Chapter 14
Nuclear Medicine

Outline

• Introduction
• Radiopharmaceuticals
• Detectors for nuclear medicine
• Counting statistics
• Types of studies
• Absorbed dose from radionulides

Introduction

• The field involving the clinical use of non-sealed radionuclides is referred to as nuclear medicine
• Most of the activities are related to
 – the imaging of internal organs
 – the evaluation of various physiological functions
 – to a lesser degree treatment of specific types of disease
• Typical procedures use a radioactive material (radiopharmaceutical or radiotracer), which is injected into the bloodstream, swallowed, or inhaled as a gas
• This radioactive material accumulates in the organ or area of the body being examined, where it gives off a small amount of energy in the form of gamma rays

Radiopharmaceuticals

• Radiopharmaceuticals are medicinal formulations containing one or more radionuclides
• Once administered to the patient they can localize to specific organs or cellular receptors
• Properties of ideal radiopharmaceutical:
 – Low dose radiation => appropriate half-life
 – High target/non-target activity ratio
 – Low toxicity (including the carrier compound, shelf-life)
 – Cost-effectiveness (available from several manufacturers)

Radiopharmaceuticals production

• Cyclotron
• Nuclear reactor (fission or neutron activation)
• Radionuclide generators

Mechanisms of localization

• Compartmental localization (leakage points to abnormality)
• Phagocytosis
• Cell sequestration (spleen imaging)
• Passive diffusion (often through membranes, e.g., BBB)
• Active transport (membranes with pumps)
• Metabolism (glucose-like molecules, F-18 labelled FDG)
• Capillary blockade/Percusion
• Receptor binding (e.g., antibody-antigen)
• Others

Comprehensive review at: http://pharmacy.unm.edu/nuclear_program/freelessonfiles/Vol16Lesson4.pdf
Radiopharmaceuticals production: Tc-99m generator

- Mo-99 is produced in the fission reaction, and it is then chemically purified and shipped in Tc-99m generators.
 - Molybdate, MoO$_4^{2-}$, is passed on to an anion exchange column of alumina (Al$_2$O$_3$); acid pH promotes binding.
 - As Mo-99 decays it forms pertechnetate TcO$_4^{-}$, which, because of its single charge, is less tightly bound to the alumina. Pouring normal saline solution through the column of immobilized 99Mo elutes the soluble 99mTc.

Detectors in nuclear medicine

- The standard methods for the detection and measurement of radiation are not sensitive enough to detect the emission of a single particle arising from the disintegration of a nucleus.
 - Special gas-filled, scintillating, or semiconductor detectors are used almost exclusively.
 - For visualization of the distribution of activity use computer-aided signal processing (PET scanners, gamma cameras, etc.).

Geiger counter

- Counter filled with a special gas mixture, at $p=10$ cm of Hg.
 - Operated at high voltages, where the passage of each particle creates a controlled avalanche, resulting in a gain of 10^4-10^6.
 - A single particle can produce a pulse of charge in the detectable range (10$^{-10}$ C).

Geiger counters

- Efficiency of gamma counter is very low, ~5%.
 - Efficiency of beta counters is ~100%; their configuration depends on the energy of particles to be detected.

Scintillation detectors

- Scintillating material coupled with a photomultiplier (PM).
 - X-rays -> electrons within the scintillator -> optical photons within the scintillator -> photoelectrons from the photocathode of the PM -> secondary electrons from each dynode -> collected at the final anode of PM.
 - PM multiplication factors ~10^5.
 - Pulse size is proportional to the energy of the initial x-ray.

Scintillation detectors

- Figure 14-5: (a) Pulse height distribution for Co-137 and Au-198 obtained on a 100-channels pulse-height analyser using a 0.6 x 4 cm medallion radionuclide window. (b) Comparison of x-ray spectrum of Co-60 observed with a 0.3 mm-thick germanium (120keV) detector and with a 0.3 x 0.3 cm medallion scintillating-spectrometer.
 - Pulse height distributions always have Gaussian shaped peaks and low-energy tails.
Semiconductor detectors

- Ionization produced within the sensitive volume of semiconductor detector is converted directly into a measurable electric pulse
- Fewer losses result in much sharper pulse height spectra
- Sensitivity is typically lower compared to scintillators

Stochastic quantities

- Radiation is random in nature, associated physical quantities are described by probability distributions
- For a “constant” radiation field a number of x-rays observed at a point per unit area and time interval follows Poisson distribution
- For large number of events it may be approximated by normal (Gaussian) distribution, characterized by standard deviation for a single measurement
- \(\sigma = \sqrt{N} \approx \sqrt{N} \)
- \(\% \sigma = \frac{100 \sigma}{N} = \frac{100}{\sqrt{N}} \approx \frac{100}{\sqrt{N}} \)

Statistics of isotope counting

- The probability of observing the value \(N \) when the expected value is \(a \):
 \[P_N = \frac{a^N e^{-a}}{N!} \]
- For each measurement there is always an error due to statistical fluctuations:
 - Standard deviation \(\sigma = \sqrt{N} \)
 - Probable error \(p = 0.674\sqrt{N} \)

Statistics of isotope counting

- In a normal distribution 68.3% of all measured values fall within 1\(\sigma \) interval on either side of the mean \(a \), 95.5% to be within 2\(\sigma \), and 99.7% to be within interval 3\(\sigma \)
- These are not device-related fluctuations

Standard deviation

- Standard deviation can be estimated from a sample mean value \(a \) determined from a series of measurements, \(\sigma = \sqrt{a} \)
- The sample standard deviation can be constructed from a series of \(N \) measurements of a variable \(x \)
 \[\sigma_s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N-1}} \]

Example 1

- Concerning the Poisson distribution, which one of the following statements is false?
 - A. It is an approximation to the binomial distribution for small sample sizes
 - B. It describes rare and random events
 - C. Radioactive decay as a function of time fits the Poisson distribution
 - D. The standard deviation \(\sigma \) is approximately equal to the square root of the number of counts for large numbers
 - E. The percent standard deviation decreases as the number of counts increases
Example 2

• If the average number of counts in a region of a planar gamma camera image is 25 counts per pixel, what is the percent standard deviation per pixel, assuming Poisson statistics?

A. 0%
B. 10%
C. 20%
D. 50%

Resolving time and loss of counts

• Most of detectors become unresponsive for a short time after receiving each pulse
 – For Geiger counters resolving time $\tau \sim 100 \mu s$
 – Scintillators $\tau < 10 \mu s$
• At high counting rates some pulses can be missed
• For observed number of counts per second N_o, the corrected number of counts $N_c = \frac{N_o}{1 - N_o \tau}$

Uptake and volume studies

• Activity of a sample (P) is compared with a standard source (S) measured in the same geometry
• Thyroid uptake of 131I taken orally
 \[\% \text{Uptake} = \frac{P - P_{\text{background}}}{S - S_{\text{background}}} \times 100 \]
• Plasma volume determination by injection of RISA (radioactive iodine-tagged serum albumin)
 \[\text{Vol} = \frac{S - S_{\text{background}}}{P - P_{\text{background}}} \times \text{Vol}_{\text{relation}} \]

Example 3

• A radioactive sample is counted for 1 minute and produces 900 counts. The background is counted for 10 minutes and produces 100 counts. The net count rate and net standard deviation are about ____ ____ counts.

A. 800, 28
B. 800, 30
C. 890, 28
D. 890, 30
E. 899, 30

\[N_{\text{corr}} = 900/1 - 100/10 = 890 \]
\[\sigma = \sqrt{\sigma_i^2 + \sigma_{\text{background}}^2} = \sqrt{N_i^2/N_{\text{background}}^2} = \frac{N_i}{N_{\text{background}}} = \frac{900}{100} = 30 \]

Example 4

• A wipe test over a countertop yields a count rate of 1000 counts per minute in a nuclear medicine clinic that uses 99mTc only. If the background is 40 counts per minute and the detector efficiency is 0.8, the activity of the 99mTc source corresponding to this surface is ____ Bq.

A. 5
B. 10
C. 20
D. 40
E. 100

\[N_{\text{corr}} = (N - N_{\text{background}})/\eta = (1000 - 40)/0.8 = \frac{1200 \text{ dpm}}{1200/60 \text{ dps}} = 20 \text{ Bq} \]
Imaging using radioactive materials:

Rectilinear scanner

- Computerized Rectilinear Thyroid (CRT) scanner utilizes computer to improve the clarity of thyroid scans and enhance thyroid nodules
- Measures both thyroid function and thyroid size

Gamma camera

- Requires positron-emitting isotopes, produced in cyclotrons, have short half-life. Fluorine-18 is the most common ($t_{1/2} \approx 110$ min)
- Positron annihilation results in two γ-rays emitted at 180° to one another; detectors are arranged to record coincidences
- Regions of high metabolic activity are visible through radioactive labeling

Positron emission tomography

- Provides 3D images
- Uses radioactive tracers that emit positrons

Radioactive tracers

<table>
<thead>
<tr>
<th>Z</th>
<th>Nuclei</th>
<th>Half-Life</th>
<th>Principle Photon Energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>technetium-99m</td>
<td>6.02 h</td>
<td>biological elimination and physical decay</td>
</tr>
<tr>
<td>51</td>
<td>gallium-67</td>
<td>8.04 d</td>
<td>biological elimination and physical decay</td>
</tr>
<tr>
<td>59</td>
<td>indium-111</td>
<td>2.81 d</td>
<td>biological elimination and physical decay</td>
</tr>
<tr>
<td>81</td>
<td>rubidium-81m</td>
<td>1.02 h</td>
<td>biological elimination and physical decay</td>
</tr>
<tr>
<td>86</td>
<td>ruthenium-86m</td>
<td>11.4 min</td>
<td>biological elimination and physical decay</td>
</tr>
<tr>
<td>87</td>
<td>antimony-123</td>
<td>60 min</td>
<td>biological elimination and physical decay</td>
</tr>
<tr>
<td>123</td>
<td>technetium-99m</td>
<td>6.02 h</td>
<td>biological elimination and physical decay</td>
</tr>
<tr>
<td>131</td>
<td>iodine-131</td>
<td>66.1 min</td>
<td>biological elimination and physical decay</td>
</tr>
</tbody>
</table>

- Radioactive tags are incorporated in a variety of molecules
- Availability of short half-life isotopes (Tc-99m) allows for shorter image acquisition times, higher resolution

Radioactive tracers

- The amount of the radioactive isotope decreases with time by two processes: biological elimination and physical decay
- The effective fraction of the isotope that disappears per unit time

\[
\lambda_{\text{eff}} = \lambda_b + \lambda_p
\]

- The effective half-life is

\[
\frac{1}{T_{\text{eff}}} = \frac{1}{T_b} + \frac{1}{T_p} \Rightarrow T_{\text{eff}} = \frac{T_b \cdot T_p}{T_p + T_b}
\]
Absorbed dose from radionuclides

Table 16.9: Input Data for 56Co, Half-Life 6.06h

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>Other Nuclear Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition</td>
<td>Mean No. per Disintegration</td>
<td>Energy/MeV</td>
<td>Other Nuclide Data</td>
<td></td>
</tr>
<tr>
<td>gamma 1</td>
<td>0.800</td>
<td>0.921</td>
<td>E3</td>
<td></td>
</tr>
<tr>
<td>gamma 2</td>
<td>0.800</td>
<td>1.035</td>
<td>M1, M2, M3, K1, K2, K3</td>
<td></td>
</tr>
<tr>
<td>gamma 3</td>
<td>0.100</td>
<td>1.600</td>
<td>M1, M2, M3, K1, K2, K3</td>
<td></td>
</tr>
<tr>
<td>energy emitted per dis.</td>
<td>(999.1) x (999.1) x (999.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A committee of the Society of Nuclear Medicine called MIRD (Medical Internal Radiation Dose) has produced extensive tables for dose calculations for all the commonly used radionuclides.

- The dose calculation involves the detailed physical information about radionuclide, biological information such as the biological half-life, as well as anatomical information concerning the shapes and sizes of different organs, and their locations.

Summary

- Radiopharmaceuticals
 - Mechanisms of localization
- Detectors for nuclear medicine
- Counting statistics
- Types of studies
- Absorbed dose from radionuclides