University of Toledo Department of Physics and Astronomy

Course Number: Course: Course Description:	Phys 4430 Medical Physics I This course provides an overview of the physical principles and instrumentation of the major medical imaging modalities including projection radiography, and computed tomography. In addition the course will present a general prospective on use of radiation in cancer treatment including discussions on basic conventional radiotherapy, advanced image guided radiotherapy and treatment planning.		
Course Schedule: Credits: Instructors: Prerequisite:	Tuesdays 9:30 – 12:00 3 credit hrs Drs. Parsai, Shvydka, Pearson, Sperling, and Krugh. Consent of the primary instructors		
Course Objectives:	 Upon completion of the course, the student will: Have an understanding of the basic physical principles of x-ray production, radioactivity and radionuclide production, and the interaction of radiation with matter. Understand characteristics of digital images including aspects of image quality such as spatial resolution, contrast, noise, and artifacts. Have developed an understanding of the basic instrumentation and processes for image formation in projection radiography, and computed tomography. Understands the applications of imaging in radiotherapy Will learn about treatment of cancer patients through external beam radiotherapy and the extensive related physical concepts in calculation of radiation dose to targeted volumes, as well as techniques to spare the healthy normal tissue through intensity modulated radiotherapy. Will develop an understanding of advanced techniques such as IGRT and Inverse Planning in radiotherapy applications. 		
Required Text: Supplemental Text: Grading:	Hendee & Rietnouir, Medical Imaging Physics, 4 th Edition Pawlicki, Scanderbeg, Starkschall, Hendee's Radiation Therapy Physics, 4 th edition (available online through UT library) The grade will be based on results of Mid-term and Final exams		

Course Calendar:

Week/Date:	Topic:	Instructor
Week 1 (8/29)	Basic physics of radiation	EP
Week 2 (9/5)	Machines for producing radiation	DP
Week 3 (9/12)	Measurement of ionizing radiation	DS
Week 4 (9/19)	Digital images and aspects of image quality	KK
Week 5 (9/26)	X-ray tubes and x-ray production	DS

Week 6 (10/3)	Projection radiography	KK
Week 7 (10/10)	Computed tomography	KK
(10/17)	FALL BREAK	
Week 8 (10/24)	MIDTERM EXAM	
Week 9 (10/31)	The Physical and Biological Basis of Radiation	EP
	Oncology	
Week 10 (11/7)	Calibration of Megavoltage beams of X-rays and	DP
	electrons	
Week 11 (11/14)	External beam dose calculation for photon and	DP
	electrons	
Week 12 (11/21)	External beam treatment planning and delivery	NS
Week 13 (11/28)	Tumor targeting, image guided and adaptive	NS
	radiotherapy	
Week 14 (12/5)	Radiation Oncology Informatics	NS
Week 15 (12/12)	FINAL EXAM	