

Introduction

- In diagnostic radiology we are interested in the beam of x-rays transmitted through the patient
- Difference in beam attenuation results in a shadow picture registered by the detector
- The objective is to obtain the best picture quality with the minimal dose to the patient

Adult Effective Doses for Various Diagnostic Radiology Procedures				
Examination	Average Effective Dose (mSv)	Values Reported i Literature (mSv)		
Skull	0.1	0.03-0.22		
Cervical spine	0.2	0.07-0.3		
Thoracic spine	1.0	0.6-1.4		
Lumbar spine	1.5	0.5-1.8		
Posteroanterior and lateral study of chest	0.1	0.05-0.24		
Posteroanterior study of chest	0.02	0.007-0.050		
Mammography	0.4	0.10-0.60		
Abdomen	0.7	0.04-1.1		
Pelvis	0.6	0.2-1.2		
Hip	0.7	0.18-2.71		
Shoulder	0.01			
Knee	0.005			
Other extremities	0.001	0.0002-0.1		
Dual x-ray absorptiometry (without CT)	0.001	0.001-0.035		
Dual x-ray absorptiometry (with CT)	0.04	0.003-0.06		
Intravenous urography	3	0.7-3.7		
Upper gastrointestinal series	6*	1.5-12		
Small-bowel series	5	3.0-7.8		
Barium enema	8*	2.0-18.0		
Endoscopic retrograde cholangiopancreatography	4.0			

ramination.	Average Effective Dose ()	mSV) Values Repo	orted in Literature (mSv)	Backgro	ound r	adiation
Head	2	0.9-4.0		~3 mSv	/у	
lieck	3					
Chest	7	4.0-18.0				
Chest for pulmonary embolism	15	13-40				
Abdomen	8	3.5-25				
Pelvis	6	3.3-10				
Three-phase liver study	15					
Spine	6	1.5-10				
Coronary anglegraphy	16	5.0-32				
Calcium scoring	3	1.0-12				
virtual colonoscopy	10	4.0-13.2				
ole 3 dult Effective Doses for Va	rious Interventional R	adiology Procedur	85	Table 4 Adult Effectiv	e Dose for	Various
ble 3 idult Effective Doses for Va amination	rious Interventional R	adiology Procedur Average Effective Dose (mSv)*	res Values Reported in Literature (mSV)	Table 4 Adult Effectiv Dental Radio	e Dose for logy Proces Average	Various lures Values
ble 3 idult Effective Doses for Va amination fead and/or neck angiography	rrious Interventional R	adiology Procedur Average Effective Dose (mSv)* 5	Values Reported in Literature (mSV)	Table 4 Adult Effectiv Dental Radio	re Dose for logy Proces Average Effective	Various fures Values Reported in
ble 3 idult Effective Doses for Va amination Head and/or neck anglography Zoronary anglography (diagnostic	irious Interventional R	adiology Procedur Average Effective Dose (mSv)* 5 7	Values Reported in Literature (mSV) 0.8–19:6 2.0–15:8	Table 4 Adult Effectin Dental Radiol Examination	e Dose for logy Procee Average Effective Dose (mSv)	Various Iures Values Reported in Literature (mSv)
ble 3 idult Effective Doses for Va amination Sead and/or neck anglography Doronary anglography (diagnostic Zoronary percutaneous translami	rious Interventional R	adiology Procedur Average Effective Dose (mSv)* 5 7	Values Reported in Literature (mSv) 0.8–19.6 2.0–15.8	Table 4 Adult Effectiv Dental Radiol Examination Intraoral	e Dose for logy Proced Average Effective Dose (mSv)	Various Iures Values Reported in Literature (mSv)
ble 3 idult Effective Doses for Va amination Read and/or neck anglography Zeronary anglography (diagnostic Zeronary percutaneous translum) placement, or radiofrequency of	rrious Interventional R	adiology Procedur Average Effective Dose (mSv)* 5 7 15	Values Reported in Literature (mSV) 0.8–19.6 2.0–15.8 6.9–57	Table 4 Adult Effectin Dental Radiol Examination Intraoral radiography	re Dose for logy Proces Average Effective Dose (mSv) 0.005	Various fures Values Reported in Literature (mSv) 0.0002-0.010
ble 3 annination Read and/or neck anglography Zeronary anglography (diagonodic zeronary percutaneous translumis placement, or radiofrequency of horacia anglography of pulmona	nrious Interventional R 9 tal angioplasty, stent biation 1 y artery or aorta	Adiology Procedur Average Effective Dose (mSv)* 5 7 15 5	Values Reported in Literature (mSV) 0.8-196 2.0-15.5 6.9-57 4.1-9.0	Table 4 Adult Effectiv Dental Radiol Examination Intraoral radiography Panoramic	re Dose for logy Proces Average Effective Dose (mSv) 0.005	Various fures Values Reported in Litesture (mSv)
ble 3 idult Effective Doses for Va xamination lead and/or neck anglography Zoronary percutanous translami placement, or radiofrequency a floorancy percutanous translami placement, or radiofrequency a floorance anglography or pulmona kdominal anglography or pulmona	arious Interventional R and angioplasty, stent blation ry antry or aorta aptry or	Average Effective Dose (mSv)* 5 7 15 5 12	Values Reported in Literature (mSv) 0.8–19.6 2.0–15.8 6.9–57 4.1–9.0 4.0–48.0	Table 4 Adult Effectiv Dental Radial Examination Intraoral radiography Panoramic radiography	e Dose for logy Proces Average Effective Dose (mSv) 0.005 0.01	Various Iures Values Reported in Literature (mSv) 0.0002-0.010 0.007-0.000
In 3 dult Effective Doses for Va samination Sectoriary negative strategies of the Zeronary negative strategies placement, or radioferguency a blacement or radioferguency a horacle negative strategies blacement registeries of planets blacement registeries of the strategiest in the strategiest posts strategiest posts strategie	arious Interventional R 9 nol angioplasty, stent voltation ny arlary or aorta raphy temic shunt placement	adiology Procedur Average Effective Done (mSv)* 5 7 15 5 12 70	Values Reported in Literature (mSV) 0.8–19.6 2.0–15.8 6.9–57 4.1–9.0 4.0–48.0 20–180	Table 4 Adult Effectiv Dental Radiol Examination Intraoral radiography Panoramic radiography Dental CT	e Dose for logy Proces Average Effective Dose (mSv) 0.005 0.01 0.2	Various fures Values Reported in Literature (mSv) 0.0002–0.010 0.007–0.090
Sin 3 dult Effective Doses for Va amination Biod and/or neck angiography Coronary perutaneous translama placement, or radiofrequency a forcacle angiography or polymous Transjoguah or observation Transjoguah retrainedulto pottays Mack owne andiofaction	arious Interventional R and angioplasty, sterit ablation typity steric shurt placement	tadiology Procedur Average Effective Dose (mSv)* 5 7 15 5 5 12 70 60	Yes Values Reported in Literature (mSV) 0.8–19.6 2.0–15.8 6.9–57 4.1–9.0 4.0–48.0 20–18.0 20–18.0 44–78	Table 4 Adult Effectin Dental Radiol Examination Intraoral radiography Pencaritic radiography Dental CT	Avetage Bfective Dose (mSv) 0.005 0.01 0.2	Various tures Values Asported in Litesature (mSv) 0.0002-0.010 0.007-0.090

Images with contrast media

- In nuclear medicine injected radioactive material is imaged through detection of decay products
- In radiology contrast media having significantly larger attenuation coefficients is used for soft tissue visualization
- Liquid compounds containing iodine (Z=53, kedge=33.2keV) or barium (Z=56, k-edge 37.4keV)
 - 1 mm iodine-filled artery reduces the photon fluence through 13 cm soft tissue by > 60% for 90 kVp beam, easily visible in the image

Diagnostic radiology modalities

- Screen-film radiography
- Fluoroscopy
- · Digital radiography
- · Computed tomography
- MRI
- Ultrasound
- Do not utilize x-ray source

Radiographic film

- Only a small fraction of x-rays (~2%) is absorbed within a film
- Film is sandwiched between two fluorescent screens packed into a light-tight cassette
 - Both front and back surfaces of the film contain photosensitive emulsion
 - Image is created with optical or UV photons emitted from both screens

Image intensifier

- The main purpose is to increase the brightness of an image
- Two processes are used:
 - (1) minification, in which a given number of light photons emanates from a smaller area
 - (2) flux gain, where electrons accelerated by high voltages produce more light as they strike a fluorescent screen

Fluoroscopy If transmitted x-rays are converted into optical photons - images can be viewed in real time Old days – used fluoroscopic screens, producing very dim images Image intensifier makes the image very bright, and much easier to view and analyze The brightness gain of image intensifiers varies from 1000 to over 6000

Grids

- The scattered radiation spoils the radiograph
- Scatter can be removed by a grid placed between the film (detector) and the patient
- The ability of the grid to discriminate against scatter is measured by the grid ratio = h/d
- · Use of grids increases the required exposure

4	r n	Grid Factors for I Passing through 2	rimary (P) and) cm Water	TABI for Primary p	.E 16-3 olus Scattered Ra	idiation (P + S)	for X ray Beams
		Grid ratio		60 kV	80 kV	100 kV	120 kV
grid strips	material	8:1	P P + S	1.9	1.8 4.0	1.8 3.7	1.7 3.4
Grid ratio		12:1	P + S	2.1 5.3	2.1 5.0	2.0 4.8	2.0 4.4

Computed tomography

• In a 2-D radiograph transmitted intensity

$$I = I_0 e^{-\sum_{i=1}^{n} \mu_i x_i}$$

- Values of μ_i and x_i are not known
- If we take many images in the same plane, at different angles, it is possible to find μ_i and x_i and reconstruct a 3-D image

- Ray SD can be described by two parameters: p and θ
- Image is split into pixels
- Path length through each pixel contributes to the final ratio of I_0/I , with its own μ_i and x_i
- A set of equations can be solved to find all μ_i and x_i and reconstruct the original image

Spatial resolution					
TABLE 1-1. THE LIMITING SPATIAL RESOLUTIONS OF VARIOUS MEDICAL IMAGING MODALITIES: THE RESOLUTION LEVELS ACHIEVED IN <i>TYPICAL</i> CLINICAL USAGE OF THE MODALITY					
Modality	∆ (mm)	Comments			
Screen film radiography	0.08	Limited by focal spot and detector resolution			
Digital radiography	0.17	Limited by size of detector elements			
Fluoroscopy	0.125	Limited by detector and focal spot			
Screen film mammography	0.03	Highest resolution modality in radiology			
Digital mammography	0.05-0.10	Limited by size of detector elements			
Computed tomography	0.4	About 1/2-mm pixels			
Nuclear medicine planar imaging	7	Spatial resolution degrades substantially with distance from detector			
Single photon emission computed tomography	7	Spatial resolution worst toward the center of cross-sectional image slice			
Positron emission tomography	5	Better spatial resolution than with the other nuclear imaging modalities			
Magnetic resonance imaging	1.0	Resolution can improve at higher magnetic fields			
Ultrasound imaging (5 MHz)	0.3	Limited by wavelength of sound			