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Introduction
• Radiological physics studies ionizing 

radiation and its interaction with matter
• Began with discovery of x-rays, 

radioactivity and radium in 1890s
• Special interest is in the energy absorbed 

in matter
• Radiation dosimetry deals with 

quantitative determination of the energy 
absorbed in matter

Ionizing radiation

• By general definition ionizing radiation is 
characterized by its ability to excite and 
ionize atoms of matter

• Lowest atomic ionization energy is ~ eV, 
with very little penetration

• Energies relevant to radiological physics 
and radiation therapy are in keV – MeV 
range

Types and sources of ionizing 
radiation

• -rays: electromagnetic radiation (photons) emitted 
from a nucleus or in annihilation reaction
– Practical energy range from 2.6 keV (K from electron capture 

in 37
18Ar) to 6.1 and 7.1 MeV (-rays from 16

7N)

• x-rays: electromagnetic radiation (photons) emitted by 
charged particles (characteristic or bremsstrahlung 
processes). Energies:
– 0.1-20 kV “soft” x-rays
– 20-120 kV diagnostic range
– 120-300 kV orthovoltage x-rays
– 300 kV-1 MV intermediate energy x-rays
– 1 MV and up megavoltage x-rays

Types and sources of ionizing 
radiation

• Fast electrons (positrons) emitted from nuclei (-
rays) or in charged-particle collisions (-rays). 
Other sources: Van de Graaf generators, linacs,
betatrons, and microtrons

• Heavy charged particles emitted by some 
radioactive nuclei (-particles), cyclotrons, heavy 
particle linacs (protons, deuterons, ions of heavier 
elements, etc.)

• Neutrons produced by nuclear reactions (cannot be 
accelerated electrostatically)



Types of interaction

• ICRU (The International Commission on Radiation 
Units and Measurements; established in 1925) 
terminology

• Directly ionizing radiation: by charged particles, 
delivering their energy to the matter directly through 
multiple Coulomb interactions along the track

• Indirectly ionizing radiation: by photons (x-rays or -
rays) and neutrons, which transfer their energy to 
charged particles (two-step process)

Description of ionizing 
radiation fields

• To describe radiation field at a point P need to 
define non-zero volume around it

• Can use stochastic or non-stochastic physical 
quantities

Stochastic quantities

• Values occur randomly, cannot be predicted 

• Radiation is random in nature, associated physical 
quantities are described by probability distributions

• Defined for finite domains (non-zero volumes)

• The expectation value of a stochastic quantity (e.g. 
number of x-rays detected per measurement) is the 
mean of its measured value for infinite number of 
measurements
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Stochastic quantities
• For a “constant” radiation field a number of x-rays 

observed at point P per unit area and time interval 
follows Poisson distribution

• For large number of events it may be approximated 
by normal (Gaussian) distribution, characterized by 
standard deviation  (or corresponding  percentage 
standard deviation S) for a single measurement
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Stochastic quantities
• Normal (Gaussian) distribution is described by 

probability density function P(x)
• Mean    determines position of the maximum, standard 

deviation      defines the width of the distribution
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Stochastic quantities
• For a given number of measurements n standard 

deviation is defined as

• will have a 68.3% chance of lying within interval  
of Ne, 95.5% to be within        , and 99.7% to be within 
interval         . No experiment-related fluctuations 
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Stochastic quantities
• In practice one always uses a detector. An estimated 

precision (proximity to Ne) of any single random 
measurement Ni 

• Determined from the data of n such measurements
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Stochastic quantities
• An estimate of the precision (proximity to Ne) of the 

mean value      measured with a detector n times

• Ne is as correct as your experimental setup 
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Stochastic quantities: Example
• A -ray detector having 100% counting efficiency is positioned 

in a constant field, making 10 measurements of equal duration,
t=100s (exactly). The average number of rays detected 
(“counts”) per measurement is 1.00x105. What is the mean value 
of the count rate C, including a statement of its precision (i.e., 
standard deviation)?

• Here the standard deviation is due entirely to the stochastic nature 
of the field, since detector is 100% efficient
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Non-stochastic quantities
• For given conditions the value of non-stochastic 

quantity can, in principle, be calculated
• In general, it is a “point function” defined for 

infinitesimal volumes
– It is a continuous and differentiable function of space and 

time; with defined spatial gradient and time rate of change

• Its value is equal to, or based upon, the expectation 
value of a related stochastic quantity, if one exists
– In general does not need to be related to stochastic 

quantities, they are related in description of ionizing 
radiation

Description of radiation fields 
by non-stochastic quantities

• Fluence

• Flux Density (or Fluence Rate)

• Energy Fluence

• Energy Flux Density (or Energy Fluence 
Rate)

Non-stochastic quantities: 
Fluence

• A number of rays crossing an infinitesimal 
area surrounding point P, define fluence as

• Units of m-2 or cm-2

da

dNe



Non-stochastic quantities: 
Flux density (Fluence rate)

• An increment in fluence over an infinitesimally small 
time interval

• Units of m-2 s-1 or cm-2 s-1

• Fluence can be found through integration:
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Non-stochastic quantities: 
Energy fluence

• For an expectation value R of the energy carried by all 
the Ne rays crossing an infinitesimal area surrounding 
point P, define energy fluence as

• Units of J m-2 or erg cm-2

• If all rays have energy E
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Non-stochastic quantities: Energy flux 
density (Energy fluence rate)

• An increment in energy fluence over an infinitesimally 
small time interval

• Units of J m-2 s-1 or erg cm-2 s-1

• Energy fluence can be found by integration:
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Differential distributions

• More complete description of radiation field 
is often needed

• Generally, flux density, fluence, energy flux 
density, or energy fluence depend on all 
variables: , , or E

• Simpler, more useful differential 
distributions are those which are functions 
of only one of the variables

Differential distributions by 
energy and angle of incidence

• Differential flux density as a 
function of energy and angles of 
incidence: distribution

• Typical units are m-2 s-1sr-1keV-1

• Integration over all variables 
gives the flux density:
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Differential distributions: 
Energy spectra

• If a quantity is a function of energy only, such 
distribution is called the energy spectrum (e.g.        )

• Typical units are m-2 s-1keV-1 or cm-2 s-1keV-1

• Integration over angular variables gives flux density 
spectrum

• Similarly, may define energy flux density
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Differential distributions: 
Energy spectrum example

• A “flat” distribution  
of photon flux density

• Energy flux density 
spectrum is found by

• Typically units for E 
are joule or erg, so that 
[’] = Jm-2s-1keV-1
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Example: Problem 1.8

An x-ray field at a point P contains 7.5x108

photons/(m2-sec-keV), uniformly 
distributed from 10 to 100 keV.

a) What is the photon flux density at P?

b) What would be the photon fluence in one hour?

c) What is the corresponding energy fluence, in 
J/m2 and erg/cm2?

Example: Problem 1.8
Energy spectrum of a flux density            7.5x108 photons/m2-sec-keV

a) Photon flux density

b) The photon fluence in one hour

c) The corresponding energy fluence, in J/m2 and erg/cm2
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Differential distributions:
Angular distributions

• Full differential 
distribution integrated 
over energy leaves 
only angular 
dependence 

• Often the field is 
symmetrical with 
respect to a certain 
direction, then only 
dependence on polar 
angle  or azimuthal
angle 

Azimuthal symmetry: a) accelerator beam after primary collimator; 
b) brachytherapy surface applicator

a) b)

Differential distributions:
Angular distributions

• If the field is symmetrical with respect to the 
vertical (z) axis, it is independent of azimuthal
angle 

• This results in distribution per unit polar angle

• Alternatively, can obtain distribution per unit 
solid angle for particles of all energies
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Differential distributions:
Angular distributions

Field isotropic per 
unit solid angle,

spherical symmetry

Distribution per unit 
polar angle, 
azimuthal symmetry

 ddd sin



Planar fluence

• Planar fluence: number of particles crossing a 
fixed plane in either direction (i.e., summed by 
scalar addition) per unit area of the plane

• Vector-sum quantity gives net flow – number 
of particles crossing a fixed plane in one 
direction minus those crossing in the opposite 
direction (used in MC calculations)

• Fluence vs. planar fluence – definition matters

Planar fluence
• Assume that the energy imparted is ~ 

proportional to the total track length 
of the rays crossing the detector

• For penetrating radiation both 
detectors will read more below the 
foil, E~|1/cos| times the number 
striking it above foil

• For non-penetrating rays the flat 
detector responds the same above 
and below the foil (~to only the 
number of x-rays striking it; track 
length is irrelevant)
– The energy deposited in this case is 

related to the planar fluence

Spherical and flat 
detectors of equal 
cross-section area

(foil)

Summary
• Types and sources of ionizing radiation

– -rays, x-rays, fast electrons, heavy charged 
particles, neutrons

• Description of ionizing radiation fields
– Standard deviation due random nature of 

radiation; accuracy of a measurement

– Non-stochastic quantities: fluence, flux density, 
energy fluence, energy flux density, differential 
distributions


