The Oxygen Effect; Re-oxygenation; Linear Energy Transfer; and Relative Biological Effectiveness

> (Chapters 6, and 7) Feb 2017

OER

- For Oxygen effect to be observed, O₂ is required either
 - during irradiation, or
 - soon (very!) after irradiation
 - accelerator pulse of e^{-} followed by "exploding" O_2
 - + ${\rm O}_2$ required within a few μs after exposure

OER, timing

 Sophisticated experiments have been performed in which oxygen, contained in a chamber at high pressure, was allowed to "explode" onto a single layer of bacteria (and later mammalian cells) at various times before or after irradiation with a 2-μS electron pulse from a linear accelerator.

9

- It was found that oxygen need not be present during the irradiation to sensitize but could be added *afterward*, provided the delay was not too long.
- Some sensitization occurred with oxygen added as late as 5 ms after irradiation.

Two Conditions of Hypoxia

- Chronic hypoxia
 - limited diffusion distance of O₂ through respiring tissues
 - tumors may outgrow blood supply, have O₂ starved regions
- Acute hypoxia
 - Develops when blood vessels has blockage or are temporarily shut down.
 - There is evidence that tumor blood vessels open and close randomly. So this condition occurs when there is transient fluctuations in blood flow due to malformed vasculature.

Reoxygenation

- During fractionated treatments, oxygen status varies in cells and is dynamic
- As cells die, hypoxic cells within the tumor obtain more oxygen to improve their oxygen status
 - these cells have an increased OER which makes the next dose fraction more effective

23

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

- Two forms of hypoxia: acute and chronic
- Reoxygenation
 - process by which cells that are hypoxic become oxygenated
 - currently unknown in (most) human tumors
 - tumors that do not respond to radiotherapy may be those that do not reoxygenate

Chapter 7 - Lecture Topics

- Linear energy transfer (LET)
- Relative biological effectiveness (RBE)
- RBE and fractionated doses
- RBE in different cells and tissues
- RBE as a function of LET
- Optimal LET and factors that determine RBE
- The Oxygen effect and LET
- Quality factors & radiation weighting factors

- Low-LET (sparsely ionizing radiation)
 - x-rays
 - gamma
 - betas (higher energy)
- High-LET (densely ionizing radiation)
 - alphas
 - betas (lower energy)
 - protons
 - neutrons

35

LET o	of Charge	ed Pai	rticles				
		Particle	Mass (amu)	Charge	Energy (keV)	Average LET (keV/µm) ^a	Tissue Penetration (µm)
Energy		Electron	0.00055	-1	1	12.3	0.01
	LET				10	2.3	1
					100	0.42	180
					1,000	0.25	4,000 (0.4 cm)
		Proton	1	+ 1	100	90	3
					2,000	16	80
					5,000	8	350
				11.	10,000	4	1,400
		Alpha	4	+ 2	100	260	1
					5,000	95	35 (.0035 cm)
					200,000	5	200,000
							38

• LET of photons tends to increase with energy

• very high energies are an exception

Rays	Energy (MeV)	Average LET (keV/µm) x(10 ⁻³) ^b
x, gamma	0.080	1.0
	0.120	1.4
	0.140	1.5
	0.511	3.5
	1.000	5.2

40

