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Larval fish are extremely variable in space and time while sampling of populations is generally restricted and
incomplete. However, estimates of abundance and mortality are important for understanding population
dynamics, habitat quality, and anthropogenic impacts. Acknowledging and addressing variability during
sampling and data analysis are imperative to producing informative estimates. A combination of spatially and
temporally distributed ichthyoplankton sampling and Bayesian hierarchical and state-space modeling was
used to partition variance and estimate abundance andmortality of larvalwalleye (Sander vitreus) in theMaumee
River during 2010 and 2011. System variability and degree of sampling coverage have a direct impact on the
quality of abundance estimates. Small scale factors (i.e., within site and day-to-day) accounted for the most
variation in larval walleye densities, therefore sampling should concentrate on capturing these sources. Bayesian
state-space modeling can improve estimates by sharing information through time, properly accounting for
uncertainty, and producing probability distribution based estimates. Larval fish are highly variable and difficult
to sample; however, the application of Bayesian methods during the data analysis process can lead to improved
estimates of abundance and informed management actions.

© 2014 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
Introduction

Estimates of larval fish abundance inform habitat protection,
restoration (Jones et al., 2003), and mitigation of water withdrawal
(Barnthouse, 2000) as well as providing insight into early life history
dynamics (Mion et al., 1998). In large river systems, migratory fish
larvae present a particular challenge as sampling is often restricted to
relatively few replicates (Cyr et al., 1992), thereby neglecting both
spatial and temporal information. Neglecting spatial and temporal
coverage during sampling can lead to potentiallymisleading abundance
estimates and uncertainty measures (Gibbs et al., 1998). Quantification
of larval fish abundance is complicated due to high spatial and temporal
variability (Cooper et al., 1981; Cyr et al., 1992; Snyder, 1978) driven by
stochastic environmental conditions (Doyle et al., 2009), water currents
(Martin and Paller, 2008; Roseman et al., 2005), time and location of
spawning (McKenna et al., 2008), and larval behavior (Houde, 1969).
Identifying sources of variability from the sampled data and accounting
for sparse and variable data in the analysis process will ultimately lead
to improved estimates of larval fish abundance.

The Maumee River, a tributary of western Lake Erie supports a
distinct spawning population of migratory walleye (Sander vitreus)
R. DuFour).

es Research. Published by Elsevier B
(Merker and Woodruff, 1996; Strange and Stepien, 2007) which con-
tributes to an important regional fishery (Gentner and Burr, 2010).
The Maumee River population is part of a multi-stock system, with
additional stocks reproducing in large tributaries (i.e., Detroit and
Sandusky Rivers) as well as an open lake reef complex. Although these
few large stocks are vital to the Lake Erie walleye population, critical
information such as relative contribution from each system and patterns
in annual system-specific production remain unknown. Annual estimates
of larval abundance would help quantify the relative contribution of the
Maumee River stock to lake-wide production and define its importance
as a spawning and nursery habitat. This type of information could help
guidemanagement decisions on stock specific harvest policies andhabitat
restoration and protection. Additionally, abundance estimates are needed
to assess the impact of larval entrainment into a coal fired power plant
near the mouth of the Maumee River which may impact contribution
from this system. Given the importance of larval fish production within
the Maumee and other riverine spawning systems (Mion et al., 1998;
Rutherford et al., 1997), it is critical to apply methods that account for
the intrinsic challenges of sampling and estimating larval fish abundance.

Two data analysis methods, in particular, can help improve the
estimation of larval fish abundance in large rivers. As part of the
sampling process, current sample data can be evaluated with variance
partitioning models, quantifying the relative importance of variation
from spatial and temporal sources at multiple scales (Sims et al.,
.V. All rights reserved.
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2006). This information can be used to inform subsequent sample allo-
cation and ensure the capture of natural variation in the larval drift, im-
proving sampling protocols and data quality. Post data-collection, state-
space models allow for biological realism in the estimation procedure
by accommodating spatial and temporal correlations in the observation
and evolution processes (Harvey and Fernandes, 1989; Kery and
Schaub, 2012; Wagner et al., 2013) while simultaneously accounting
for spatial, temporal and process uncertainties (Cressie et al., 2009).
These models limit the assumptions made about temporal trends in
abundance. Although thesemodels can be fit with traditionalmaximum
likelihood methods, the intrinsic nature of larval fish data (i.e., sparse
and variable) may necessitate a more flexible framework.

Bayesian hierarchical methods provide a framework for handling
highly variable and potentially sparse larval fish data leading to
improved estimates of larval abundance. These methods allow the
sharing of information within groups based on an assumption of
exchangeability. Exchangeability is assumedwhen there is a reasonable
expectation that estimates (e.g., mean) among groups are related;
however, there is no available information, such as a measured
co-variate, to describe this relationship. The relationship between
groups is then described with a higher level (i.e., global) distribution
(Ntzoufras, 2009), where the individual group means are assumed to
be drawn from the global group mean. During analysis, individual
group means are adjusted toward the global group mean, a process
called “shrinkage”. The degree of “shrinkage” depends on the strength
of information in the individual and global groups. Groups with low
sample size or high variation indicate less strength of information, and
therefore receive a greater degree of “shrinkage” (Gelman and Hill,
2007; Gelman et al., 2014). The resulting estimates will improve as
the overall estimation error is reduced while the individual groups
maintain distinction (Efron and Morris, 1977). These methods are
particularly beneficial in situations where portions of a data set are
Fig. 1. Sampling area in lower Maumee River including representation
limited or highly variable, as the individual groups draw strength from
the ensemble. Consequently, Bayesian hierarchical methods should
provide an approach to sampling and estimating abundance of larval
fish in large rivers that is superior to other estimation methods.

The goal of this study is to evaluate larval walleye dynamics in the
Maumee River. Specific objectives include: 1) quantifying spatial and
temporal variability in larval walleye abundance to help inform sample
allocation, 2) highlighting a data analysis framework to best estimate
in-river abundance and mortality of larval walleye, and 3) comparing
the performance of our estimation method over a range of sampling
intensities along with conventional estimation methods. The results
from this study will provide local information on the dynamics of larval
walleye in theMaumee River and help improve larval fish sampling and
estimation in other large rivers.

Methods

Study site

The Maumee River, the largest tributary by watershed area in the
Great Lakes, enters Lake Erie along the southern shore of its western
basin, and supports an important spawning population of walleye
(Merker and Woodruff, 1996; Pritt et al., 2013) (Fig. 1). Walleye repro-
duction is concentrated between 25 and 30 km upstream, near
Perrysburg and Grand Rapids, OH (Mion et al., 1998; ODW, 2010).
After a period of incubation, larvae hatch and begin to drift downstream
toward the lake during which time fish are subjected to several sources
of mortality including: mechanical damage during transport, predation,
and deposition in low quality habitats (Jones et al., 2003; Mion et al.,
1998; Reutter and Herdendorf, 1984). The lower 12.5 km of the
Maumee River is highly modified, supporting heavy shipping
traffic and flows through the urbanized landscape of Toledo, OH
of spatial distribution of larval tows at sampling sites (A, B, and C).
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(Herdendorf, 1977). A coal fired power plant (i.e., the Bay Shore power
plant) located near the river mouth draws cooling water directly from
the river adding an additional source of mortality.

Sampling

We collected larvalwalleye in theMaumee River during spring 2010
and 2011 using paired ichthyoplankton bongo tows (Snyder, 1983).
The bongo frame was fit with 350 μm and 500 μm mesh conical
nets with 0.50 m diameter openings. Bongo nets were towed upstream
at ~1 m/s against the current for 3–5 min depending on debris load in
the river. Sample volumes were estimated with General Oceanics
2030R flow meters mounted in the mouth of each net. Larval fish
were identified, following Auer (1982), and enumerated in the lab.

Larval walleye samples were collected at three sites along the river
gradient, with multiple samples distributed spatially within the water
column at each location (Fig. 1). The upstream site (A) was located
just downstream of the lower reach of the primary walleye spawning
habitat. Samples collected at this site were used to estimate the
abundance of larval walleye emerging from the spawning riffles. The
river is relatively shallow at site (A) with a maximum depth of less
than 2.50 m. Three larval tow transects were designated at mid-depth
(~1.25 m) spanning the river at this site. The downstream site (B) was
located near the mouth of the river just upstream of the power plant
water intake canal and is maintained by dredging to depths of ~9 m.
Samples at this site were used to estimate the abundance of fish
surviving downstream transport. Five tow transects were designated
at this site; two near the east bank of the river (surface and
mid-depth, ~4.50 m), two in the shipping canal (surface and
mid-depth, ~4.50 m), and one near the shallow west bank (surface).
The power plant site (C) was located just downstream of site B within
the cooling water intake canal which draws water directly from the
river's east bank prior to its mouth. The intake canal was ~4.50 m
deep and ~65 m wide. Two tow transects were designated at this site;
one at surface and mid-depth (~2.25 m). Samples were collected
primarily during daylight hours in the spring (March–June) to target
the walleye hatch (Cooper et al., 1981; Mion et al., 1998).

There were distinct differences between the 2010 and 2011
sampling protocols; changes were made in response to extreme
observed temporal fluctuations in density in 2010. In 2010, samples
were collected only from the downstream (B) and power plant
(C) sites. In addition, samples were collected once per week with an
emphasis placed on collecting many samples at each site per day
(high spatial coverage and low temporal coverage). In 2011, the
upstream (A) site was added and the number of samples collected per
day was reduced, while two sample days were added per week
(intermediate spatial and temporal coverage). Additionally, sampling
was initiated early in the season at the upstream (A) site in 2011 to
monitor for the start of larval hatching. This site was closest to the
primary spawning grounds; and therefore, the first place larval fish
would appear in the drift. Once fish were observed at the upstream
location, sampling was initiated at the two downstream sites (B and
C). Density was assumed to be zero at all locations until the first fish
Table 1
Summary of sampling effort by year and site; total number of samples collected, number
of days sampled, and start and end sampling dates.

Year Site Samples Days Start End

2010 Downstream (B) 138 9 13-Apr 1-Jun
2010 Power plant (C) 106 9 13-Apr 1-Jun
Total 244 9 13-Apr 1-Jun

2011 Upstream (A) 84 19 29-Mar 7-Jun
2011 Downstream (B) 136 17 26-Apr 7-Jun
2011 Power Plant (C) 60 15 2-May 7-Jun
Total 280 22 29-Mar 7-Jun
were observed at the upstream (A) site. The total number of samples
collected over each season was similar however effort was shifted
from emphasizing spatial coverage in 2010 to a balance between spatial
and temporal coverage in 2011 (Table 1).

Daily water measurements

The expansion of organism density to total abundance requires
knowing the volume of the sampling environment (Royle, 2004),
which for passively drifting larval fish in river habitats, necessitates
measurements of daily system discharge. Mean daily river discharge
(water volume/day) was provided by the USGS National Water
Resources website (USGS Water Resources). Data were collected from
the National Stream Quality Accounting Network Station 04193500
located in Waterville, Ohio approximately 40 km upstream of the river
mouth. These valueswere used in the volume expansionof daily density
estimates to daily abundance at upstream (A) and downstream
(B) sampling locations in theMaumeeRiver (see the section on Estimat-
ing Abundance and mortality below). The Bay Shore power plant daily
water intake values (water volume/day) were provided by FirstEnergy
Corp. which measured the volume of water taken in and used in the
generator cooling facility (personal communication, FirstEnergy
Corp.). Power plant intake values were used in the volume expansion
of daily density estimates to daily abundance in the power plant
(C) sampling location (see the EstimatingAbundance andmortality sec-
tion below). Maumee River mean daily water temperature data were
provided by NOAA's Center for Operational Oceanographic Products
and Services. Data were collected from submerged temperature probes
(Station ID: g10201) approximately 12.5 km upstream of the Maumee
River mouth (NOAA Tides and Currents).

Larval walleye data

Within a site, each side of the bongo net was considered an
independent sample on each sampled day. Sample densities between
paired nets were most similar at high densities; however most of the
positive catch samples (70%) were collected during periods of low den-
sity (i.e., between net average b10 fish/100 m3). There was no correla-
tion observed between the two nets at low densities (r = 0.003),
therefore the difference between nets represented small scale spatial
variation and to include this in the estimate nets were treated as inde-
pendent samples. Individual samples (i), were indexed within the day
(j), site (k), and year (l) that they were collected. The count (nijkl) of lar-
val walleye from each net was combined with the estimated volume of
water sampled (vijkl, m3) to calculate the density for each sample (Dijkl,
fish/100 m3, Eq. (1)):

Dijkl ¼ nijkl=vijkl
� �

� 100: ð1Þ

Larval fish densities were rounded to the nearest whole number,
creating discrete count-based data. This facilitated the use of count-
based probability distributions (e.g., Poisson) in evaluating variation in
sampled densities and abundance estimation. Sampled larval densities
for each tow location were plotted to visually examine spatial and
temporal patterns in the larval walleye drift.

Quantifying spatial and temporal variability

Understanding the sources of variation within a system will help
inform sampling allocation leading to improved quality of collected
data. Variation in larval walleye densities collected at multiple spatial
and temporal scales was partitioned using a Bayesian Poisson-
lognormal ANOVA (Qian and Shen, 2007; Fig. 2). The Poisson
distribution, conventionally used to model animal count and
distribution data, has one parameter (λ) where the variance is equal



Fig. 2. A Bayesian Poisson-lognormal ANOVA directed acyclic graph displaying the relationships betweenmodel parameters and data. The data level is represented by a white box, where
the model structure describing the data is represented by circles and arrows. Gray circles represent stochastic parameters which are estimated from the data based on indicated
distributional assumptions. Solid arrows represent the direct parental relationships between upper (prior) and lower level parameters. The white circle represents a logical node
which in this case are the natural log transformed individual sampled densities. The dashed line represents the relationship between the logical and stochastic estimates of sampled
densities. The β parameters estimate the effect size of spatial and temporal levels on larval density samples, while σ hyper-priors estimate variance components.
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to the mean (Eq. (2)), forming the assumption that organisms are
randomly dispersed in their environment. Larval fish are often highly
aggregated, breaking this assumption; however, overdispersion in the
data can be accounted for in a Poisson model with the addition of an
extra error parameter (ε) creating what is conventionally known as a
Poisson-lognormal model (Kery, 2010; Millar, 2009; Qian and Shen,
2007; Eq. (3)):

Dijkl � Poisson λijkl

� �
ð2Þ

ln λijkl

� �
¼ β0 þ β1 j þ β2k þ β3 � yearl þ εijkl ð3Þ

where (i) represents individual samples, and (j) is independently
sampled days (1–24), the first 8 corresponding to those sampled in 2010
and the last 16 representing those sampled in2011. The three sites sampled
are representedby (k), andyear is representedby (l). The indexedβparam-
eters (β1 ~ normal(0, σ1); β2 ~ normal(0, σ2); β3 ~ normal(0, 0.001)) are
the differences from the overall mean of 2010 (β0 ~ normal(0, 0.001))
with common priors for each group. Year was included as a fixed factor
given that only two years are included in the studymaking it difficult to
estimate random effects. Extra (i.e., unexplained) variation, attributable
to variation in the spatially distributed samples within sites, is
accounted for with an overdispersion parameter (εijkl ~ normal(0, σε)).
Group level standard deviation priors (σs) used low information
folded-t distributions (σ ~ Student − t(0, 0.001, 2)) as described by
Kruschke (2011). Finite-population standard deviations, which provide
more precise estimates, were calculated for comparisons (Gelman and
Hill, 2007). The standard deviation values (σ) for each level represent
the proportional amount of spatial (within site and site) and temporal
(day and year) variation of larval walleye densities. A larger value indi-
cates a greater source of natural variability in the systems, and therefore
greater potential source of uncertainty.

Sample datawere subset to include only dayswithin the active larval
drift period which included the first and last dates that larval walleye
were observed in each year. This is a simplifying assumption as larval
fish may have been present at low densities outside of the “active
drift” period, resulting in false zeroes (Pritt et al., 2014). However, our
sampling design was not set up to address changing detectability
through the season. Excluding these periods and assuming that all
zeroes are true may lead to a slight overestimation of both spatial and
temporal variability.

Estimating abundance and mortality

Recognizing sources of variation is an imperative step in
understanding system dynamics. It is equally important to account for
these sources of variation when estimating values of interest such as
abundance andmortality. Individual Bayesian state-space (BSS)models

image of Fig.�2


Fig. 3. A Bayesian state-space directed acyclic graph displaying relationships between parameters from the observation and evolution processes. The data level is represented by a white
box, where the model structure describing the data is represented by circles and arrows. Description of parameters and connecting arrows match that of Fig. 3. The observation equation
estimates daily densities from the observed data using a Poisson-gammamixture. Information is shared between days through the evolution ofαj and βj mean parameters. The variance of
αj and βj parameters is governed by global hyper-parameters (τα, τβ).
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were used to estimate larval walleye abundance at each site and year.
These models accounted for spatially aggregated distributions of larval
walleye within days by using a negative binomial distribution in the
form of a hierarchical Poisson–gamma mixture (Ntzoufras, 2009;
Royle, 2004). A Poisson distribution was used to represent individual
samples (Dij; Eq. (4)), while a gamma prior distribution described the
daily mean density (λj; Eq. (5)). This step represents the observation
process in classical state-space modeling (West and Harrison, 1989;
Fig. 3):

Dij � Poisson λ j

� �
ð4Þ

λ j � gamma α j;β j

� �
: ð5Þ

Under the assumption that larval hatchingwas driven by a continuum
of environmental factors leading to temporally related hatching events,
information was shared between days. Conjugate gamma prior distribu-
tionswere used to represent the shape and scale parameters (αj,βj) of the
daily density estimates (λj). The prior shape and scale parameters for the
αj and βj parameters can be expressed as mean and precision
(Eqs. (6) and (7); Ntzoufras, 2009) where:

α j � gamma α � μ j � τα ; τα
� �

ð6Þ

β j � gamma β � μ j � τβ ; τβ
� �

: ð7Þ

State-space models using a Poisson–gamma observation equation
share information through the gamma prior parameters (Harvey
and Fernandes, 1989), where the posterior distributions of αj − 1

and βj − 1 are set as the prior distributions for α .μj and β.μj. Typically
information discounting would be applied by multiplying the αj − 1

and βj − 1 parameters by a value between 0 and 1 which enables
the loss of information as time passes (Lamon et al., 1998). However,
no discount factor was applied in this study allowing the maximum
amount of information to be shared between days, acknowledging
that our sampling may not have completely captured the episodic
and aggregated nature of larval drift patterns. A global precision
hyper-prior was applied to each of the scale parameters
(τα,β ~ dgamma(0.1, 0.1)), allowing the sharing of variance informa-
tion among all days. This temporal sharing of information is conven-
tionally referred to as the system or evolution process (West and
Harrison, 1989; Fig. 3).

The gamma distribution representing the daily density estimates is
comprised of two parameters representing shape (α) and scale (β),
neither of which is ecologically meaningful. The value of interest (i.e.,
meanj) is calculated by dividing the two parameters (Eq. (8)) returning
the mean of the daily density estimate:

meanj ¼
α j

β j
: ð8Þ

Daily mean density estimates (meanj, fish/100 m3) were
expanded to daily abundance in the river (sites A and B) by multiplying
it with the average daily river discharge and in the power plant intake
canal (site C) by water intake values (e.g., volume units of 100 m3/
day). Daily abundance estimates were summed to produce a total
in-river estimate of abundance (fish/year) for each site (A, B and C).
The total abundances at the three sites were used to estimate the rate
of loss (i.e., mortality) between each. Three estimates of in-river
mortality were calculated; natural mortality (A to B, Eq. (9)),

image of Fig.�3
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entrainment mortality (B to C, Eq. (10)), and Total in-river mortality (A to
B–C, Eq. (11)):

Naturalmortality ¼ 1− B=Að Þ ð9Þ

Entrainmentmortality ¼ C=B ð10Þ

Total mortality ¼ 1− B−Cð Þ=Að Þ: ð11Þ

Uncertainty in annual estimates was calculated as the 95% highest
density interval (HDI) while estimates were reported as the most
probable values. HDI and the most probable values provide more
representative descriptions of central tendency for skeweddistributions
than mean and standard credible intervals based on standard deviation
or quantiles. The 95% HDI represents the shortest interval that
encompasses 95% of the distribution density, where the min and max
of the interval have the same height or probability (Kruschke, 2011).
HDIs are interpreted in the same way as standard Bayesian credible
intervals, where some value has a 95% probability of occurring within
the interval. The most probable value represents the peak of the
distribution (i.e., mode), the value with the highest probability of
occurrence.

One of the benefits of using Bayesian methods is the ability to make
probabilistic comparisons. The probability that any two estimates are
the same or that an estimate is above or below some threshold can be
determined by calculating the area under the probability density
which encompasses the interval of interest. This interval can be
expressed as a discrete value or the range of overlap between two
distributions. Quantifying estimates as probabilities results in a more
intuitive expression of information which is beneficial in the decision
making process.

Model and sampling intensity evaluation

Model performancewas assessed through a simulation study, where
a time series of “known” larval densities was generated and sampled. In
total, nine hypothetical scenarios that included sampling different num-
bers of days perweek and different numbers of sampleswithin each day
were evaluated. Daily densities under a subset of sampling scenarios
and total annual abundance under each scenario were estimated using
Bayesian hierarchical and state-space models and compared with
results from more conventional estimation methods (assumption of
no change between dates and linear interpolation between dates).
Details on the model and sampling intensity evaluation can be found
in the Electronic supplementary material (ESM) Appendix S1.

Model computation

Bayesian hierarchical and state-spacemodels were carried out using
the Markov chain Monte Carlo (MCMC) based software, OpenBUGS
v3.2.2 (Lunn et al., 2009). OpenBUGS was activated (ESM Table S2)
and results were summarized through the R project (R Development
Core Team, 2013) based R2OpenBUGS v3.2-2.2 package (Sturtz et al.,
2005). The variance partitioning model used three mixing chains
including 750,000 iterations and a 500,000 iteration burn-in period
per chain. Posterior samples were thinned so that 1 of every 10
iterations was used in subsequent analysis. Bayesian state-space
abundance and mortality models and model evaluation scenarios
(ESM Table S1) used three mixing chains each including 30,000
iterations and a 10,000 iteration burn-in period per chain thinned to 1
of every 10 iterations. Thinning was applied to reduce the influence of
autocorrelation in themixing chains and improve convergence. Conver-
gence was assessed in both model types through visual monitoring of
chain history and the R-hat statistic (Gelman et al., 2014; Gelman and
Hill, 2007). The R-hat statistic is a comparison of the weighted total
and within chain variances, where convergence is assumed when the
two variances are approximately proportional. This R-hat statistic
indicates convergences at values b1.1, with complete convergence
occurring at 1. The interpretation of the R-hat statistic is that additional
iterations will not significantly improve parameter estimates at R-hat
values ≤1.1.

Results

Quantifying spatial and temporal variability

The larval walleye drift was dominated by early yolk sac larvae.
Larval walleye were variable in both space and time (Fig. 4) with the
highest density aggregations occurring in the lower portions of the
water column as well as in the middle of the river channel. The degree
of spatial aggregation (i.e., variation in densities) was highest at sites
and years with high larval densities (sites B 2010 and A 2011). Daily
fluctuations in larval densities were observed at each location and
year, with distinct periods of high abundance in each (Fig. 4). The
variance partitioning model showed that small scale variability (within
site and day) was greater than large scale variability (site and year)
(Fig. 5). The greatest variation was attributed to unexplained (within
site, 2.92), a source which is derived from variation between replicate
samples collected at each site and day. Daily variation (2.53) was the
second highest contributor followed by site (1.10) and year (0.48).

Daily water measurements

Daily river water discharge and temperaturemeasurements showed
similar patterns between years; however, power plant water intake
numbers were drastically different (Fig. 6). Although river discharge
was variable, each year showed consistent periods of high discharge
during April and late May with a period of low discharge in early to
mid-May. Power plant water intake values were consistently high
during 2010; however these numbers decreased in 2011 during the
walleye drift period. Water temperature warming rates were similar
between years, with overall average temperatures being slightly higher
in 2010.

Estimates of abundance and mortality

At each river location and year, low abundances of larval walleye
were observed early and late in the season, while the highest
abundances occurred in early to mid-May (Fig. 7). Peak daily larval
abundance at the upstream location (A) was 39.3 million (95% CI
33.9–44.8, May 12) in 2011. At the downstream location (B), peak
daily abundance of larval fish in 2010 was 4.6 million (95% CI 2.9–6.3
million, May 10) and in 2011 was 3.1 million (95% CI 0.9–6.7 million,
May 16). Peak abundance at the power plant location (C) occurred at
similar times as those downstream (B) at 0.21 million (95% CI 0.07–
0.37 million, May 10) and 0.15 million (95% CI 0.09–0.24 million, May
12) in 2010 and 2011 respectively. In general, unsampled days were
estimated with a higher degree of uncertainty than sampled days.

In 2011, approximately 89.3million larval walleyewere produced at
the upstream spawning grounds (A); however, the uncertainty (95%
HDI, 71.7–144.2 million) in this estimate was high (Fig. 8). The most
probable number of fish passing through the downstream location
(B) in 2010 (29.5 million; 95% HDI, 12.5–84.5 million) was less than
that seen in 2011 (32.2million; 95% HDI, 20.8–52.07million). However,
uncertainty was much greater in 2010 with the probability distribution
encompassing that of 2011. Resulting conclusions are that there is a
66.8% probability that abundance between years was the same, with a
9.5% probability of 2010 being less and a 23.7% probability of being
greater based on the degree of distribution overlap. Annual abundance
in the power plant intake canal (C) dropped between 2010 and 2011



Fig. 4. Sample densities (fish/100m3) of larvalwalleye displaying the observed spatial and temporal variation in the larval drift at (A) 2010 site B, (B) 2010 site C, (C) 2011 site A, (D) 2011
site B, and (E) 2011 site C. Observed densities were jittered to show overlapping values.
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from approximately 2.2million (95%HDI, 1.0–4.3million) to 0.8million
(95% HDI, 0.5–1.3million), resulting in a 91.8% probability that entrain-
ment was greater in 2010.

Mean entrainment mortality and uncertainty were reduced
between 2010 and 2011 from 4.5% in 2010 (95% HDI, 1.0–15.9%) to
2.18% in 2011 (95% HDI, 1.1–4.3%) (Fig. 9). These results indicate a
Fig. 5.Variance component estimates of larval walleye densities in theMaumeeRiver dur-
ing 2010 and 2011. Estimates are displayed as natural log transformed standard deviation
of densities including contributions from year, day, site and extra (within site). Black dots
represent estimated posterior means, thick black lines represent 50% credible intervals,
and thin gray lines represent 95% credible intervals.
71.8% probability of higher entrainment mortality in 2010. In 2011,
natural mortality was 66.8% however uncertainty in this estimate was
high (95% HDI, 42.4%–83.5%). Entrainment did not appear to be a
significant source of mortality in 2011; when combined with
natural mortality, total in-river mortality increased to 67.6% (95% HDI,
43.2%–84.0%).

Model and sampling intensity evaluation

Accuracy and precision of daily and annual abundance estimate are
highly dependent on sample data quality. The representativeness of
sample data predictably decreased with decreasing sample coverage
(ESMFig. S1). Reduction in sample coverage typically led to inaccuracies
in daily density estimates and underestimates of annual abundance as
fewer high density values and days were included in analyses (ESM
Fig. S2 and S3). Intense to intermediate sampling coverage led to
reasonable estimates of daily and annual abundance. Bayesianmethods
typically adjusted high and low sampled densities toward the “known”
population mean, improving daily estimates. All sample methods
(Bayesian state-space, no change, and linear change) performed
similarly under intense sampling scenarios, while variation between
estimates increased as sample coverage decreased. Appropriate
sampling coverage will result in reasonable estimates of mean
abundance with either estimation method, while incorporating
Bayesian methods will provide representative measure of uncertainty
in the form of probability distributions.

Discussion

The application of Bayesian hierarchical methods when working
with larval fish can improve estimates of abundance and mortality.
Extreme variability in distribution and abundance coupled with the
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Fig. 6. Daily water flowmeasurements from the Maumee River (A) and Bay Shore power plant intake (B), and Maumee River water temperatures (C) collected in 2010 (solid lines) and
2011 (dashed lines). These values were used in the volume expansion of estimated daily larval densities to daily abundance and back calculation of peak larval hatches.
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logistical constraints associated with larval fish sampling in large
systems often leads to incomplete spatial and temporal information.
However, a careful consideration of spatial and temporal patterns
can improve monitoring of the species and system of interest
(Oakley et al., 2003; Yoccoz et al., 2001). Specifically, variance
partitioning models are a useful tool for evaluating the effectiveness
of sampling protocols, and informing future sampling efforts (Larsen
et al., 2001; Sims et al., 2006). Capturing natural sources of variability
during the sampling process is themost important step in generating
sound estimates of abundance. The application of Bayesian
state-space modeling during the estimation process can partially
overcome the challenges presented by restricted sampling of a
variable population by sharing information among days (Gelman
and Hill, 2007) and producing informative probabilistic uncertainty
estimates. Coupling these approaches, when working with larval
fish on the Maumee River, has led to improved sampling and
estimates of abundance.

Variance partitioning models showed that small scale temporal and
spatial patterns (i.e., day-to-day and within site) contributed more
variability in larval fish abundance than large scale patterns
(i.e., between sites and years). These small scale patterns in larval fish
abundance are linked to the extreme variability in the physical
conditions of the river (Thoms, 2006). For instance, extreme fluctua-
tions in river discharge or temperature can influence walleye egg and
larval survival (Crane and Farrell, 2013; Mion et al., 1998) leading to
discrete peak hatching events bracketed by periods of low abundance
(D'Amours et al., 2001). This relationship is exacerbated by the
protracted process of walleye spawning and incubation contributing
to high day-to-day variability in larval walleye abundance. Additionally,
once fish hatch and enter the drift, spatial variability of larval walleye is
influenced by larval behavior (Balon, 1975, 1979) and physical
conditions of the river system (Pavlov et al., 2008). Whereas at low
discharge, negatively buoyant photophobic larvae concentrate lower in
the water column; however at higher discharge, turbulent flows likely
override these factors homogenizing larval fish distributions.
Understanding the mechanisms contributing to variation is imperative
to the collection of quality data and improvement of subsequent
abundance estimates.

Identifying sources of variability to optimize sample allocations is an
important step in improving estimates of abundance; however
implementing idealized sampling protocols is often not feasible.
Larsen et al. (2001) describe the major sources of variation in this
study (i.e., day-to-day and within site) as interaction or ephemeral var-
iation due to the influence of environmental conditions (i.e., discharge
and temperature); the effect of which can be reduced by increasing
replicate samples at these levels. Increased daily sampling will improve
subsequent estimates given high day-to-day variability; however, this
increase should not come at the complete neglect of within site spatial
sampling. Cyr et al. (1992) provide amethod for determining the appro-
priate number of replicate samples formonitoring larval fish abundance
at a single site and the desired level of precision. When applied to data
from this study (with desired precision = 0.3 CV), an across survey
average of 20 replicate samples per site per day would be required.
This intensive level of sampling was not feasible during our study;
however we were able to improve the quality of data collected by
acknowledging the proportional importance of day-to-day and within
site variability and adjusting sampling between 2010 and 2011.
Ultimately monitoring goals and logistical restrictions will limit the
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Fig. 7.Daily abundance estimates from2010 to 2011 at (A) 2010 site B, (B) 2010 site C, (C) 2011 site A, (D) 2011 site B, and (E) 2011 site C. Dots represent posteriormean daily abundance
estimates, while lines represent 95% Bayesian credible intervals. Black values are estimates of sampled days, while gray values are estimates of unsampled days.
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sampling effort and precision of data collected at a single site through
time, which makes the data analysis methods critical to evaluating
estimates of interest.

One of the benefits of Bayesian hierarchical methods lie in the
sharing of information (Gelman and Hill, 2007), which is particularly
useful when working with incomplete data collected from highly
Fig. 8.Annual larval walleye abundance estimates at (A) site A, (B) site B, and (C) site C and yea
able values (dashed lines), while the solid vertical lines designate the 95% highest density inte
variable larval fish. Applying state-space models in a Bayesian
framework allowed for the temporal sharing of larval density
information, which improves on estimation made from raw data alone
by compensating for days with few samples collected or high variation.
For example, a day sampled with few replicates or one that displays
high variation is not likely a reliable representation of the population
rs 2010 (light gray) and 2011 (dark gray). The distribution peak represents themost prob-
rvals.
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Fig. 9. Annual larval walleye mortality (%) estimates between sample sites. Natural mortality (A, light gray) represents the percent loss of fish between upstream and downstream sites,
while total mortality (A, dark gray) is the percent loss between upstream and downstream sites in addition to power plant entrainment. Entrainment mortality (B) is the percent loss of
downstream fish to the power plant canal, where light gray represents 2010 and dark gray 2011. Dashed lines represent the most probable values, while solid lines represent the 95%
highest density intervals.
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(i.e., daily density); however we can improve the estimate by making
the reasonable assumption that those days close to one another are
similar. The resulting estimate (mean and variance) is then adjusted.
This adjustment, or “shrinkage”, is driven by strength of information
(i.e., number of samples and variation) from within the group, which
in our case includes the surrounding days. Our model evaluation and
sampling intensity analysis highlight this improvement as mean
estimates of daily densities were typically closer, and credible intervals
predominantly encompassed “known” densities at intensive and
intermediate sampling levels.

An additional benefit of employing Bayesian methods is the
seamless propagation of uncertainty and description in the form of
probability distributions. In our case, uncertainty is derived from the
spatial distribution of fish, day-to-day fluctuations, and also in the
estimating process itself. Systematically accounting for each source of
uncertainty produces realistic estimates that engender credibility and
confidence in subsequent interpretations of the data (Cressie et al.,
2009). Describing uncertainty as a distribution allows for probabilistic
inferences to be drawn from and between estimates. This is particularly
useful when management decisions must be made, while the conse-
quences ofmanagement options are unclear or dramatically unbalanced
(Ellison, 1996).

The application of thesemethods in theMaumee River allowed us to
draw reasonable conclusions about larval dynamics in the presence of
uncertainty; particularly for larval walleye mortality. Direct entrain-
ment occurred, but decreased from ~4.5% to ~2.2% between 2010 and
2011. Although the 2010 estimate included high levels of uncertainty,
the overlap between estimates was relatively low which allowed us to
conclude that there was a 91.8% probability that entrainment was
higher in 2010. However, differences in abundance estimates between
years at the downstream site (B) were not as clearly defined as
estimates overlapped by 66.8%. Even so, we are able to conclude that
entrainment mortality decreased by a probability of 71.8% from 2010
to 2011, likely due to the reduction in power plant water usage during
this period. Additionally, in 2011 the impact of entrainment mortality
was shown to be very low when compared to natural mortality
resulting in a small increase in totalmortality. Although thepotential in-
fluence of power plant entrainment on larval walleye production is a
concern, the proportional influence of this factor is very small. The
Maumee River's watershed has been extensively modified (Karr et al.,
1985) which undoubtedly has contributed to a reduction in biological
integrity (Karr and Dudley, 1981) contributing to “natural” larval
mortality. From a management standpoint, these results suggest that
focusing resources to improve biological integrity of the River would
be a better investment due to its proportionally greater contribution
to larval walleye mortality.

Annual estimates of larval walleye abundance are important in
determining productivity and contribution fromdistinct spawning pop-
ulations. Production has the potential to be highly variable as previous
estimates from the Maumee River ranged from 13.4 to 24.8 million
(Mion et al., 1998), far less than the 89.3 million estimated in 2011 of
this study (site A). However comparing these estimates without the as-
sociated measures of uncertainty can be misleading as the sampling
protocols used to generate them may be vastly different. It is clear
from our model evaluation and sampling intensity analysis and the
overlap in downstream estimates that the development in quality sam-
pling protocols is imperative to assessing changes in annual abundance
of larvalwalleye. This study occurred on a short time scale and limits our
ability to generalize the importance of the Maumee River to Lake Erie
walleye recruitment. However, continuedmonitoring and similar quan-
tification of stock specific contributions, in this case theDetroit and San-
dusky Rivers, could identify the proportional contribution from each
system and help prioritize conservation and restoration of critical
spawning habitat. Ultimately this type of multi-stock information
would be useful in the management of harvest policies and targeted
habitat protection and restoration of Lake Erie walleye as well as other
migratory stocks in large systems (Stephenson, 1999). The application
of Bayesian methods in this context would improve system specific
estimates and benefit larger scale management objectives.

Conclusion

Larval fish, like many organisms in large aquatic systems, are inher-
ently variable in space and time making them difficult to sample and
quantify. The use of variance partitioning models led to improved
sampling, estimation, and understanding of organism ecology. Larval
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walleye in the Maumee River are most variable on small spatial and
temporal scales within the drift. To improve the accuracy of abundance
estimates of larval fish in large flashy river systems, sampling should be
tailored to capture both day-to-day and within site variability. State-
space models are uniquely suited to estimating organism abundance
through time, especially those exhibiting irregular temporal patterns
like larval walleye. Employing these techniques in a Bayesian frame-
work helped overcome the intrinsic challenges ofworkingwith variable
organisms by sharing information, propagating uncertainty, and
producing distributions useful in making probabilistic comparisons.

Acknowledgments

The authorswould like to thankDr. E.F. Roseman, and J. Hageman for
their guidance on larval fish ecology and identification. Additionally we
would like to thank those involved in the collection and processing of
larval fish samples including P. Bichier, M. Kuebbeler, R. Mapes, and B.
Sander. Wewould also like to thank the First Energy Corp. for providing
information on daily water intake rates from the Bay Shore power plant
over the periods of study. This research was funded in part by support
from the National Oceanic and Atmospheric Administration (NOAA)
grant number NA09OAR4170182. M.R. DuFour received support from
the GLERL-Cooperative Institute for Limnology and Ecosystem Research
Long-Term Great Lakes Fellowship. This is NOAA-Great Lakes Environ-
mental Research Laboratory (GLERL) contribution number 1730. This
is contribution number 2014-16 of the University of Toledo's Lake Erie
Center.

Appendix A. Supplementary material

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jglr.2014.08.001.

References
Identification of larval fishes of the Great Lakes basinwith emphasis on the LakeMichigan

drainage. In: Auer, N.A. (Ed.), Great Lakes Fishery Commission Special Publication, pp.
82–83 (Available from: http://www.glfc.org/pubs/pub.htm accessed 19 June 2013).

Balon, E.K., 1975. Reproductive guilds of fishes: a proposal and definition. J. Fish. Res.
Board Can. 32 (6), 821–864. http://dx.doi.org/10.1139/f75-110.

Balon, E.K., 1979. The theory of saltation and its application in the ontogeny of fishes:
steps and thresholds. Environ. Biol. Fish 4 (2), 97–101. http://dx.doi.org/10.1007/
BF00005446.

Barnthouse, L.W., 2000. Impacts of power-plant cooling systems on estuarine fish
populations: the Hudson River after 25 years. Environ. Sci. Policy 3 (1), 341–348.
http://dx.doi.org/10.1016/S1462-9011(00)00037-X.

Cooper, C.L., Bartholomew,W.C., Herdendorf, C.E., Reutter, J.M., Snyder, F.L., 1981. Limnet-
ic larval fish of the Maumee and Sandusky River estuaries. J. Great Lakes Res. 7 (1),
51–54. http://dx.doi.org/10.1016/S0380-1330(81)72023-9.

Crane, D.P., Farrell, J.M., 2013. Spawning substrate size, shape, and siltation influence
walleye egg retention. N. Am. J. Fish Manag. 33 (2), 329–337. http://dx.doi.org/10.
1080/02755947.2012.760504.

Cressie, N., Calder, C.A., Clark, J.S., VerHoef, J.M., Wikle, C.K., 2009. Accounting for
uncertainty in ecological analysis: the strengths and limitations of hierarchical
statistical modeling. Ecol. Appl. 19 (3), 553–570. http://dx.doi.org/10.1890/07-0744.1.

Cyr, H., Downing, J.A., Lalonde, S., Baines, S.B., Pace, M.L., 1992. Sampling larval fish
populations: choice of sample number and size. Trans. Am. Fish. Soc. 121 (3),
356–368. http://dx.doi.org/10.1577/1548-8659(1992)121b0356:SLFPCON2.3.CO;2.

D'Amours, J., Thibodeau, S., Fortin, R., 2001. Comparison of lake sturgeon (Acipenser
fulvescens), Stizostedion spp., Catostomus spp., Moxostoma spp., quillback (Carpiodes
cyprinus),and mooneye (Hiodon tergisus) larval drift in Des Prairies River, Quebec.
Can. J. Zool. 79 (8), 1472–1489. http://dx.doi.org/10.1139/cjz-79-8-1472.

Doyle, M.J., Picquelle, S.J., Mier, K.L., Spillane, M.C., Bond, N.A., 2009. Larval fish abundance
and physical forcing in the Gulf of Alaska, 1981–2003. Prog. Oceanogr. 80 (3),
163–187. http://dx.doi.org/10.1016/j.pocean.2009.03.002.

Efron, B., Morris, C., 1977. Stein's paradox in statistics. Sci. Am. 236 (5), 119–127 (Doi:10.
1038%2fscientificamerican0577-119).

Ellison, A.M., 1996. An introduction to Bayesian inference for ecological research and
environmental decision-making. Ecol. Appl. 6 (4), 1036–1046 (Available from
http://www.jstor.org/stable/2269588 accessed 19 June 2013).

Gelman, A., Hill, J., 2007. Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge University Press, New York.

Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B., 2014. Bayesian
Data Analysis, third ed. CRC press, Boca Raton, Florida.
Gentner, B., Burr, M., 2010. Economic Damages of Impingement and Entrainment of Fish,
Fish Eggs, and Fish Larvae at the Bay Shore Power Plant. Gentner Consulting Group,
Silver Spring, MD.

Gibbs, J.P., Droege, S., Eagle, P., 1998. Monitoring populations of plants and animals.
Bioscience 48 (11), 935–940. http://dx.doi.org/10.2307/1313297.

Harvey, A.C., Fernandes, C., 1989. Time seriesmodels for count or qualitative observations.
J. Bus. Econ. Stat. 7 (4), 407–417. http://dx.doi.org/10.1080/07350015.1989.
10509750.

Herdendorf, C.E., 1977. Assessment of the larval fish populations in the Maumee River
estuary and Maumee Bay of Lake Erie. CLEAR Technical Report 75. The Ohio State
University, Columbus, OH.

Houde, E.D., 1969. Distribution of larval walleyes and yellow perch in a bay of Oneida
Lake and its relation to water currents and zooplankton. N. Y. Fish Game J. 16,
184–205.

Jones, M.L., Netto, J.K., Stockwell, J.D., Mion, J.B., 2003. Does the value of newly accessible
spawning habitat for walleye (Stizostedion vitreum) depend on its location relative to
nursery habitats? Can. J. Fish. Aquat. Sci. 60 (12), 1527–1538. http://dx.doi.org/10.
1139/f03-130.

Karr, J.R., Dudley, D.R., 1981. Ecological perspective on water quality goals. Environ.
Manag. 5 (1), 55–68. http://dx.doi.org/10.1007/BF01866609.

Karr, J.R., Toth, L.A., Dudley, D.R., 1985. Fish communities of midwestern rivers: a history
of degradation. Bioscience 35 (2), 90–95. http://dx.doi.org/10.2307/1309845.

Kery, M., 2010. Introduction to WinBUGS for Ecologists: A Bayesian Approach to
Regression, ANOVA, Mixed Models and Related Analyses. Academic Press,
Amsterdam, The Netherlands.

Kery, M., Schaub, M., 2012. Bayesian Population Analysis Using WinBUGS: A Hierarchical
Perspective. Academic Press, Oxford, UK.

Kruschke, J.K., 2011. Doing Bayesian Data Analysis. Academic Press, Burlington, MA.
Lamon, C.E., Carpenter, S.R., Stow, C.A., 1998. Forecasting PCB concentrations in Lake

Michigan salmonids: a dynamic linear model approach. Ecol. Appl. 8 (3), 659–668.
http://dx.doi.org/10.1890/1051-0761(1998)008[0659:FPCILM]2.0.CO;2.

Larsen, D.P., Kincaid, T.M., Jacobs, S.E., Urquhart, N.S., 2001. Designs for evaluating local
and regional scale trends. Bioscience 51 (12), 1069–1078. http://dx.doi.org/10.
1641/0006-3568(2001)051[1069:DFELAR]2.0.CO;2.

Lunn, D., Spiegelhalter, D., Thomas, A., Best, N., 2009. The BUGS project: evolution, critique
and future directions (with discussion). Stat. Med. 28, 3049–3082. http://dx.doi.org/
10.1002/sim.3680.

Martin, F.D., Paller, M.H., 2008. Ichthyoplankton transport in relation to floodplain width
and inundation and tributary creek discharge in the lower Savannah River of Georgia
and South Carolina. Hydrobiologia 598 (1), 139–148. http://dx.doi.org/10.1007/
s10750-007-9146-6.

McKenna Jr., J.E., Dave, B.M., Fabrizio, M.C., Savino, J.F., Todd, T.N., Burr, M., 2008.
Ichthyoplankton assemblages of coastal west-central Lake Erie and associated habitat
characteristics. J. Great Lakes Res. 34 (4), 755–769. http://dx.doi.org/10.3394/0380-
1330-34.4.755.

Merker, R.J., Woodruff, R.C., 1996. Molecular evidence for divergent breeding groups of
walleye (Stizostedion vitreum) in tributaries to western Lake Erie. J. Great Lakes Res.
22 (2), 280–288. http://dx.doi.org/10.1016/S0380-1330(96)70955-3.

Millar, R.B., 2009. Comparison of hierarchical Bayesian models for overdispersed count
data using DIC and Bayes' factors. Biometrics 65, 962–969. http://dx.doi.org/10.
1111/j.1541-0420.2008.01162.x.

Mion, J.B., Stein, R.A., Marschall, E.A., 1998. River discharge drives survival of larval
walleye. Ecol. Appl. 8 (1), 88–103. http://dx.doi.org/10.1890/1051-0761(1998)008
[0088:RDDSOL]2.0.CO;2.

NOAA Tides and Currents. User services Center for Operational Oceanographic Products
and Services (CO-OPS). 1305 East–West Highway, Silver Spring, MD 20910–3281.

Ntzoufras, I., 2009. Bayesian Modeling UsingWinBUGS. JohnWiley & Sons, Inc., Hoboken,
N.J.

Oakley, K.L., Thomas, L.P., Fancy, S.G., 2003. Guidelines for long-term monitoring proto-
cols. Wildl. Soc. Bull. 31 (4), 1000–1003 Available at: http://www.jstor.org/stable/
3784444 [accessed 19 June 2013].

Ohio Division of Wildlife (ODW), 2010. Ohio's Lake Erie fisheries, 2009. Annual Status
Report. Federal Aid in Fish Restoration Project F-69-P. Ohio Department of Natural
Resources, Division of Wildlife, Lake Erie Fisheries Units, Fairport and Sandusky
(118 pp.).

Pavlov, D.S., Mikheev, V.N., Lupandin, A.I., Skorobogatov, M.A., 2008. Ecological and
behavioural influences on juvenile fish migrations in regulated rivers: a review of
experimental and field studies. Hydrobiologia 609 (1), 125–138. http://dx.doi.org/
10.1007/s10750-008-9396-y.

Pritt, J.J., DuFour, M.R., Mayer, C.M., Kocovsky, P.M., Tyson, J.T.,Weimer, E.J., Vandergoot, C.
S., 2013. Including independent estimates and uncertainty to quantify total abun-
dance of fish migrating in a large river system: walleye (Sander vitreus) in the Mau-
mee River, Ohio. Can. J. Fish. Aquat. Sci. 70 (5), 803–814. http://dx.doi.org/10.1139/
cjfas-2012-0484.

Pritt, J.J., DuFour, M.R., Mayer, C.M., Roseman, E.F., DeBruyne, R.L., 2014. Sampling Little
Fish in Big Rivers: Larval Fish Detection Probabilities in Two Lake Erie Tributaries
and Implications for Sampling Effort and Abundance Indices. Trans. Am. Fish. Soc.
143 (4), 1011–1027. http://dx.doi.org/10.1080/00028487.2014.911204.

Qian, S., Shen, Z., 2007. Ecological applications of multilevel analysis of variance. Ecology
88 (10), 2489–2495. http://dx.doi.org/10.1890/06-2041.1.

R Development Core Team, 2013. R: A Language and Environment for Statistical
Computing, Version 3.0.0. R Foundation for Statistical Computing, Vienna, Austria
(URL http://www.R-project.org).

Reutter, J.M., Herdendorf, J.C., 1984. Fisheries and the design of electrical power plants:
the Lake Erie experience. CLEAR Technical Bulletin OHSU-TB-11. The Ohio State
University, Columbus, OH.

http://dx.doi.org/10.1016/j.jglr.2014.08.001
http://dx.doi.org/10.1016/j.jglr.2014.08.001
http://www.glfc.org/pubs/pub.htm
http://dx.doi.org/10.1139/f75-110
http://dx.doi.org/10.1007/BF00005446
http://dx.doi.org/10.1007/BF00005446
http://dx.doi.org/10.1016/S1462-9011(00)00037-X
http://dx.doi.org/10.1016/S0380-1330(81)72023-9
http://dx.doi.org/10.1080/02755947.2012.760504
http://dx.doi.org/10.1080/02755947.2012.760504
http://dx.doi.org/10.1890/07-0744.1
http://dx.doi.org/10.1577/1548-8659(1992)121<0356:SLFPCO>2.3.CO;2
http://dx.doi.org/10.1577/1548-8659(1992)121<0356:SLFPCO>2.3.CO;2
http://dx.doi.org/10.1577/1548-8659(1992)121<0356:SLFPCO>2.3.CO;2
http://dx.doi.org/10.1139/cjz-79-8-1472
http://dx.doi.org/10.1016/j.pocean.2009.03.002
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0235
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0235
http://www.jstor.org/stable/2269588
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0060
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0060
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0065
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0065
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0055
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0055
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0055
http://dx.doi.org/10.2307/1313297
http://dx.doi.org/10.1080/07350015.1989.10509750
http://dx.doi.org/10.1080/07350015.1989.10509750
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0245
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0245
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0245
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0085
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0085
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0085
http://dx.doi.org/10.1139/f03-130
http://dx.doi.org/10.1139/f03-130
http://dx.doi.org/10.1007/BF01866609
http://dx.doi.org/10.2307/1309845
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0105
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0105
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0105
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0110
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0110
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0115
http://dx.doi.org/10.1890/1051-0761(1998)008[0659:FPCILM]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2001)051[1069:DFELAR]2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2001)051[1069:DFELAR]2.0.CO;2
http://dx.doi.org/10.1002/sim.3680
http://dx.doi.org/10.1007/s10750-007-9146-6
http://dx.doi.org/10.1007/s10750-007-9146-6
http://dx.doi.org/10.3394/0380-1330-34.4.755
http://dx.doi.org/10.3394/0380-1330-34.4.755
http://dx.doi.org/10.1016/S0380-1330(96)70955-3
http://dx.doi.org/10.1111/j.1541-0420.2008.01162.x
http://dx.doi.org/10.1111/j.1541-0420.2008.01162.x
http://dx.doi.org/10.1890/1051-0761(1998)008[0088:RDDSOL]2.0.CO;2
http://dx.doi.org/10.1890/1051-0761(1998)008[0088:RDDSOL]2.0.CO;2
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0145
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0145
http://www.jstor.org/stable/3784444
http://www.jstor.org/stable/3784444
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0270
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0270
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0270
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0270
http://dx.doi.org/10.1007/s10750-008-9396-y
http://dx.doi.org/10.1139/cjfas-2012-0484
http://dx.doi.org/10.1139/cjfas-2012-0484
http://dx.doi.org/10.1080/00028487.2014.911204
http://dx.doi.org/10.1890/06-2041.1
http://www.R-project.org
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0285
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0285
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0285


40 M.R. DuFour et al. / Journal of Great Lakes Research 40 Supplement 3 (2014) 29–40
Roseman, E.F., Taylor, W.W., Hayes, D.B., Tyson, J.T., Haas, R.C., 2005. Spatial patterns
emphasize the importance of coastal zones as nursery areas for larval walleye in
western Lake Erie. J. Great Lakes Res. 31 (1), 28–44. http://dx.doi.org/10.1016/
S0380-1330(05)70288-4.

Royle, J.A., 2004. N-Mixture models for estimating population size from spatially
replicated counts. Biometrics 60 (1), 108–115. http://dx.doi.org/10.1111/j.0006-
341X.2004.00142.x.

Rutherford, E.S., Houde, E.D., Nyman, R.M., 1997. Relationship of larval-stage growth and
mortality to recruitment of striped bass, Morone saxatillis, in Chesapeake Bay.
Estuaries 20 (1), 174–198. http://dx.doi.org/10.2307/1352730.

Sims, M., Wanless, S., Harris, M.P., Mitchell, P.I., Elston, D.A., 2006. Evaluating the power of
monitoring plot designs for detecting long-term trends in the number of common guil-
lemots. Ecology 43 (3), 537–546. http://dx.doi.org/10.1111/j.1365-2664.2006.01163.x.

Snyder, F.L., 1978. Ichthyoplankton studies in the Maumee and Sandusky River estuaries
of Lake Erie. CLEAR Technical Report No. 92. The Ohio State University, Columbus, OH.

Snyder, D.E., 1983. Fish eggs and larvae. In: Nielsen, L.A., Johnson, D.L. (Eds.), Fisheries
Techniques. American Fisheries Society, Southern Printing Company, Inc. Blacksburg,
Virginia, USA, pp. 165–197.

Stephenson, R.L., 1999. Stock complexity in fisheries management: a perspective of
emerging issues related to population sub-units. Fish. Res. 43 (1), 247–249. http://
dx.doi.org/10.1016/S0165-7836(99)00076-4.
Strange, R.M., Stepien, C.A., 2007. Genetic divergence and connectivity among river and
reef spawning groups of walleye (Sander vitreus vitreus) in Lake Erie. Can. J. Fish.
Aquat. Sci. 64 (3), 437–448. http://dx.doi.org/10.1139/f07-022.

Sturtz, S., Ligges, U., Gelman, A., 2005. R2WinBUGS: A Package for Running WinBUGS
From R. J. Stat. Softw. 12 (3), 1–16 (URL http://hdl.handle.net/10022/AC:P:15341).

Thoms, M.C., 2006. Variability in riverine ecosystems. River Res. Appl. 22 (2), 115–121.
http://dx.doi.org/10.1002/rra.900.

USGSWater Resources.Maumee River average daily discharge,March–June of 2010 and 2011.
bhttp://waterdata.usgs.gov/nwis/dv?referred_module=sw&site_no=04193500N
[accessed July 2011].

Wagner, T., Irwin, B.J., Bence, J.R., Hayes, D.B., 2013. Detecting temporal trends in freshwa-
ter fisheries surveys: statistical power and important linkages between management
questions and monitoring objectives. Fisheries 38 (7), 309–319. http://dx.doi.org/10.
1080/03632415.2013.799466.

West, M., Harrison, J., 1989. Bayesian Forecasting and Dynamic Models. Springer-Verlag,
New York.

Yoccoz, N.G., Nichols, J.D., Boulinier, T., 2001. Monitoring of biological diversity in space
and time. Trends Ecol. Evol. 16 (8), 446–453. http://dx.doi.org/10.1016/S0169-
5347(01)02205-4.

http://dx.doi.org/10.1016/S0380-1330(05)70288-4
http://dx.doi.org/10.1016/S0380-1330(05)70288-4
http://dx.doi.org/10.1111/j.0006-341X.2004.00142.x
http://dx.doi.org/10.1111/j.0006-341X.2004.00142.x
http://dx.doi.org/10.2307/1352730
http://dx.doi.org/10.1111/j.1365-2664.2006.01163.x
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0290
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0290
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0295
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0295
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0295
http://dx.doi.org/10.1016/S0165-7836(99)00076-4
http://dx.doi.org/10.1139/f07-022
http://hdl.handle.net/10022/AC:P:15341
http://dx.doi.org/10.1002/rra.900
http://waterdata.usgs.gov/nwis/dv?referred_module=sw&site_no=04193500
http://dx.doi.org/10.1080/03632415.2013.799466
http://dx.doi.org/10.1080/03632415.2013.799466
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0210
http://refhub.elsevier.com/S0380-1330(14)00169-5/rf0210
http://dx.doi.org/10.1016/S0169-5347(01)02205-4
http://dx.doi.org/10.1016/S0169-5347(01)02205-4

	Bayesian hierarchical modeling of larval walleye (Sander vitreus) abundance and mortality: Accounting for spatial and tempo...
	Introduction
	Methods
	Study site
	Sampling
	Daily water measurements
	Larval walleye data
	Quantifying spatial and temporal variability
	Estimating abundance and mortality
	Model and sampling intensity evaluation
	Model computation

	Results
	Quantifying spatial and temporal variability
	Daily water measurements
	Estimates of abundance and mortality
	Model and sampling intensity evaluation

	Discussion
	Conclusion
	Acknowledgments
	Appendix A. Supplementary material
	References


