Quantities for Describing the Interaction of Ionizing Radiation with Matter

Chapter 2

F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry

Outline

- Kerma, components of kerma
- Absorbed dose
- Exposure
- Quantities for use in radiation protection
- Summary

Introduction

- Need to describe interactions of ionizing radiation with matter
- Special interest is in the energy absorbed in matter, absorbed dose delivered by directly ionizing radiation
- Two-step process for indirectly ionizing radiation involves kerma and absorbed dose

Energy transferred

- ε_{tr} energy transferred in a volume V to charged particles by indirectly ionizing radiation (photons and neutrons)
- Radiant energy *R* the energy of particles emitted, transferred, or received, *excluding* rest mass energy
- Q energy delivered from rest mass in V (positive if $m \rightarrow E$, negative for $E \rightarrow m$)

Energy transferred

• The energy transferred in a volume V

$$\varepsilon_{tr} = (R_{in})_{u} - (R_{out})_{u}^{nonr} + \sum Q$$

uncharged

- $(R_{out})_{u}^{nour}$ does not include radiative losses of kinetic energy by charged particles (bremsstrahlung or in-flight annihilation)
- Energy transferred is only the kinetic energy received by charged particles

Kerma

• Kerma *K* is the energy transferred to charged particles per unit mass

$$K = \frac{d(\varepsilon_{tr})_e}{dm} \equiv \frac{d\varepsilon_{tr}}{dm}$$

- Includes radiative losses by charged particles (bremsstrahlung or in-flight annihilation of positron)
- Excludes energy passed from one charged particle to another
- Units: 1 Gy = 1 J/kg = 10^2 rad = 10^4 erg/g

Relation of Kerma to Energy fluence for photons

• For mono-energetic photon of energy E and medium of atomic number Z, relation is through the mass energy-transfer coefficient:

$$K = \Psi \cdot \left(\frac{\mu_{tr}}{\rho}\right)_{E,Z}$$

• For a spectrum of energy fluence $\Psi'(E)$

$$K = \int_{E=0}^{E=E\max} \Psi'(E) \cdot \left(\frac{\mu_{ir}}{\rho}\right)_{E,Z} dE$$

Energy-transfer coefficient

- Linear energy-transfer coefficient μ_{tr} , units of m⁻¹ or cm⁻¹
- Mass energy-transfer coefficient $\left(\frac{\mu_{tr}}{\rho}\right)_{e,z}$, units of m²/kg or cm²/g
- Set of numerical values, tabulated for a range of photon energies, Appendix D.3

Relation of Kerma to Fluence for neutrons

- Neutron field is usually described in terms of fluence rather than energy fluence
- Kerma factor is tabulated instead (units are rad cm²/neutron, Appendix F)

$$(F_n)_{E,Z} = \left(\frac{\mu_{tr}}{\rho}\right)_{E,Z} \cdot H$$

• For mono-energetic neutrons $K = \Phi \cdot (F_n)_{EZ}$

Components of Kerma

- Energy received by charged particles may be spent in two ways
 - Collision interactions local dissipation of energy, ionization and excitation along electron track
 - Radiative ineractions, such as bremsstrahlung or positron annihilation, carry energy away from the track
- Kerma may be subdivided in two components, collision and radiative:

$$K = K_c + K_c$$

• When kerma is due to neutrons, resulting charged particles are much heavier, $K=K_c$

Collision Kerma

• Subtracting radiant energy emitted by charged particles from energy transferred results in *net* energy transferred locally

$$\varepsilon_{tr}^{net} = \varepsilon_{tr} - R_{u}^{r} = (R_{in})_{u} - (R_{out})_{u}^{nonr} - R_{u}^{r} + \sum Q$$

• Now collision kerma can be defined

$$K_c = \frac{d\varepsilon_{tr}^{m}}{dm}$$

Mass energy-absorption coefficient

• Since collision kerma represents energy deposited (absorbed) locally, introduce mass energy-absorption coefficient. For mono-energetic photon beam

$$K_{c} = \Psi \cdot \left(\frac{\mu_{en}}{\rho}\right)_{E,Z}$$

• Depends on materials present along particle track before reaching point P

Mass energy-absorption coefficient

• For low Z materials and low energy radiative losses are small, therefore values of μ_{tr} and μ_{en} are close

γ-ray Energy (MeV)	$100 \ (\mu_{\rm tr} - \mu_{\rm en})/\mu_{\rm tr}$		
	Z = 6	29	82
0.1	0	0	0
1.0	0	1.1	4.8
10	3.5	13.3	26

Kerma rate

• Kerma rate at point P and time t

$$\dot{K} = \frac{dK}{dt} = \frac{d}{dt} \left(\frac{d\varepsilon_{tr}}{dm} \right)$$

- Units of J/(kg s), erg/(g s), or rad/s
- Knowing kerma rate, kerma

$$K(t_0,t_1) = \int_{1}^{t_1} \dot{K}(t) dt$$

Absorbed dose

• Energy imparted by ionizing radiation to matter of mass m in volume V

$$\varepsilon = (R_{in})_{u} - (R_{out})_{u} + (R_{in})_{c} - (R_{out})_{c} + \sum Q$$

due to uncharged due to charged

• Absorbed dose is defined as

$$D = \frac{d\varepsilon}{dn}$$

• Units: $1 \text{ Gy} = 1 \text{ J/kg} = 10^2 \text{ rad} = 10^4 \text{ erg/g}$

• Absorbed dose rate:

$$\dot{D} = \frac{dD}{dt} = \frac{d}{dt} \left(\frac{d\varepsilon}{dm}\right)$$

Exposure

- Historically, was introduced before kerma and dose, measured in roentgen (R)
- · Defined as a quotient

$$X = \frac{dQ}{dm}$$

- *dQ* is absolute value of the total charge of the ions of one sign produced in air when all electrons liberated by photons in air of mass *dm* are completely stopped in air
- Ionization from the absorption of radiative loss of kinetic energy by electrons is not included

Exposure

- Exposure is the ionization equivalent of the collision kerma in air for x and γ-rays
- Introduce mean energy expended in a gas per ion pair formed, \overline{W} , constant for each gas, independent of incoming photon energy
- For dry air

$$\frac{\overline{W}_{air}}{e} = \frac{33.97 \text{ eV/i.p.}}{1.602 \times 10^{-19} \text{ C/electron}} \times 1.602 \times 10^{-19} \text{ J/eV}$$

= 33.97 J/C

Relation of exposure to energy fluence

• Exposure at a point due to energy fluence of mono-energetic photons

$$X = \Psi \cdot \left(\frac{\mu_{en}}{\rho}\right)_{E,air} \left(\frac{e}{\overline{W}}\right)_{air} = \left(K_c\right)_{air} \left(\frac{e}{\overline{W}}\right)_{air} = \left(K_c\right)_{air} / 33.97$$

• Unit of exposure roentgen R is defined as exposure producing in air one unit of esu of charge per 0.001293 g of air irradiated by the photons. Conversion $1R = 2.580 \times 10^{-4} \text{ C/kg}$

Significance of exposure

- Energy fluence is proportional to exposure for any given photon energy or spectrum
- Due to similarity in effective atomic number
 - Air can be made a tissue equivalent medium with respect to energy absorption – convenient in measurements
 - Collision kerma in muscle per unit of exposure is nearly independent of photon energy

Significance of exposure

- X-ray field at a point can be characterized by means of exposure regardless of whether there is air actually located at this point
- It implies that photon energy fluence at that point is such that it would produce exposure of a stated value
- Same is applicable to kerma or collision kerma, except that reference medium (not necessarily air) has to be specified

Radiation protection quantities

- Quality factor Q weighting factor to be applied to absorbed dose to provide an estimate of the relative human hazard of ionizing radiation
- It is based on relative biological effectiveness (RBE) of a particular radiation source
- Q is dimensionless

Radiation protection quantities

- Dose equivalent *H*, is defined as $H \equiv DQN$
- Here D dose, Q- quality factor, N-product of modifiying factors (currently=1)
- Units of H:
 - severs, Sv, if dose is expressed in J/kg
 - rem, if dose is in rad (10⁻² J/kg)

Summary

- Quantities for Describing the interaction of ionizing radiation with matter
 - Kerma, components of kerma
 - Absorbed dose
 - Exposure
- Relationship with fluence and energy fluence
- Quantities for use in radiation protection
 - Quality factor Q
 - Dose equivalent H