

	Population × 10 ⁶	Mammography Units (per 10 ⁶ Population)	CT Scanners— Total (per 10 ⁶ Population)	Medical X-rays— Number of Annual Radiation Exams and Treatments $\times 10^6$ (per 10 ⁶ Population)	Physicians Conducting Radiology (per 10 ⁶ Population)
Canada	27.9	20.2	223 (8.0)	24.9 (0.89)	74
France	57.7	42.2	561 (9.7)	92.0 (1.59)	119
Germany	81.5	43.6	1,400 (17.2)	102.2 (1.25)	405
Japan	125.0	11.7	7,959 (63.7)	184.7 (1.48)	94
Sweden	8.8	19.3	115 (13.1)	5.0 (0.57)	125
United Kingdom	58.2	4.4	350 (6.0)	28.9 (0.50)	41
United States	260.0	38.6	6,800 (26.2)	250.0 (0.96)	92

		Free-in-Air			Dose, mGy	(mrad)		
	Examination and View	Exposure at Skin Entrance, mR	Active Bone Marrow	Thyroid	Breast	Lungs	Ovaries	Testes
	Chest							_
	PA	20	0.02 (2)	0.01 (1)	0.01 (1)	0.07 (7)	N	N
	Lateral	65	0.02 (2)	0.07 (7)	0.15 (15)	0.12 (12)	N	N
	Series	-	0.04 (4)	0.07 (7)	0.16 (16)	0.19 (19)	N	N
	Skuli							
	AP	330	0.08 (8)	0.06 (6)	-	N	N	N
•	Lateral	190	0.05 (5)	0.21 (21)		N	N	Ν
12	Series	_	0.24 (24)	0.34 (34)	_	0.01 (1)	N	N
	Cervical spine							
	AP	150	0.02 (2)	1.00 (100)	_	0.02 (2)	N	N
	Lateral	100	0.02 (2)	0.06 (6)		0.02 (2)	N	N
	Series	-	0.09 (9)	2.60 (260)		0.11 (11)	N	N
	Thoracic spine							
	AP	280	0.05 (5)	0.25 (25)	0.95 (95)	0.35 (35)	N	N
	Lateral	630	0.12 (12)	0.05 (5)	0.05 (5)	0.75 (75)	N	Ν
	Series	-	0.17 (17)	0.30 (30)	1.00 (100)	1.10 (110)	N	Ν
	Lumbar spine							
	AP	640	0.18 (18)	Ν	-	0.40 (40)	1.10 (110)	0.02 (2)
	Lateral	2,300	0.44 (44)	Ν	-	0.30 (30)	0.90 (90)	0.02 (2)
	Series		1.10 (110)	Ν	-	1.70 (170)	3.70 (370)	0.06 (6)

		lits		arious Or	gans fror	n	
	Free-in-Air			Dose, mGy	(mrad)		
ation ew	Exposure at Skin Entrance, mR	Active Bone Marrow	Thyroid	Breast	Lungs	Ovaries	Testes
ohy							
(AP)	600	0.20 (20)	N	-	0.07 (7)	1.30 (130)	0.10(10)
5	-	0.90 (90)	N		0.27(27)	5.50 (550)	0.40 (40)
arams		1.70 (170)	IN	-	0.54 (54)	(Uca) Uc.a	0.50 (50)
ography ^b				2.40 (240)	_	-	_
ointestinal	-	3.00 (300)	0.03 (3)	0.50 (50)	1.00 (100)	12.00 (1,200)	0.80 (80)
enemia s	-	5.20 (520)	N		-	-	-
	w w (AP) s s + 4 ygrams ography ^b vointestinal s enemia s joien are expectively w screening with from Wagner I	Autor Experimentation 2hy Entrance, mR 2hy 600 s - syrams - ographyb - orightyb - s - enemia - s - s - yem are exposures and does received I logor employed, and the examination pro vscreening with film-screen gid. from Wagner LK. Radiation Rise/Fects an	Autor Entrance, mR Bone Marrow bhy 600 0.20 (20) s - 0.90 (90) s + 4 - 1.70 (170) ygrams - - ography ^b - - s - 3.00 (300) ointestinal - 5.20 (520) s - 5.20 (520) s - 5.20 (520) s - stabilistical by some patients at sc yeng are exposures and dozes received by some patients at sc scabilistical by it s screening with film-screen grid. - screening with film-screen grid.	Autom Entrance, mR Bone Marrow Thyroid 2hy Entrance, mR Bone Marrow Thyroid 2hy 3hy 5 0graphyb 3.00 (300) 0.03 (3) ointestinal s 5.20 (520) ns signer nare exposures and dozes received by some patients at some facilities. Validage remotived, and the examination protocols established by the radiologist. It. vs screening with film-screen grid. transferrent filest and Sylabus. Rester	Autom Exposite central Final central Final central Final central Breast 2hy Entrance, mR Bone Marrow Thyroid Breast 2hy 600 0.20 (20) N — 5 — 0.90 (90) N — 5 — 0.90 (90) N — ographyb — — 2.40 (240) — ographyb — — 2.40 (240) — orightstinal 5 = = = 9 = 3.00 (300) 0.03 (3) 0.50 (50) ointestinal = = = = s = = = = green are exposures and doses received by some patients at some facilities. Values can be muc some similar test and syllabus. Reston, VA, American vs coreaning with film-screen grid. from Wagner IK. Radiation Bioeffects and Management Test and Syllabus. Reston, VA, American	National Science with Research and Science Scie	National Sector Stating Bone Marrow Thyroid Breast Lungs Ovaries 2hy (AP) 600 0.20 (20) N — 0.07 (7) 1.30 (130) s — 0.90 (90) N — 0.27 (27) 5.50 (550) s — 0.90 (90) N — 0.27 (27) 5.50 (550) ygrans

Abdomen and Lumbosacral Spine (NEXT 1995)

1995 Abdomen	1995 LS Spine
2.8	3.2
76	78
145	247
97	96
1.74	1.32
ine X-Ray Data Survey.	
	2.8 76 145 97 1.74 ine X-Ray Data Survey.

	1996 Upper Gi	1996 Cardiac Cath Labs	1996 C-Arm Unit
Entrance air kerma (mGy/min) ^a	45	38	22
Clinical kVp	99	82	78
Fluoroscope tube current (mA)	2.3	5.1	3.0
Air kerma rate w/contrast ^b (mGy/min) ^a	67	71	41
Maximum air kerma rate ^a	70	74	44
^b Copper is used to simulate the presence of bari From the NEXT 1996 Upper G.I. Fluoroscopy Surv	um contrast medium. vey.	-toole units.	

Global Activity in Computed Tomography for 1995

Region	Scanners per Million Population	Annual Procedures pe Thousand Population			
World	3.5	11			
United States	26.4	91			
European Union	10.1	33			
France	7.7	33			
Germany	16.6	53			
Italy	9.6	30			
Spain	5.7	15			
United Kingdom	6.2	21			

Adapted from Bahador B: Trends in Diagnostic Imaging to 2000. London, FT Pharmaceutical and Health Care Publishing, 1996, with permission.

			EFFECTIVE DO	SE, mSv (mrem	
00380017.180	ESAK, mGy	Entrance Skin Exposure, mR	Male	Female	
Chest (PA)	0.18	20	0.03 (3)	0.03 (3)	
Chest (lateral)	0.57	65	0.05 (5)	0.08 (8)	
Skull (AP)	2.9	330	0.04 (4)	0.04 (4)	
Skull (lateral)	1.5	166	0.02 (2),	0.02 (2)	
C-spine (AP)	1.3	150	0.05 (5)	0.05 (5)	
C-spine (lateral)	0.88	100	0.02 (2)	0.02 (2)	
T-spine (AP)	2.5	280	0.27 (27)	0.54 (54)	
T-spine (lateral)	6.0	680	0.25 (25)	0.27 (27)	
L-spine (AP)	5.6	640	0.40 (40)	0.78 (78)	
L-spine (lateral)	20	2300	0.53 (53)	0.84(84)	
Abdomen (AP)	5.3	600	0.37 (37)	0.73 (73)	

Entrance skin exposure values taken from Wagner LK: Radiation Bioeffects and Management Test and Syl-labus. Reston, VA, American College of Radiology, 1991. Effective doses calculated by Dr. Beth A. Schueler using Rosenstein M: Handbook of Selected Tissue Doses for Projections Common in Diagnostic Radiology. HEW (FDA) Publication 89-8031 for organ doses (HVL as-sumed to be 3.0 mm Ae at 80 kVp, our kVp used for exam kVp settings) and ICRP: Recommendations of the ICRP. Publication 26. 1977 for risk weighting factors.

28

		Organ Dose, mGy							
Examination	Eyes	Uterus	Ovaries	Testes	Effective Dose, mSv				
Routine head	50	al months a	0	0	1.8				
Posterior fossa	53	he out in	at an and an	0	0.72				
Pituitary	60		sentration me	0	0.57				
Internal auditory meatus	2.6	siling ha	0	0	0.35				
Orbits	50	-	_	0	0.64				
Facial bones	9.0		_	0	0.68				
Cervical spine	0.62	-	_	0	2.6				
Thoracic spine	0.04	0.02	0.02	_	4.9				
Routine chest	0.14	0.06	0.08	_	7.8				
Mediastinum	0.11	0.03	0.04	-Nector Do	7.6				
Routine abdomen	and Clauser	8.0	8.0	0.70	7.6				
Liver	1-76i <u>-10</u> - (iB	1.0	1.2	0.03	7.2				
Pancreas	Nere 🕁 the e	0.35	0.41	0.01	4.8				
Kidneys		1.1	1.3	0.03	6.3				
Adrenals	and an	0.10	0.12	_	3.4				
Lumbar spine	107101 <u>11</u> 107366	2.4	2.7	0.06	3.3				
Routine pelvis	Usada <u>-</u> datas	26	23	1.7	7.1				

Multiply by 100 to convert mGy to mrad and mSv to mrem. Adapted from NRPB 1992: Protection of the patient in x-ray computed tomography. Documents of the NRPB 3(4), 1992, with permission.

		· · · · ·	Mean	Effective D	Dose per Proce	dure. mSv	
Country/Area	Head	Chest	Abdomen	Liver	Kidneys	Pelvis	Lumbar Spin
Australia	2.6	10.4	16.7	12.7	_	11.0	5.2
Finland	1.3	5.1	11.6				5.0
Germany	2.6	20.5	27.4				9
Japan		4.6-10.8	6.7-13.3		~		~
Netherlands	0.8-5.0	6-18	6-24				2-12
New Zealand	1.8	8.9	9.7	6.5	7.6	6.9	4.7
Norway	2.0	11.5	12.8	11.9	9.9	9.8	4.5
Sweden	2.1	10	10	10	10	10	б
United Kingdom (Wales)	1.6	9.7	12	10.3	9.1	9.8	3.3

ffective Dose	s Chara	acteris	tic of CT	Scans
in the United S	states	in the	Year 200	0
	Head	Chest	Abdomen	Pelvis
nAs	355			
kVp	127			
MSAD, mGy	50.3			
Effective dose, mSv	2	7	7	6
used on the NEXT 2000 (Computed T	omography	v Protocol Survey	

-	-	-		-	 -	-	-	-	-	-
- 10	1,700	(»))							C 18	
. 88	6 N	- P.J	[25]	100		6				

Effective Doses from Computed Tomography in the	•
United Kingdom	

	Mean Effective Do	se, mSv ^a
Examination	United Kingdom, 1989	Wales, 1994
Routine head	1.8	1.6
Posterior fossa	0.7	1.2
Pituitary	0.6	0.9
Internal auditory meatus	0.4	1.0
Facial bones	0.7	0.3
Orbits	0.6	0.8
Cervical spine	2.6	1.5
Thoracic spine	4.9	2.4
Lumbar spine	3.3	3.3
Chest	7.8	9.7
High-resolution lung	-	1.9
Abdomen	7.6	12.0
Liver	7.2	10.3
Pancreas	4.8	7.4
Kidneys	6.3	9.1
Pelvis	7.1	9.8

Effective Doses from Angiography	Cerebral	1 122
Procedure	Effective Dose, mSv	A Bar
Cerebral angiography	10.6	a and a
Nuclear medicine: brain imaging	About 10	21.57
Computed tomography	2	har a
Skull x-ray	0.15	and the second
 Hasted from Feygelman VM, Huda W, lopatients undergoing cerebral angie with permission. Images blood Involves enter medium) into the second secon	Peters K: Effective dose equivalents bgraphy. AUNR 13:845–849, 1992, vessels of the brain ing a catheter into th the carotid arteries, t	and blood flowing through the e body to inject a dye (a contr he vessels of the neck that lea

Regular x-ray is used to image the dye that is flowing through the blood vessels.

Representative Ener	tive Doses from Bone Min	eral Densitometry
Type of Measurement	Effective Dose, μ Sv	Comments
Dual-energy x-ray absorption	ietry ~2.5	Representative value for single PA scan
Single-energy quantitative C	° ~300	SPR + 3 CT slices @ 80 kVp
Dual-energy quantitative CT	~1,000	SPR + 3 CT slices @ 80 kVp + 3 CT slices @120 kVp
Radiographs	~100	Single (collimated) view (AP or lateral)
°CT, computed tomography. Adapted from Huda W, Movin RL: Pa	ient doses in bone mineral densitometry. Brit J Bone mineral densitor the diagnosis and pre	adiol 69:422-425, 1996, with permission. netry is an x-ray technique used evention of osteoporosis.
 ^aCI, computed tomography. Adapted from Huda W, Morin RL: Pa 	tient doses in bone mineral densitometry. Brit J Bone mineral densitor the diagnosis and pre By comparing x-ray i intensities, or of diffe calculate a patient's l	adiol 69:422-425, 1996, with permission. netry is an x-ray technique used evention of osteoporosis. mages taken at different rent materials, physicians can poone mass (or lack thereof).

Examination Type	Effective Dose, mSv ^a	Thousands of Examinations	Collective Effective Dose, person-Sv ^b
Computed tomography (head and body)	1.11	3,300	3.660
Chest	0.08	64,000	5,120
Skull	0.22	8,200	1,800
Cervical spine	0.20	5,100	1,020
Biliary	1.89	3,400	6,430
Lumbar spine	1.27	12,900	16,400
Upper gastrointestinal	2.44	7,600	18,500
Abdomen (kidneys, ureters, bladder)	0.56	7,900	4,420
Barium enema	4.06	4,900	19,900
Intravenous pyelogram	1.58	4,200	6,640
Pelvis	0.44] 0.64		
Нір	0.83	4,700	3,010
Extremities	0.01	45,000	450
Other	0.50	(8,400)	4,200
Rounded total			92,000

Collective Effective Doses to Radiation \	Norkers
Occupational Category	Annual Collective Effective Dose, person-Sv ^a
Industrial personnel (other than nuclear fuel cycle)	390
Nuclear power plant personnel	551
Department of Energy personnel	224
Uranium miners	112
Uranium mill and fuel fabrication personnel	б
Well loggers	30
U.S. Public Health Service personnel	0.3
U.S. Navy	51
Flight crews and attendants	165
Medical staff (non-Federal)	410
Government	120
Other workers	145
Education and transportation personnel	50
Rounded total	2,200

Medical Workers	e Equivalent Doses t	o Monitored
Sources of Occupational Exposures	Thousands of Workers	Collective Equivalent Dose, ^a person-Sv
Dentistry	259	60
Private medical practice	155	160
Hospital	126	170
Other ⁶	44	20
Total	584	410
¹ Collective equivalent doses are reported in the sou waist level, the readings are assumed to represen dose. ²¹ Other ²¹ includes chiropractic medicine with 15,00 Adapted from National Council on Rediation Protec Report 101. Bethesda, MD. NCRP 1989, with per	rce of these data, but because the da t total-body exposures; hence, collect 0, podiatry with 8,000, and veterinar tion and Measurements: Exposures o mission.	ta were obtained from personnel monitors worn at twe equivalent dose is identical to collective effective y medicine with 21,000 potentially exposed workers. <i>f the US Population from Occupational Radiation</i> .

The Interventional Fluoroscopic Suite

- □ C-arm fluoroscopic unit
- Arrows point to the Xray tube beneath the table and the Image Intensifier above the table

Fluoroscopy Times, Cine Times, and Area–Exposure Products for Diagnostic, Interventional, and Combined Procedures

	Diagnostic (n $=$ 173)	Interventional (n $=$ 225)	Combined ($n = 112$)
Time, min			
Fluoroscopy	6.8 ± 6.4	19.9 ± 13.6	20.4 ± 10.5
Cine	0.78 ± 0.32	0.91 ± 0.6	1.18 ± 0.55
Area-exposure product, Gy cm ²			
Fluoroscopy	39 ± 46	101 ± 76	107 ± 65
Cine	70 ± 36	62 ± 33	92 ± 38
Total	108 ± 74	163 ± 95	198 ± 87
Cine runs	95 ± 33	136 ± 58	172 ± 59
Fluoroscopya	32 ± 15	58 ± 14	52 ± 12

33

catheterization procedures. Cathet Cardiovasc Diagn 42:121-125, 1997, with permission.

Mean nuoroscopy scree	ening Times, Dose-Ai	rea Product	Values		
	FI	Dose-A	rea Product, Gy c	m ²	-11
Interventional Procedure	Fluoroscopy Screening Time, min	Fluoroscopy	Radiography	Total	Dose, mS
Diagnostic					
Cerebral angiography	12.1	28.2	45.8	74.1	7.4
Carotid angiography	10.3	22.9	26.4	49.3	4.9
Upper extremity angiography	4.6	10.5	16.8	27.3	0.3
AV fistula angiography	2.3	4.6	12.6	17.2	0.2
Thoracic angiography	22.1	49.0	36.2	85.2	11.9
Nephrostography	4.0	12.4	2.2	14.7	2.4
Renal angiography	5.1	17.7	22.1	39.8	6.4
PTC	14.6	76.9	3.3	80.2	12.8
CT arterial portography	10.0	69.0	11.6	80.6	12.9
Hepatic angiography	12.1	74.9	61.0	136	21.7
Transjugular hepatic biopsy	6.8	30.8	3.4	34.1	5.5
Abdominal angiography	8.0	46.1	72.1	118	18.9
Femoral angiography	7.2	17.2	29.6	46.7	7.5
Lower extremity angiography	7.5	28.0	51.9	79.8	0.8

		Dose-A	Dose–Area Product, Gy cm ²		
Interventional Procedure	Fluoroscopy Screening Time, min	Fluoroscopy	Radiography	Total	Effective Dose, mSv
Therapeutic					
Cerebral embolization	34.1	43.1	61.4	105	10.5
AV fistula angioplasty	14.6	16.4	8.7	25.1	0.3
Thoracic therapeutic procedures	14.9	59.5	56.9	116	16.3
Biliary stent insertion/removal	7.1	40.5	2.6	43.1	6.9
TIPS	48.4	400	125	524	83.9
Nephrostomy	7.0	39.8	3.2	43.0	6.9
Renal angioplasty	14.0	57.0	28.1	85.2	13.6
Other abdominal therapeutic procedures (excluding hepatic and renal)	18.4	114	54.1	168	26.9

Potential Effects of Fluor	oscopic Exposures on the Reaction o	f the Skin
Effect	Approximate Threshold Dose, Gy	Time of Onset
Early transient erythema	2	2–24 h
Main erythema reaction	6	~1.5 wk
Temporary epilation	3	~3 wk
Permanent epilation	7	\sim 3 wk
Dry desquamation	14	\sim 4 wk
Moist desquamation	18	\sim 4 wk
Secondary ulceration	24	>6 wk
Late erythema	15	8–10 wk
Ischemic dermal necrosis	18	>10 wk
Dermal atrophy (1st phase)	10	>12 wk
Dermal atrophy (2nd phase)	10	>52 wk
Telangiectasis	10	>52 wk
Delayed necrosis	12?	>52 wk (related to trauma)
Skin cancer	Not known	>15 y

Effective Doses to Pa Radiologic and Nucle Procedures	atients from ear Medicine
Procedure	Effective Dose, mSv
Arrhythmia ablation	17
Coronary angiography	12
Coronary angioplasty	22
Thallium-201 scan	21
Technetium-99 radionuclide ventriculogram	8

	Catheterizatio	on, mSv	One Angioplasty, mSv One Pacemaker Implant (No 6					ant (No Ci	o Cine), mSv			
Category of Staff	Weighted Surface Dose, No Apron	Weighted Surface Dose with Apron	Hands	Eyes	Weighted Surface Dose, No Apron	Weighted Surface Dose with Apron	Hands	Eyes	Weighted Surface Dose, No Apron	Weighted Surface Dose with Apron	Hands	Eyes
Cardiologist	1.6	0.09	2.1	0.6	3.1	0.2	4.2	1.0	0.14	0.01	0.2	0.05
Cardiologist who stands back during cine	0.3	0.01	0.3	0.2	1.5	0.1	1.9	0.7				
Technologist	0.08	< 0.01	0.09	0.02	0.2	0.01	0.2	0.05	0.01	< 0.01	0.01	< 0.01
Technologist who stands back during cine	0.04	<0.01		0.04	0.01	0.1	0.01	0.1	0.03			
Nurse or anesthetist	0.3	0.02	0.4	0.2	0.8	0.06	0.9	0.5	0.04	< 0.01	0.04	0.03

59

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Administered, and	d Typical Dose		preatrice	
Procedure	Relative Frequency of Procedure, %	Radiopharmaceutical	Activity Administered per Procedure, MBq	Typical Dose to Patient mGy
Diagnostic				
Bone	20.6	99m Tc medronate or oxidronate	740	1.3
Gastric emptying	4.6	^{99m} Tc sulfur colloid	40	0.2
Heart Equilibrium radiocardiography	11.8	^{99m} Tc red cells	110	4.5
Heart Myocardial		²⁰¹ TI thallous chloride	110	6.3
perfusion	17.9	^{99m} Tc sestamibi	1,110	5.0
		^{99m} Tc teboroxime	1,850	8.3
Hepatobiliary	2.9	^{99m} Tc disofenin	300	1.3
Kidney		¹³¹ I iodohippurate	15	0.4
	9.6	^{99m} Tc penetate	370	0.6
		99m Tc mertiatide	370	0.7
Lung				
Perfusion	8.2	99m Tc macro-aggregated alburnin	110	0.5
Ventilation	2.2	∫ ¹³³ Xe gas	370	0.14
	1.3	99m Tc penetate aerosol	740	1.6
Thyroid (25% uptake		1231 Na iodide	15	0.4
of iodine)	5.6	1311 Na iodide	4	0.7
		^{99m} Tc pertechnetate	185	0.7
Tumor/Infection	3.8	67 Ga citrate	190	13.0
Other	5.7			
Trerapeutic				
Hiperthyroidism	1.8	131 Na iodide	740	
Throid cancer	0.2	131 Na iodide	3 700	

		Gona foi Radiopha r	idal Dose r Each armaceutical, mGy ⁶	Gona We Av	dal Dose eighted erage, nGy ^o
Examination Type	Estimated Administered Activity per Examination ^{^1}	Male	Female	Male	Femal
Brain	740 MBq""Tc DTPA (50)	2.2	4.4	1.9	4.4
	740 MBq" ^m Tc O ₄ (50)	1.5	4.4		
Hepatobiliary	185 MBq" ^m Tc iminodiacetic acid (IDA)(10)	0.2	1.7	0.2	0.5
_	185 MBq ⁹⁹ⁿ¹ Tc sulfur colloid (90)	0.2	0.4		100
Bone	740 MBq""Tc phosphate	3.7	4.4	3.7	4.4
Respiratory	Market Marketine Property market have	North The US	Coloring	0.3	0.3
Perfusion	185 MBq I c macroaggregated albumin	0.4	0.4		
M	(MAA) (66)	0.4			
Ventilation	3/U MBq Xe gas (34)	0.1	0.1		
Inyroid	185 MBq 1 CU4 (80)	0.4	1.1	0.2	0.0
	3.7 MDQ 1 (10)	<0.1	0.1	0.5	0.9
Donal	740 MBg" ^m Tc DTPA (60)	22	4.4	13	27
Renal	9.25 MBg ¹³¹ L biopuran (40)	<01	<0.1	1.5	2.1
Abscess/tumor	111 MBg ⁶⁷ Ga citrate	72	84	72	84
Cardiovascular	740 MBg" ^m Tc labeled red blood cells (40)	0.2	0.8	1.44	
0.4.3	111 MBg ²⁰¹ T1 chloride (40)	45.5	11.1	18.9	5.7
	740 MBg" ^m Tc phosphate (20)	3.2	4.4		

Barrisson Harris A said ta		- Test Deserves and ed in Al		
Corresponding Effective	e D	ose for Some Common Dia	ne United Kingdom an Ignostic	a
Nuclear-Medicine Proce	du	res	-	
			Maximum Usual	Effective
Procedure		Radiopharmaceutical	Activity per Test, MBq	Dose, mS
Bone scan		99m Tc phosphate compounds	600	3.5
Renal scan		99m Tc DMSA	80	0.7
Renal scan		99m TC DTPA	300	1.6
Dynamic cardiac scan		^{99m} Tc erythrocytes	800	5.3
Biliary scan		99mTc IDA	150	2.3
Brain scan		99m Tc HMPAO	500	4.7
Abscess imaging		^{99m} Tc leukocytes	200	2.2
Lung perfusion scan		99mTc MAA	100	1.1
Renal scan		99mTc MAG3	100	0.7
Myocardial imaging	a., 1	99mTc MIBI	400	3.4
Thyroid scan		^{99m} Tc pertechnetate	80	1.0
Tumor/Abscess imaging		⁶⁷ Ga citrate	150	16.5
Thrombus imaging		111 In leukocytes	20	7.2
Thyroid scan (35% uptake)		1231 iodide	20	4.4
Tumor imaging		123) MIBG	400	5.6
Thyroid metastase (0% uptake)		1311 iodide	400	24
Myocardial imaging		201 TI chloride	80	18

Comparison of Collective Effective Dose versus Age-Weighted Collective Dose for U.S. Nuclear-Medicine Procedures in 1982

Examination	Effective Dose, mSv ^a	Examinations, $ imes 10^3$	Collective Effective Dose, person-Sv ^ø	Age-Weighted Collective Dose, person-Sv ^b
Brain	6.5	813	5,300	2,200
Hepatobiliary	3.7	180	700	300
Liver	2.4	1,424	3,400	1,300
Bone	4.4	1,811	8,000	2,900
Pulmonary	1.5	1,203	1,800	800
Thyroid	7.5	530	4,000	2,400
Renal	3.1	236	700	400
Tumor	12.2	121	1,500	600
Cardiovascular	7.1	961	6,800	2,600
Total			32,100	13,500
Per caput			140 µSv	59 μ Sv
			(14 mrem)	(5.9 mrem)

⁸1 mSy = 100 mrem. ^b1 person-Sy = 100 man-rem. Adapted from National Council on Radiation Protection and Measurements: Exposure of the US Population from Diagnostic Radiation. Report 100. Bethesda, MD, NCRP, 1989, with permission.

TABLE 14.26

Some Reported Annual Individual and Collective Effective Doses from **Diagnostic Nuclear-Medicine Procedures**

	Effective Dos	e, mSv	Collective Effective
Country/Area	Per Examination	Per Caput	Dose, person-Sv ^a
Australia	5.3	0.064	1,110
Canada	4	0.16	4,500
Finland	4.0	0.04	207
Germany	3	0.1	5,000
Netherlands	4.2	0.067	1,000
New Zealand	3.1	0.026	90
Romania	16.2	0.049	1,124
Russian Federation	5.4	0.075	10,000
Switzerland	4.2	0.04	300
United Kingdom	4.2	0.036	2,000
United States	4.4	0.14	35,400

^a 1 person-Sv = 100 man-rem.

Based on the United Nations Scientific Committee on the Effects of Atomic Radiation: Annex C Medical Radiation Exposures. New York, UNSCEAR, 2000.

Organ Dose Compounds	es and Effective Do 5	oses for Position I	mission Tomogram	ohy
	F-18	FDG	0-15	H ₂ O
	mGy/MBq $\times 10^{-2}$	rad/mCi × 10 ⁻²	mGy/MBq $ imes$ 10 ⁻³	rad/mCi ×10 ⁻¹
Brain	1.9	7.0	1.3	4.9
Heart wall	6.0	22.0	2.2	8.2
Kidneys	2.0	7.4	1.9	7.2
Ovaries	1.7	6.3	0.36	1.3
Red marrow	1.3	4.8	0.90	3.3
Spleen	3.7	14.0	1.6	5.8
Testes	1.3	4.8	0.67	2.5
Thyroid	1.0	3.9	1.7	6.3
Bladder wall	19.0	70	0.22	0.81
	mSv/MBq $\times 10^{-2}$	rem/mCi ×10 ⁻²	mSv/MBq $\times 10^{-3}$	rem/mCi ×10 ⁻
Effective dose	3.0	11.0	1.1	4.2

Radionuclide	Chemical Form	Investigation	Administered Activity, MBq	Effective Dose, mSv	Dose to Uterus, mSv
11С	L-methyl-methionine	Brain tumor imaging	400	2	1
11C	L-methyl-methionine	Parathyroid imaging	400	2	1
¹³ N	Ammonia	Myocardial blood flow imaging	550	2	1
¹⁵ O	Water (bolus)	Cerebral blood flow imaging	2,000	2	1
¹⁵ O	Water (bolus)	Myocardial blood flow imaging	2,000	2	1
18F	FDG	Tumor imaging	400	10	7
18 F	FDG	Myocardial imaging	400	10	7
¹⁸ F	Fluoride	Bone imaging	250	7	5

Typical Effective Do Medicine Procedure	oses to Pedi es	atric Pat	ients from D	iagnostic Nu	clear	_
	Activity		Effective Dose p	er Procedure by	Patient Age ^a (m	Sv)
Radiopharmaceutical	for Adult Patient, MBq	Adult 70 kg [1.0]	15-Year-Old 55 kg [0.9]	10-Year-Old 3.3 kg [0.69]	5-Year-Old 18 kg [0.44]	1-Year-Old 10 kg [0.27]
^{sen} Tc MAG3 (normal renal function)	100	0.7	0.8	0.7	0.6	6.0
99m7: MAG3 (abnormal renal function)	100	0.6	0.7	0.7	0.5	0.5
9mTc DTPA (normal renal function)	300	1.6	1.8	2.1	1.8	2.2
⁹⁹ Tc DTPA (abnormal renal function)	300	1.4	1.6	1.9	1.8	2.0
^{99m} Tc DMSA (normal renal function)	80	0.7	0.7	0.8	0.8	0.8
Sim Tc pertechnetate (no thyroid block)	80	1.0	1.2	1.3	1.4	1.4
9mTc IDA (normal biliary function)	150	2.3	2.4	2.9	3.0	3.7
59m Tc HMPAO	500	4.7	5.0	5.9	5.7	6.5
^{99m} Tc leukocytes	200	2.2	2.7	3.0	2.9	3.4
^{39m} Tc erythrocytes	800	5.3	6.0	6.6	6.7	7.6
^{99m} Tc phosphates	600	3.6	3.7	4.1	4.2	4.9
59m Tc MIBI (resting)	400	3.3	4.0	4.4	4.8	5.4
201 Tl chloride	80	20	30	129	95	86
¹²⁵ Liodide (55% thyroid uptake)	20	7.2	10.2	12.1	16.3	18.8
¹²⁵ Liedide (total thyroid block)	20	0.2	0.3	0.3	0.3	0.3
1251 MIBG (no impurity)	400	5.6	6.5	9.1	8.8	10.1
©Ga citrate	150	15	18.9	22.8	23.1	27.9

Thyroidal Radioiodine Dose to the Fetus Fetal/Maternal Ratio Dose to Fetal **Gestation Period** (Thyroid Gland) Thyroid, rad/ μ Ci^a 0.001 10-12 weeks ____ (precursors) 12-13 weeks 1.2 0.7 Second trimester 1.8 6 Third trimester 7.5 ----8 Birth imminent ---- a Rad/µCi of 131 Lingested by mother. Courtesy of Dr. J. Keriakes, unpublished data. 76

Dose Estimate to Embryo from	n Radiopharmaceuticals
Radiopharmaceutical	Embryo Dose, rad/mC Administered
⁶⁷ Ga citrate	0.25
⁵ Se methionine	3.8
99m TC DTPA	0.035
^{99m} Tc human serum albumin	0.018
^{99m} Tc lungaggregate	0.035
^{99m} Tc polyphosphate	0.036
^{99m} Tc sodium pertechnetate	0.037
^{99m} Tc stannous glucoheptonate	0.04
^{99m} Tc sulfur colloid	0.032
1231 sodium iodide (15% uptake)	0.032
¹³¹ I sodium iodide (15% uptake)	0.1
1231 rose bengal	0.13
131 I rose bengal	0.68

51 55 5	Radiation Weighting Factor, W _R
Photons	1
Electrons	1
Protons	2
α-Particles, fission fragments, heavy nuclei	20
Neutrons	A continuous curve is recommended with a maximum of 20 for the most effective neutrons of about 1 MeV
ased on International Commission on Radiological and radiation weighting factor (W _R). ICRP Publica f a tissue or organ were exposed ons, the equivalent dose would b	Protection: Relative biological effectiveness (RBE), quality factor (Q), tion 92, Oxford, UK, Elsevier Science Ltd, 2004.

Lung, stomach, colon, bone marrow, breast, and remainder60.120.72Gonads10.080.08Thyroid, esophagus, bladder, and liver40.040.16Bone surface, skin, brain, and salivary glands40.010.04	Organ/Tissue	Number of tissues	\mathbf{w}_{T}	Total contribution
Gonads 1 0.08 0.08 Thyroid, esophagus, bladder, and liver 4 0.04 0.16 Bone surface, skin, brain, and salivary glands 4 0.01 0.04	Lung, stomach, colon, bone marrow, breast, and remainder	6	0.12	0.72
Thyroid, esophagus, bladder, and liver 4 0.04 0.16 Bone surface, skin, brain, and 4 0.01 0.04 salivary glands The creatified remainder tissue (14 in total 13 in each car) are advands, extrathomain tissue (FT), call bladder, here	Gonads	1	0.08	0.08
Bone surface, skin, brain, and 4 0.01 0.04 salivary glands	Thyroid, esophagus, bladder, and liver	4	0.04	0.16
The energified remainder ticcuse (14 in total 12 in each car) are adrenale, extrathonacia ticcus (ET), call bladder bee	Bone surface, skin, brain, and salivary glands	4	0.01	0.04
rie specified remainder ussues (14 in total, 15 in each sex) are adrenais, extrationate ussue (E1), gan bladder, nea neys, lymphatic nodes, muscle, oral mucosa, pancreas, prostate (m), small intestine (SI), spleen, thymus, uterus/cerv From ICRP 2007.	The specified remainder tissues (14 in total, 13 in ea heys, lymphatic nodes, muscle, oral mucosa, pancrea From ICRP 2007.	ich sex) are adrenals, extrathor is, prostate (m), small intestin	racic tissue e (SI), splee	(ET), gall bladder, heart, kid- n, thymus, uterus/cervix (f).

		Unit	:
Quantity	Definition	New	Old
Absorbed dose	Energy per unit mass	Gray	Rad
For individuals			
Equivalent dose (Radiation weighted dose)	Average dose \times radiation weighting factor	Sievert	Rem
Effective dose	Sum of equivalent doses to organs and tissues exposed, each multiplied by the appropriate tissue weighting factor	Sievert	Rem
Committed equivalent dose	Equivalent dose integrated over 50 years (relevant to incorporaated radionuclides)	Sievert	Rem
Committed effective dose	Effective dose integrated over 50 years (relevant to incorporated radionuclides)	Sievert	Rem
For populations			
Collective effective dose	Product of the average effective dose and the number of individuals exposed	Person-sievert	Man-rem
Collective committed effective dose	integration of the collective dose over 50 years (relevant to incorporated radionuclides)	Person-sievert	Man-rem

	NCRP	ICRP (If Different)
Occupational Exposure:	·····	
Stochastic effects: effective dose limits		
Cumulative	$10 \text{ mSv} \times \text{age}$	20 mSv/y averaged over 5 years
Annual	50 mSv/y	
Deterministic effects: dose equivalent limits		
for tissues and organs (annual):		
Lens of eye	150 mSv/v	_
Skin, hands, and feet	500 mSv/y	
Embryo/Fetus Exposure:		
Effective dose limit after pregnancy declared	0.5 mSv/month	Total of 2 mSv to abdomen surface
Public Exposure (annual):		
Effective dose limit, continuous or frequent		
exposure	1 mSv/y	No distinction between frequent
Effective dose limit, infrequent exposure	5 mSv/y	and infrequent1 mSv/y
Dose equivalent limits of lens of eye, skin,		
and extremities	50 mSv/y	_
Education and Training Exposure (annual):		
Effective dose limit	1 mSv/y	No statement
Dose equivalent limit for lens of eye	15 mSv/y	No statement
Skin and extremities	50 mSv/y	No statement
Negligible Individual Dose (annual):	0.01 mSv/y	No statement

Deleterious Effects of Radiation t Highlight the Need for Protection	hat
End Point	Risk Estimate
Severe mental retardation:	
Exposure of embryo/fetus (8–15 weeks)	40%/Sv
Carcinogenesis:	
General population (low dose, low dose rate)	5%/Sv
Hereditary effects:	
General population	0.2%/Sv

1989) for Worker	s in the United	d States
	Mean Rate 1976 10 ⁻⁶ y ⁻¹	Mean Rat 1989 10 ⁻⁶ y ⁻¹
All groups	142	90
Trade	. 64	40
Manufacture	89	60
Service	86	40
Government	111	90
Transport/public utilities	313	240
Construction	568	320
Mines and guarries	625	430
Agriculture (1973-1980)	541	400

I

	Detrim	ent 10 ⁻² Sv ⁻¹	
	Fatal and Non-Fatal Cancers	Hereditary Effects	Total
Adult radiation workers	4.6	0.1	4.7
Whole population	5.9	0.2	6.1
ABLE 17.6 Cancer Risks f from Age 18 t	cation 92, Oxford, UK, Elsevier Science Ltd, 2004. for a Radiation Worker Receivin to 65 years	g the Maximum Permis	ssible Dose
ABLE 17.6 Cancer Risks f from Age 18 t	cation 92, Oxford, UK, Elsevier Science Itd, 2004. for a Radiation Worker Receivin to 65 years Total Dose	g the Maximum Permis Cancer Incidence	Cancer Mortalit
ABLE 17.6 Cancer Risks f from Age 18 t ule IRC 50 mSv/y	cation 92, Oxford, UK, Elsevier Science Ltd, 2004. for a Radiation Worker Receivin o 65 years Total Dose 2.35 Sv	g the Maximum Permis Cancer Incidence 19.0	Cancer Mortalit