Chapter 15
Radiation Protection

Introduction

- Radiation exposure standards were introduced as early as the start of the 20th century when the potential hazards of radiation were realized.
- Limits on radiation exposure to public and radiation workers.
- Radiation presents a risk to workers that is similar to other industrial hazards.
- Radiation dose recommendations for occupational exposures have evolved as more information is gathered on the effects of radiation on humans.

Main Principles of Radiation Protection

- **Time** – exposure is proportional to duration.
- **Distance** – governed by the inverse square law.
- **Shielding** – presence of protective barrier.
- Minimize time and maximize distance and shielding.

Regulatory bodies

- The International Commission on Radiological Protection (ICRP) issues reports which form the basis for many national protection guidelines.
- In the United States, the National Council on Radiation Protection and Measurements (NCRP) functions as a primary standard-setting body through its separate publications.
- Both are advisory bodies: collect and analyze data, and put forward recommendations on radiation protection.
- Recommendations are utilized by regulatory groups to develop regulations.

Dose Equivalent

- The biologic effects of radiation depend not only on dose, but also on the type of radiation, the dosimetric quantity relevant to radiation protection is the dose equivalent H, defined as $H = D \cdot Q$.
- Old unit: $[H] = rem = 10^{-2} J/kg$.
- The Q-factor (unitless) value depends on RBE (related to LET) of the radiation.

\begin{align*}
\text{Old unit: } [H] &= \text{rem} = 10^{-2} J/kg \\
\text{New unit: } [H] &= \text{Sv} = \text{rad} = \text{rem} \\
\end{align*}
Effective Dose Equivalent

- For a given uniform exposure:
 - Received dose may differ markedly for various tissues.
 - Tissues vary in sensitivity to radiation-induced effects.
- The concept of effective dose equivalent has been adopted by the ICRP and the NCRP as "the sum of the weighted dose equivalents for irradiated tissues or organs."

\[H_E = \sum W_T H_T \]

Based on risk estimates.

Risk Estimates

- The excess risk is estimated in terms of the probability to develop a fatal cancer in various organs of the body:
 - Stochastic (no threshold) quantity.
 - The severity of the effect does not depend on the dose.
 - Risks of tumor induction are higher (e.g., since ~50% of breast cancers are curable the risk of induction is 2x).
- Estimates are based on effects at high doses.
- The average natural lifetime incidence of cancer in the United States is 42%.

Background Radiation

- The background radiation is contributed mainly by 3 sources: terrestrial radiation, cosmic radiation, and radiation from radioactive elements in our bodies:
 - Terrestrial radiation varies based on surrounding materials, including buildings (granite rocks contain small amount of Uranium-238 producing radon).
 - Cosmic radiation levels change with elevation and latitude (~20% in going from equator to 50° latitude).
 - The internal irradiation arises mainly from 40K in our body, which emits γ and β rays and decays with a half-life of 1.3x10^9 years.

Occupational Dose Limits

- NCRP recommendations on exposure limits of radiation workers are based on the following criteria:
 - At low radiation levels the nonstochastic effects are essentially avoided.
 - The predicted risk for stochastic effects should not be greater than the average risk of accidental death among workers in "safe" industries.
 - The ALARA principle should be followed, for which the risks are kept "as low as reasonably achievable", taking into account social and economic factors.
 - Negligible Individual Risk Level (NIRL) - a threshold below which efforts to reduce the risk further is not warranted.
Occupational Dose Limits

- "Safe" industries are defined as having an associated annual fatality accident rate of 1 or less per 10,000 workers, or an average annual risk of 10^{-4}.
- The radiation industries show an average fatal accident rate of $< 0.3 \times 10^{-4}$, therefore the radiation industries compare favorably with the "safe" industries.

Summary of Recommendations

Source	Radiation Protection Guideline	Energy Limit

Occupational Dose Limits

- Radiation workers are limited to an annual effective dose of 50 mSv (5 rem).
- The pregnant woman who is a radiation worker can be considered as an occupationally exposed individual, but the fetus cannot. The total dose-equivalent limit to an embryo-fetus is 5 mSv (0.5 rem), with the added recommendation that exposure to the fetus should not exceed 0.5 mSv (0.05 rem) in any 1 month.
- Once a pregnancy is made known, the dose-equivalent limit of 0.5 mSv (0.05 rem) in any 1 month should be the guiding principle.

Effective Dose-Equivalent Limits

- Harmful effects of radiation are classified into two general categories:
 - Stochastic effects, with the severity of the effect independent of the dose
 - Nonstochastic: increases in severity with increasing absorbed dose, due to damage to increasing number of cells and tissues. Examples: radiation-induced degenerative changes such as organ atrophy, fibrosis, lens opacification, blood changes, etc.
 - Assumed linear-no threshold (LNT) model may overestimate the effect at low doses.

Structural Shielding Design

- NCRP provides radiation protection guidelines for the design of structural shielding for radiation installations (new and remodeled facilities):
Structural Shielding Design

• Protective barriers are designed to ensure that the dose equivalent received by any individual does not exceed the applicable maximum permissible value.
• The areas surrounding the room are designated as controlled or noncontrolled, depending on whether or not the exposure of persons in the area is under the supervision of a radiation protection supervisor.
 - For the controlled areas, the dose-equivalent limit is assumed to be 1 mSv/week or 50 mSv/year.
 - For the noncontrolled areas, the limit is 0.02 mSv/week or 1 mSv/year annual limit.

Primary Radiation Barrier Calculations

• Workload (W) expressed in rad/week at 1 m:
 - For x-ray equipment operating below 500 kVp, usually expressed in mA-minutes per week of beam "on" time.
 - For MV machines, usually stated as weekly dose delivered at 1 m from the source, can be estimated by multiplying the number of patients treated per week with the dose delivered per patient at 1 m.
• Use Factor (U) - fraction of the operating time during which the radiation under consideration is directed toward a particular barrier.

<table>
<thead>
<tr>
<th>Table 16.8</th>
<th>Typical Use Factor for Primary Protection Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Use Factor</td>
</tr>
<tr>
<td>Film</td>
<td>0.5</td>
</tr>
<tr>
<td>Wait</td>
<td>0.5</td>
</tr>
<tr>
<td>Gowning</td>
<td>0.75, depending on equipment and techniques</td>
</tr>
</tbody>
</table>

Primary Radiation Barrier Calculations

• For the maximum permissible dose equivalent for the area to be protected P (NCRP#151: 0.1 mSv/week for controlled and 0.02 mSv/week for noncontrolled area), the required transmission factor B is given by

$$B = \frac{P \cdot d^2}{WUT}$$

• Using broad-beam attenuation curves for the given energy beam, one can determine the barrier thickness required.

Primary Radiation Barrier Calculations

• Occupancy Factor (T) - fraction of the operating time during which the area of interest is occupied by the individual.
• Distance (d) in meters from the radiation source to the area to be protected. Inverse square law is assumed for both the primary and stray radiation.

<table>
<thead>
<tr>
<th>Table 16.7</th>
<th>Typical Occupancy Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full capacity (P = 1)</td>
<td></td>
</tr>
<tr>
<td>Rest areas, other minor stations</td>
<td></td>
</tr>
<tr>
<td>Corridors, entrances, elevators, open spaces</td>
<td></td>
</tr>
<tr>
<td>Entrance, waiting areas, radiation protection rooms, control rooms</td>
<td></td>
</tr>
</tbody>
</table>

Broad-beam Attenuation Curves

• Concrete is cheap, but its density is fairly low 2.35 g/cm³.
• Lead or steel can be used for more compact barriers.
Secondary Radiation Barrier Calculations: Scatter

- The transmission factor to reduce scatter B_s:
 \[B_s = \frac{P}{\alpha WT} \cdot d^2 \cdot d'^2 \]
- Here α is the ratio of scattered dose to incident dose, F is the area of the beam incident at the scatter, d' is the distance from the scatterer to the area of interest
- $U=1$ for secondary barriers

Secondary Radiation Barrier Calculations: Leakage

- The transmission factor for the leakage barrier for therapy units, above 500kVp, B_L:
 \[B_L = \frac{P \cdot d^2}{0.001WT} \]
- The quality of leakage radiation is approximately the same as that of the primary beam
- For MV installations the leakage barrier usually far exceeds that required for scatter radiation

Door Shielding

- The door shielding can be calculated by tracing the path of the scattered radiation from the patient to the door and repeatedly applying equation for B_s
- In a properly designed maze the required shielding turns out to be less than 6 mm of lead

Shielding Against Neutrons

- For x-ray beams with energy >10MV, photonuclear interactions (γ,n) result in neutron contamination
- In the 16- to 25-MV x-ray therapy mode the neutron dose equivalent along CA is approximately 0.5% of the x-ray dose and falls off to about 0.1% outside the field
- When thermal neutrons are absorbed by the nuclei of atoms within the shielding door, energetic γ radiations (called the neutron-capture γ-rays) are produced, their energy is up to 8MV
- In general, a longer maze (>5 m) is desirable in reducing the neutron fluence at the door
- A few inches of a hydrogenous material such as polyethylene can be added to the door to thermalize the neutrons and reduce the neutron dose

Table 16.8

<table>
<thead>
<tr>
<th>Scattering Angle (from Central Ray)</th>
<th>in-1 %</th>
<th>90°</th>
<th>180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°</td>
<td>1.0</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>30°</td>
<td>0.8</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>45°</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>60°</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>90°</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Scattered radiation measured at 1 m from phantom where field area is 400cm² and the phantom surface incident exposure measured in terms of field half-value thickness. Note: EPRI Guide for the Design and Calculation of Radiation Shielding for Energy up to 35 MV, International Energy Agency, Paris, France, 1989, Appendix D.
Protection Against Brachytherapy Sources

- Governed by NCRP report 40
- Storage: lead-lined safes with adequate shielding, ventilation for radium source storage
- Source preparation: usage of lead L-block for handling applicators
- Source transportation in lead containers or leaded carts
- Leak testing of sealed sources (e.g., check radium source for radon leaks); periodicity is specified by NRC or state regulations

Radiation Protection Surveys

- After the installation of radiation equipment, a qualified expert must carry out a radiation protection survey of the installation
- The survey includes
 - Equipment survey to check equipment specifications and inter-locks related to radiation safety
 - Area survey as evaluation of potential radiation exposure to individuals in the surrounding environment
- Since low levels of radiation are measured, the instrument must be sensitive enough to measure such low levels

Radiation Monitoring Instruments

- The detectors most often used for surveys are ionization chambers and Geiger counters
 - Ion chamber survey meter: large volume (~600 cc), sensitivity ~mR/hr
 - Usually calibrated with γ-ray beam of brachytherapy sources (Cs or Ra)
 - For linac installations additional calibration corrections may be required (energy response, linearity, T-P angular dependence)

- Geiger-Müller counter (G-M tube) is much more sensitive than ionization chamber due to gas multiplication
 - Not a dose-measuring device; useful for preliminary surveys to detect the presence of radiation, ionization chambers are recommended for quantitative measurement
 - Because of their inherently slow recovery time they can never record more than 1 count/machine pulse, significantly underestimating radiation levels for linacs

Radiation Monitoring Instruments

- Neutron detector is typically used independently of x-ray detector to survey outside of the treatment room
 - Detection principles:
 - In hydrogenous materials produce hydrogen recoils or protons that can be detected by ionization measurements, proportional counters, scintillation counters, cloud chambers, or photographic emulsions.
 - Activation detectors: detected by their induced nuclear reactions in certain materials
 - Neutron count rate in mrem/hr

Personnel Monitoring

- Personnel monitoring must be used in controlled areas for occupationally exposed individuals
 - Cumulative radiation monitoring is performed with film, TLD, and OSL (optically stimulated luminescence) dosemeter badges
 - Since the badge is mostly used to monitor the whole body exposure, it should be worn on the chest or abdomen
 - Special badges may also be used to measure exposure to specific parts of the body (e.g., hands) if higher exposures are expected during particular procedures