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PSPICE: device non-uniformity 

modeling and other examples

Lecture 10

Special Topics:

Device Modeling

Outline

• PSpice for study of device non-uniformity

• Other applications

– Propagation of signal in PV cell

– FET system for cancer drug studies

• Hands-on session

– Editing PSPICE models

– Modeling mini-module example file

Introduction

• Semiconductor device modeling in 2-D 

and 3-D through equivalent circuits

• Applicable to modeling of any other 

problems involving electro-magnetic 

signals

• Basic approach: draw equivalent circuit, 

vary part models, parameters, etc.

PV device performance

J

V

Voc

Jsc
FF Roc

Rsc FFIVP
SCOC


max

• Voc is the open-circuit voltage

• Isc is the short-circuit current

• FF is the fill factor

• Pmax is the maximum power

• η is the efficiency
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The input power for efficiency 

calculations is 1 kW/m2 or 100 mW/cm2

PV device performance

• Example of the shunt (RSC=>0) effect on IV curve 

and major PV parameters
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Study of PV device non-uniformity

• Device is represented by equivalent circuits 

for 2D or 3D connections

• Applicable at a cell, cell-on-a-substrate, 

module, or PV field levels

• Device optimization, influence of 

component parameters, and various other 

phenomena can be studied
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Study of PV device non-uniformity

• Introduced distributions of PV parameters (Voc, 

Jsc, Rser, Rsh), both statistical and spatial

• Calculated resulting device efficiency dependent 

on changes in:

– Module size and disorder amplitude

– Series and interconnect resistances 

– Shunting-like phenomena

Diana Shvydka and V. G. Karpov, Power generation in random diode arrays,

Phys. Rev. B 71, 2005, pp. 115314-1-5.

Diana Shvydka and V. G. Karpov, Modeling of nonuniformity losses in integrated 

large area solar cell modules, Proc. 31st IEEE PVSC, Florida, 2005, pp 359-362. 

PV non-uniformity: Equivalent 

circuit for module
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Integrated module –

3 linear cells in-series 

through metallized scribes

Equivalent circuit 

3 by 4 sub-cells, lump 

parameters
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PV non-uniformity: PSPICE 

Schematics

• Represents 2x1 ft module with 1 cm2 cells

• 58 linear cells in series, 29 sub-cells in parallel, total 1682 sub-cells

• Parameters: Voc, Jsc, Rs, Rsh, Rr (one fluctuating)
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PV non-uniformity: Procedure
1. Generate parameter distributions:

statistics – by first three moments (average, SD, and skewness );

geometry – assign values to sub-cells

2. Model J-V curve of non-uniform module, calculate relative 

efficiency:

or relative mismatch loss:

3. Study dependence on module size, degree of disorder
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PV non-uniformity: Parameter 

distributions
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PV non-uniformity: Module 

size dependence

• SD of relative efficiency changes by 2 orders 

• Module size changes from 3x3 to 35x35 sub-cells

• For large module mismatch loss converges 

• Each point obtained on 20 simulations
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PV non-uniformity: Disorder 

Dependence

Voc disorder:

m ~ 8% for moderate disorder Voc ~ 13%

m ~ 30% for higher degree of disorder Voc ~ 30%
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PV non-uniformity: Series and 

scribe resistances

Large module 29x56 sub-cells, disorder in Voc (Voc ~ 13%)

Low resistance promotes non-uniformity losses
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PV non-uniformity: Shunting-like 

phenomena
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Large module 29x56 sub-cells, disorder in Voc (Voc ~ 13%)

Effect of shunts and “holes” is comparable at fraction < 0.1 

Shunt: 

Rsh=0

‘Hole’: 

Rs=0 and low Voc

PV non-uniformity: Conclusions

• Parameter distribution statistics plays the dominant 

role in resulting module efficiency; geometry has a 

minor effect 

• Mismatch loss is almost independent of the module 

size; depends on degree of disorder 

• Module series and scribe resistances interfere with 

non-uniformity effects 

• Shunting entities close to scribes and bus bars can be 

a significant efficiency loss factor

Propagating electric impulses 

in thin film photovoltaics 

• Modeled a new physical phenomenon: solitons 

traveling in the lateral directions of thin-film PV

• A small signal perturbation decays while pulses of 

certain shape and amplitude propagate

• Soliton velocity depends on specific resistance, 

capacitance, and nonuniformity screening length

• Verified with experiment

T. K. Wilson, Diana Shvydka, and V. G. Karpov, Propagating 

electric impulses in thin film photovoltaics, Proc. 4th IEEE PV 

World Conference, Waikoloa, HI, 2006, pp 471 - 474.

Propagating electric impulses

• Equivalent circuit

• Experimental setup
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Propagating electric impulses: 

Parameters

• Considered circuits of 20 – 100 diodes with the 

parameters chosen to allow for pulse propagation 

trough the entire system 

• Typical parameters: Voc = 520 mV, j0 =0.15-

15mA, R=0.01 – 10 Ohm, C=5-2500 nF

• Rectangular pulses with varying amplitudes in the 

range of +/- 700 mV and durations 10-1000 ms

Propagating electric impulses: 

Edge effect
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Voltage on different diodes rescaled according 

to y=(Diode #)/L with L inversely proportional 

to the lateral resistance R. Higher resistances 

show good scaling, since L is considerably 

shorter than the system dimension. For low 

R=0.05 Ohm, L becomes comparable to the 

system dimension thus violating the scaling

Pulse shape on a given diode for systems 

with different capacitors measured at 

different instances and scaled as Q=t/t. The 

scaling fails for small C when velocity v 

becomes large enough for the pulse to span 

across the entire system and experience 

edge effects

Propagating electric impulses

• The predicted phenomenon of soliton propagation 

could develop into a future non-destructive 

diagnostic technique sensitive to device 

imperfections

• Applicable to the problem of electric pulse  

propagation in living tissues, particularly, nerves  

(axon of a giant squid system)

– Ion channels of biological membranes typically exhibit 

the diode-like IV characteristics

Impedance spectroscopy with field-effect transistor 

arrays for the analysis of anti-cancer drug action on 

individual cells
A. Susloparova, D. Koppenhofer, X.T. Vu, M. Weil, S. Ingebrandt

• Impedance spectroscopy measurements of silicon-based 

open-gate field-effect transistor (FET) devices were 

utilized to study the adhesion status of cancer cells at a 

single cell level

• A well-known chemotherapeutic drug, topotecan

hydrochloride, was used to investigate the effect of this 

drug to tumor cells cultured on the FET devices

• Real-time impedance measurements were performed to 

verify the design

Analysis of anti-cancer drug action Analysis of anti-cancer drug action

• The developed method could be applied 

for the analysis of the specificity and 

efficacy of novel anti-cancer drugs in 

cancer therapy research on a single cell 

level in parallelized measurements 
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Summary

• Semiconductor device modeling in 2-D and 

3-D through equivalent circuits

• Basic approach: draw equivalent circuit, 

vary part models, parameters, etc.

• Applicable to modeling of any other 

problems involving electro-magnetic signals

References

• OrCAD Capture user manual

• OrCAD PSpice user manual

• Additional references are given within slides


