

Department of Chemistry and

Biochemistry

Colloquium Speaker

Prof. Cláudio Verani

Department of Chemistry, Wayne State University, Detroit, MI

"Molecular Diodes, Corrosion Inhibitors, and Water-splitting Catalysts Inspired by the 5-coordinate Iron of Tyrosine Hydroxylase"

Abstract: A five-coordinate iron [N₂O₃] active center has been described for Tyrosine Hydroxylase, which catalyzes the hydroxylation of tyrosine to L-DOPA via a rich redox and radical-based sequence of mechanisms. Aiming at redox-responsive metallosurfactants for applications in molecular electronics, the Verani group developed asymmetric and phenolate-rich [^{HS}Fe^{III}(N₂O₃)] complexes to understand the electrochemical and spectroscopic behavior of such bioinspired environments. We will start this talk by focusing on the efforts to understand how five-coordinate molecular diodes for current rectification can be obtained by matching the energy of electrode Fermi levels with the SOMOS of HS3d⁶ iron(III) in [Fe^{III}(N₂O₃)] surfactants. We will then progress from this Fermi/SOMO argument to the use of similar environments for the mitigation of corrosion in metallic surfaces. Ligands will be adapted to accommodate $3d^{10}$ zinc(II) in [N₂O₂] environments, as a means to purposefully mismatch the Fermi/SOMO energies, thus preventing electronic communication between the surface and the corroding media. Then, we will discuss how these bioinspired [N₂O₃] environments can find further applications in catalytic water splitting when the ^{HS}3d⁵ iron(III) ion is replaced by a ^{LS}3d⁶ cobalt(III) capable of water oxidation in electroactivated monolayers. Finally, we will discuss how replacement of phenolates by pyridines generates Co(III)[N₂N₃] species capable of water reduction to H₂ with turnover numbers as high as 7,000.

Monday November 7th, 2016 4:00 pm WO 1205

Inquiries can be made of: Dr. Peter R. Andreana @ 419-530-1930 peter.andreana@utoledo.edu