl for |x| > wa/2 (10-16)

Parameters a5, o, and t are
determined by best fit of
measured profiles
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Dose profile

— .. Photon
beam(kermal

2 Absorbed
dase

« Even in the absence of scatter from beam shaping devices
(primary collimator, jaws, etc.) the absorbed dose profile has
a significant penumbra region

« Loss of lateral electronic equilibrium between kerma (energy
lost by photons) and absorbed dose (energy lost by electrons)

Description of the radiation beam

 Primary and scatter components: zero-field

tissue-air ratio and scatter-air ratio
T,(d,ry,hv)=T,(d,0,hv) +S(d,r,, hv)

« For high-energy beams tissue-air ratio is

replaced with tissue-phantom ratio
T,(d,r,,hv) =T (d,d,,r,,hv)-T,(d,, r,, hv)

« Due to relatively small amount of scattered

radiation at high energies, T,(d,,rg,hv) ~1
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Isodose curves - photons Isodose curves - electrons
T so] 7ol%0 3b20
o] 6000
| |
| |
S e S L AT 8cm Cile 4 5, F1.50.¢m TS0
+ No skin sparing, the dose in sparing, the « Skin sparing, the - « Almost no skin sparing, the maximum is N
falls continuously maximum at 5 mm maximum at 4 cm close to the surface 1 \
« 25% at 10 cm depth «52% at 10 cm depth « 83% at 10 cm depth « Bulging for low dose lines i d A
« Sharp beam edges (small ~ « Penumbra « Penumbra = o . . i ".\
source size) e e Constriction for high dose lines N
« Large amount of side e
scatter (beyond the beam)
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Example 3

» Compared with 6 MeV electrons,
superficial x-rays:

A. Have a lower skin dose

B. Deliver less dose to underlying tissues
C. Require thicker shielding
(D) Have a sharper penumbra

Example 4

« In irregular field calculations, the increase

in MU setting to account for blocking is
greatest for:

A. 18 MV photons, 12 cm depth
Where the scatter
B. 18 MV photons, dm contribution is the
(©)6 MV photons, 12 cm depth  greatest: lower
D. 6 MV photons, d,, energy, greater depth
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Radiation beam characterization

» TG-106 report on accelerator beam
commissioning: at a minimum, the following data
should be collected during commissioning:

— For photon beams—percent depth dose PDD and profiles in-plane
and/or cross-plane at various depths for open and wedge fields,
data related to multileaf collimator

— MLC such as inter- and intraleaf leakage, penumbra, tongue and
grove effect, etc., head collimator scatter, total scatter, tray, and
wedge factors

» TPS guidelines prescribe data to be collected

1.1 Das, T. C. Zhu, et al. “Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the
‘Therapy Physics Committee of the AAPM.” Med. Phys. 35, 4186, 2008,

Radiation beam characterization

» TG-21 report — protocol on clinical reference
dosimetry, based on air kerma (obsolete)

» TG-51 report with addendum — protocol on clinical
reference dosimetry, based on dose to water

» TG-40 report - protocol on comprehensive QA for
medical linear accelerators

* TG-142 report - the most updated protocol on
comprehensive QA for Radiation therapy, includes
QA for on-board imaging and S(B)RT

PR. Almond et al., “AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams”, Med.
Phys. 26, 1847-1870, 1999; M. McEwen et al. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of
high-cnergy photon beams. Med Phys. 2014:41:041501.

G. J. Kutcher et al., “Comprehensive QA for radiation oncology: Report of AAPM radiation therapy committee task group 40,”
Med. Phys. 21, 581-618, 1994,

E.E. Klein, et al. “Task Group 142 report: Quality assurance of medical accelerators,” Med. Phys. 36, 4197-4212, 2008,
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Summary

» System of dosimetric calculations
— TAR/TMR, Backscatter factor, PDD

« Effect of energy on photon beam dose
deposition — PDDs and dose profiles

» Miscellaneous: equivalent square, blocking
and scatter
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