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Radioactive decay

Chapter 6

F.A. Attix, Introduction to Radiological 

Physics and Radiation Dosimetry

Outline

• Decay constants

• Mean life and half life

• Parent-daughter relationships; removal of 

daughter products

• Radioactivation by nuclear interactions

• Exposure-rate constant

• Summary

Introduction

• Particles inside a nucleus are in constant motion

• Natural radioactivity: a particle can escape from a 
nucleus if it acquires enough energy

• Most lighter atoms with Z<82 (lead) have at least 
one stable isotope

• All atoms with Z > 82 are radioactive and 
disintegrate until a stable isotope is formed

• Artificial radioactivity: nucleus can be made unstable 
upon bombardment with neutrons, high energy 
protons, etc.

Total decay constants

• Consider a large number N of identical 
radioactive atoms

• The rate of change in N at any time 

• We define  as the total radioactive decay
(or transformation) constant, it has the 
dimensions reciprocal time (usually s-1)

N
dt

dN


Total decay constants

• The product of t (for a time interval 

t<<1/) is the probability that an individual 

atom will decay during that time interval

• The expectation value of the total number of 

atoms in the group that disintegrate per unit 

of time (t<<1/) is called the activity of the 

group, N

Total decay constants

• Integrating the rate of change in number of 

atoms we find

• The ratio of activities at time t to that at t0 = 0

te
N

N 
0

te
N

N 



 
0
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Partial decay constants

• If a nucleus has more than one possible mode 

of disintegration (i.e., to different daughter 

products), the total decay constant can be 

written as the sum of the partial decay 

constants i:

• The total activity is

 BA 

 BA NNN 

Partial decay constants

• The partial activity of the group of N nuclei with 
respect to the ith mode of disintegration can be 
written

• Each partial activity iN decays at the rate 
determined by the total decay constant  since the 
stock of nuclei (N) available at time t for each type 
of disintegration is the same for all types, and its 
depletion is the result of their combined activity

• The fractions iN/N are constant

t

ii eNN   0

Units of activity

• The old unit of activity was the Curie (Ci), originally 

defined as the number of disintegrations per second 

occurring in a mass of 1 g of 226Ra

• When the activity of 226Ra was measured more 

accurately the Curie was set equal to 3.7  1010 s-1

• More recently it was decided by an international 

standards body to establish a new special unit for 

activity, the becquerel (Bq), equal to 1 s-1

Bq 107.3Ci 1 10

Mean life and half life

• The expectation value of the time needed for an initial 

population of N0 radioactive nuclei to decay to 1/e of their 

original number is called the mean life =1/

•  represents the average lifetime of an individual nucleus

•  is also the time that would be needed for all the nuclei to 
disintegrate if the initial activity of the group, N0, were 
maintained constant instead of decreasing exponentially













1ln

3679.0
1

1

0

e

e
eN

N

Mean life and half life

• The half-life 1/2 is the expectation value of 

the time required for one-half of the initial 

number of nuclei to disintegrate, and hence 

for the activity to decrease by half:








 

6391.0
6391.0

5.0

2/1

0

2/1






e
N

N

Mean life and half life

• Exponential decay characterized in terms of mean 

life and half life
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Radioactive parent-daughter 

relationships

• Consider an initially pure large population (N1)0 of 
parent nuclei, which start disintegrating with a 
decay constant 1 at time t = 0

• The number of parent nuclei remaining at time t is 
N1 = (N1)0e

-1t

• Simultaneously the daughter will disintegrate with a 
decay constant of 2 (2nd generation doing the 
decaying )

• The rate of removal of the N2 daughter nuclei which 
exist at time t0 will -2N2

Radioactive parent-daughter 

relationships

• Thus the net rate of accumulation of the daughter 

nuclei at time t is

• The activity of the daughter product at any time t, 

assuming N2 = 0 at t = 0, is

  22011

2211
2

1 NeN

NN
dt

dN

t 










   tt
eeNN 21
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
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




Radioactive parent-daughter 

relationships

• The ration of daughter to parent activities vs. time:

• If 1 is composed of partial decay constants 1A, 
1B, and so on, resulting from disintegrations of A, 
B, … types, then the ratio for a particular type A is

  t
e

N

N
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Equilibria in parent-daughter 

activities

• The activity of a daughter resulting from an initially 

pure population of parent nuclei will be zero both at      

t = 0 and 

• We can find the time tm when 2N2 reaches a maximum

giving

   mm tt
ee

dt

Nd
21

21
22 0

 
 



 

12

12 /ln






mt

Equilibria in parent-daughter 

activities

• This maximum occurs at the same time that the 

activities of the parent and daughter are equal, but 

only if the parent has only one daughter (1A = 1)

• The specific relationship of the daughter’s activity 

to that of the parent depends upon the relative 

magnitudes of the total decay constants of parent 

(1) and daughter (2)

Daughter longer-lived than 

parent, 2 < 1

• For a single daughter product the ratio of activities

• This ratio increases continuously with t for all times

• Since 1N1 = 1 (N1)0e
-1t one can construct the activity 

curves vs. time for the representative case of metastable 

tellurium-131 decaying to its only daughter iodine-131; and 

thence to xenon-131:
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Daughter longer-lived than 

parent, 2 < 1

Qualitative relationship of activity vs. time for Te-131m as parent 

and I-131 as daughter

Daughter shorter-lived than 

parent, 2 > 1

• For t >> tm the value of the daughter/parent 

activity ratio becomes a constant, assuming N2 = 0 

at t = 0:

• The existence of such a constant ratio of activities 

is called transient equilibrium, in which the 

daughter activity decreases at the same rate as that 

of the parent

12
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N

Daughter shorter-lived than 

parent, 2 > 1

• If the decay scheme is branching to more than one 

daughter (1=1A+1B+…)

• For the special case of transient equilibrium where         

the activity of the Ath daughter is equal to its 

parent’s – secular equilibrium condition
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Daughter shorter-lived than 

parent, 2 > 1

• To estimate how close is the daughter to 

approaching a transient equilibrium with its parent 

we evaluate the ratio of activities at a time t = ntm
to that of the equilibrium time te:

 12 /ln
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Only daughter much shorter-

lived than parent, 2 >> 1

• For long times (t >> 2) the ratio of activities

the activity of the daughter very closely 
approximates that of the parent

• Such a special case of transient equilibrium, where 
the daughter and parent activities are practically 
equal, is called secular equilibrium (typically, with 
a long-lived parent “lasting through the ages”)

1
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Only daughter much shorter-

lived than parent, 2 >> 1

• An example of this is the relationship of 226Ra 

parent, decaying to 222Rn daughter, thence to 218Po:

• The ration of activities

Po Rn   Ra 218
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Only daughter much shorter-

lived than parent, 2 >> 1

• It can be shown that in a case 2 >> 1  all the progeny 

atoms will eventually be nearly in secular equilibrium with 

a relatively long-lived ancestor

Removal of daughter products

• For diagnostic or therapeutic applications of short-lived 
radioisotopes, it is useful to remove the daughter 
product from its relatively long-lived parent, which 
continues producing more daughter atoms for later 
removal and use

• The greatest yield per milking will be obtained at time 
tm since the previous milking, assuming complete 
removal of the daughter product each time

• Waiting much longer than tm results in loss of activity 
due to disintegrations of both parent and daughter

Removal of daughter products

• Assuming that the initial daughter activity is zero at 

time t = 0, the daughter’s activity at any later time t is 

obtained from

• This equation tells us how much of daughter activity 

exists at time t as a result of the parent-source 

disintegrations, regardless of whether or how often 

the daughter has been separated from its source

  t
eNN 121
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Radioactivation by nuclear 

interactions

• Stable nuclei may be transformed into radioactive 

species by bombardment with suitable particles, or 

photons of sufficiently high energy

• Thermal neutrons are particularly effective for this 

purpose, as they are electrically neutral, hence not 

repelled from the nucleus by Coulomb forces, and 

are readily captured by many kinds of nuclei

• Tables of isotopes list typical reactions which give 

rise to specific radionuclides

Radioactivation by nuclear 

interactions

• Let Nt be the number of target atoms present in the 

sample to be activated:

where NA = Avogadro’s constant (atoms/mole)

A = gram-atomic weight (g/mole), and

m = mass (g) of target atoms only in the

sample

A

mN
N A

t 

Radioactivation by nuclear 

interactions
• If  is the particle flux density (s-1cm-2) at the sample, and  is 

the interaction cross section (cm2/atom) for the activation 

process, then the initial rate of production (s-1) of activated 

atoms is

• The initial rate of production of activity of the radioactive 

source being created (Bq s-1) is given by

here  is the total radioactive decay constant of the new species

   
0

act
tN

dt

dN










 
    

0

act 


tN
dt
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











2/14/2011

6

Radioactivation by nuclear 

interactions
• If we may assume that  is constant and that Nt is 

not appreciably depleted as a result of the activation 
process, then the rates of production given by these 
equations are also constant

• As the population of active atoms increases, they 
decay at the rate Nact (s-1)

• Thus the net accumulation rate can be expressed as

act
act    NN

dt

dN
t  

Radioactivation by nuclear 

interactions
• After an irradiation time t >> =1/, the rate of decay equals 

the rate of production, reaching the equilibrium activity level

• Assuming Nact = 0 at t = 0, the activity in Bq at any time t

after the start of irradiation, can be expressed as

• If no decay occurs during the irradiation period t (which will be 

approximately correct if t << )

     act  te
NN 

     t

t

t

e
eNeNN     1  1actact

tNN t     act  

Radioactivation by nuclear 

interactions

Growth of a radionuclide of decay constant  due to a constant 

rate of nuclear interaction

Exposure-rate constant

• The exposure-rate constant  of a radioactive 
nuclide emitting photons is the quotient of l2(dX/dt)
by A, where (dX/dt) is the exposure rate due to 
photons of energy greater than , at a distance l from 
a point source of this nuclide having an activity A:

• Units are R m2 Ci-1 h-1 or R cm2 mCi-1 h-1

• It includes contributions of characteristic x-rays and 

internal bremsstrahlung



 









dt

dX

A

l 2

Exposure-rate constant

• The exposure-rate constant  was defined by the ICRU to replace the 

earlier specific gamma-ray constant , which only accounts for the exposure 

rate due to -rays

•  is greater than  by 2% or less, with except for Ra-226 (12%) and I-125 

(in which case  is only about 3% of  because K-fluorescence x-rays 

following electron capture constitute most of the photons emitted)

Exposure-rate constant

• We would like to calculate specific -ray constant  at a 

given point source; the exposure-rate constant  may be 

calculated in the same way by taking account of the 

additional x-ray photons (if any) emitted per disintegration

• At a location l meters (in vacuo) from a -ray point source 

having an activity A Ci, the flux density of photons of the 

single energy Ei is given by

where ki is the number of photons of energy Ei emitted per 

disintegration

  10944.2
 4

1
 107.3

2

9

2

10

l

Ak

l
Ak i

iEi




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Exposure-rate constant

• Flux density can be converted to energy flux density, 

expressed units of J/s m2 (while expressing Ei in MeV):

• And related to the exposure rate by recalling

)m (J/s     10717.4 2

2

4

l

EAk ii
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Exposure-rate constant

• For photons of energy Ei the exposure rate is given by

and the total exposure rate for all of the -ray energies 

Ei present is

i

iiii
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Exposure-rate constant

• Substituting the expression for the energy flux 

density, we obtain

• This can be converted into R/h, remembering that 

1 R = 2.58  10-4 C/kg and 3600 s = 1 h:

s C/kg 10389.1
1 air,
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Exposure-rate constant

• The specific -ray constant for this source is defined as the 

exposure rate from all -rays per curie of activity, 

normalized to a distance of 1 m by means of an inverse-

square-law correction:

where Ei is expressed in MeV and en/ in m2/kg

• If (en/)Ei,air is given instead in units of cm2/g, the constant 

in this equation is reduced to 19.38

h /Cim R 8.193 2

1 air,

en

2


 
























n

i E

ii

i

Ek
A

l

dt

dX





Exposure-rate constant

• Applying this to an example, 60Co, we note first that 
each disintegration is accompanied by the emission 
of two photons, 1.17 and 1.33 MeV

• Thus the value of ki is unity at both energies

• Using the mass energy absorption coefficient values 
for air at these energies are, we find

which is close to the value given in the table

h /Cim R 29.1

)00262.033.100270.017.1(8.193

2



Exposure-rate constant

• The exposure rate (R/hr) at a distance l meters 

from a point source of A curies is given by

where  is given for the source in R m2/Ci h, and 

attenuation and scattering by the surrounding 

medium are assumed to be negligible

2l

A

dt

dX 

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Exposure-rate constant

• A quantity called the air kerma rate constant that is related to 

the exposure rate constant was also defined by the ICRU

• The defining equation is

• The units recommended are m2 J kg-1 or m2 Gy Bq-1 s-1

• Unfortunately the ICRU chose the same symbol, , for this 

constant, which may cause confusion



 



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dt
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A
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Summary

• Decay constants

• Mean life and half life

• Parent-daughter relationships; removal of 

daughter products

• Radioactivation by nuclear interactions

• Exposure-rate constant


