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Abstract The emerald ash borer (EAB, Agrilus

planipennis) is decimating native ashes (Fraxinus

sp.) throughout midwestern North America, killing

millions of trees over the years. With plenty of ash

available throughout the continent, the spread of this

destructive insect is likely to continue. We estimate

that the insect has been moving along a ‘‘front’’ at

about 20 km/year since about 1998, but more alarm-

ing is its long-range dispersal into new locations

facilitated by human activities. We describe a

spatially explicit cell-based model used to calculate

risk of spread in Ohio, by combining the insect’s

flight and short-range dispersal (‘‘insect flight’’) with

human-facilitated, long-range dispersal (‘‘insect

ride’’). This hybrid model requires estimates of

EAB abundance, ash abundance, major roads and

traffic density, campground size and usage, distance

from the core infested zone, wood products industry

size and type of wood usage, and human population

density. With the ‘‘insect flight’’ model, probability of

movement is dependent on EAB abundance in the

source cells, the quantity of ash in the target cells, and

the distances between them. With the ‘‘insect-ride’’

model, we modify the value related to ash abundance

based on factors related to potential human-assisted

movements of EAB-infested ash wood or just
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hitchhiking insects. We attempt to show the advan-

tage of our model compared to statistical approaches

and to justify its practical value to field managers

working with imperfect knowledge. We stress the

importance of the road network in distributing insects

to new geographically dispersed sites in Ohio, where

84% were within 1 km of a major highway.
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Introduction

The emerald ash borer (EAB), Agrilus planipennis

Fairmaire (Coleoptera: Buprestidae), poses a serious

threat to all native ash trees in North America,

especially in the eastern United States. The larvae

feed on phloem, producing galleries that kill large

trees in 3–4 years and small trees in as little as 1 year

(Poland and McCullough 2006; Wei et al. 2007).

A native of northeastern China, Korea, Japan, Mon-

golia, Taiwan, and eastern Russia, the species was

first identified in the United States near Detroit, MI,

in July 2002 (Haack 2006; Poland and McCullough

2006). The borer was thought to be imported into

Michigan in the early 1990s via infested ash crating

or pallets (Herms et al. 2004). Since its initial

establishment in the early to mid 1990s (Siegert et al.

2007), it has spread at an accelerating pace from that

position.

So far, all attempts to stop the spread of the

organism have failed. In the initial years after the

EAB was first identified, many eradication efforts in

Michigan, Ohio, Maryland, and Ontario were

attempted. Typically, all ash trees within an 800-m

radius of the initial detection tree(s) were being cut,

chipped to very small pieces, and incinerated. This

expensive program was halted in Ohio by early 2006

because of funding shortages and because of numer-

ous newly discovered infestations. The primary hope

to slow the spread now lies with the introduction of

specialized natural enemies (Gould 2007; Bauer et al.

2007), monitoring and education programs, highly

targeted ash removals, and regulation.

The impact of EAB may be enormous. An

estimated 8 billion ash trees exist in the United

States, comprising roughly 7.5% of the volume of

hardwood sawtimber, 14% of the urban leaf area (as

estimated across eight US cities), and valued at more

than $300 billion (Poland and McCullough 2006;

Sydnor et al. 2007).

Spread models

The population dynamics during the establishment of

any pest is influenced both by the Allee effect

(population size is highly correlated with survival of

individuals) and demographic stochasticity (Liebhold

and Tobin 2008). If the population overcomes the

Allee effect, spread occurs with the growth of

population and subsequent dispersal. The dispersal

mechanism has been studied extensively by various

researchers and there is considerable literature in this

field. We will not attempt a detailed review of the

spread models here, but will provide a brief overview

so that we can characterize our hybrid modeling

approach. The models can be broadly divided into

mathematical and cellular approaches.

Mathematical models

One of the first attempts to tackle spread character-

ized the initial dispersal by continuous random

movement defined by reaction-diffusion partial dif-

ferential equations (Skellam 1951). To keep the

interface simple, we prefer not to reproduce the

equations involved here—the interested readers can

refer to the sources for mathematical exposition. The

magnitude of the dispersal depends on the diffusion

coefficient (the standard deviation of dispersal dis-

tance), often derived from empirical data. The simple

diffusion models are deterministic—hence, the front

forms a concentric ring of expanding range at

constant speed. Although simple diffusion models

can accommodate interspecific interactions like com-

petition, predation etc., they cannot account for the

long-range dispersal of the insect which are mostly

facilitated by weather and human agents. These long-

range movements are often characterized by fat-tailed
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distributions (e.g., a higher probability than a nor-

mally distributed variable of extreme values). The

combination of simple diffusion and long-range

dispersal mechanisms is termed ‘stratified dispersal’

(Hengeveld 1989; Shigesada et al. 1995).

The stratified dispersal mechanism can be defined

by integro-difference equations which are time-

discrete and space-continuous models which consist

of two parts: population growth (defined through

difference equations) and dispersal in space (defined

with an integral operator; Kot et al. 1996). Like

reaction-diffusion equations, they can generate con-

stant-speed traveling waves. In addition, they can

account for invasions whose spread rates increase

with time (longer range dispersal). The dispersal

kernel, which is a probability density function,

determines the speed and movement of individuals

between two points in space (Lewis 1997). While the

shape of the dispersal kernel is an important factor in

determining spread, by itself it tends to overestimate

the dispersion speed if demography is not considered

(Neubert and Caswell 2000). Efforts have been

underway to incorporate stochastic variation in

dispersal and reproduction into density-dependent

models (Clark et al. 2001; Snyder 2003) and to

differentiate effects of stochasticity from the effects

of nonlinearity (Kot et al. 2004). However, it is likely

that inherent uncertainty rather than parameter sen-

sitivity makes long-distance dispersal difficult to

predict (Clark et al. 2003).

Cellular models

A major limitation of using reaction-diffusion and

integro-difference models is that they do not consider

how dispersal and demography are influenced by

spatial pattern within the landscape, as they treat the

landscape as homogeneous for mathematical tracta-

bility (With 2002). Several theoretical explorations

indicate that spread rates are affected by habitat

fragmentation and other aspects of the spatial

arrangement of favorable habitat (Lonsdale 1999;

With 2002). Therefore, it is desirable to incorporate

spatial structure into the dispersal models. This is

where the spatially explicit cellular approach based

on cellular automata is appropriate. It involves fitting

transition state models to real systems where the

transition between one time step and the next depends

on the empirical relationship between the current

state of the target cell and that of its neighbors

(Molofsky and Bever 2004).

There have been previous attempts to model the

spread of EAB with spatial dynamic models using

STELLA and Spatial Modeling Environment (SME)

in conjunction with high resolution landscape data

(BenDor and Metcalf 2006; BenDor et al. 2006).

However, these studies were limited to one county in

Illinois and based on limited data available at the

time. Our approach uses a simple fat-tailed power

function to model the spread (Schwartz 1992) by

taking into account stochasticity, demographics, and

anthropogenic factors that influence the spread of

insects (including the results of a ‘gravity model’

where movements are not random but biased by the

attractiveness of destinations) in a spatially explicit

cellular framework. We also take fragmentation of

habitat into account because the spread depends on

the ash basal area in each cell which reflects the

fragmented nature of ash and EAB distribution across

current landscapes. We therefore address the limita-

tion of purely mathematical approaches by taking

landscape heterogeneity into account.

Specifically, we incorporate both high-resolution

ash quantity maps and human-assisted components to

build a model of EAB risk for Ohio. We modified a

previously developed spatially explicit cellular spread

model called SHIFT (Schwartz 1992; Iverson et al.

1999; Schwartz et al. 2001) with an integrated

approach that combines the insect’s short-distance

movement patterns, which we call the insect flight

model (IFM), with a number of avenues for

human-assisted transmittal including road networks,

campgrounds, wood product industries, and human

population density, which we call the insect ride

model (IRM). It should be noted that because we

combine human facilitated risk factors in our hybrid

approach, we are modeling the ‘risk of spread’

(Drake and Lodge 2006).

Overall approach and SHIFT modeling scheme

The modified SHIFT model calculates the probability

of EAB infestation of currently unoccupied cells

(270 9 270 m) based on the abundance of EAB in

the occupied cells (as assessed by the years since

infestation), the habitat availability of ash (as

assessed by the ash basal area), and the distance
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between all occupied and unoccupied cells within a

search window. The model uses the inverse power

law (Gregory 1968) to calculate the probability of an

unoccupied cell becoming infested during each

generation. While this relation describes the asymp-

totic distribution of seeds, spores, or pollen (Okubo

and Levin 1989), we have modified it to suit our

objective of tracking the risk of EAB spread. The

relation is:

Pi;t ¼ HQi

Xn

j¼1

HQj � Fj;t � C=DX
i;j

� �� � !
ð1Þ

where Pi,t is the probability of unoccupied cell i being

infested to a detectable level at time t; HQi and HQj

are habitat quality (i.e., ash abundance) scalars for

unoccupied cell i and occupied cell j, respectively,

that are based on the total basal area of ash (m2/ha) in

each 270-m cell; Fj,t, an abundance scalar (0–1), is

the current estimated abundance of EAB in the

occupied cell j based on the years since infestation at

time t; Di,j is the distance between unoccupied cell i

and an occupied cell j; and n is the number of cells in

the search window. The value of C, a rate constant, is

derived independently through trial runs to achieve a

dispersal rate of approximately 20 km per year, a

value estimated from empirical data of EAB finds

(Iverson et al. 2008a). The value of X, or dispersal

exponent, determines the rate at which dispersal

declines with distance. Being in the denominator, this

decreases infestation risk with distance as an inverse

power function. For this model, we make the

simplifying assumption that a generation for the

insect can be accomplished in 1 year, although we

realize that the cycle can last 2 years, especially in

healthy, newly invaded stands or those that are

located in far north zones with less than about

150 days of growing season length (Poland and

McCullough 2006; Siegert et al. 2007; Wei et al.

2007).

The infestation probability for each unoccupied

cell, a value between 0 and 1, is summed across all

occupied cells at each generation. Thus, an unoccu-

pied cell very close to numerous occupied cells may

end up with an infestation probability [1.0. These

cells are modeled with a 100% probability of being

infested. For cells with summed infestation probabil-

ities \1, a random number \1.0 is chosen and all

cells with a probability of infestation that exceeds the

random number are infested in that model step. This

adds an element of stochasticity to the otherwise

deterministic model. Those ‘‘newly infested’’ cells

then contribute to the infestation probability of

unoccupied cells in later model time steps. Further

discussion of the dispersal function can be found in

Schwartz et al. (2001).

The SHIFT model advances the ‘‘front’’ based on

the current front location, the abundance of EAB

behind the front, and the quantity of ash ahead of the

front. Based on reports from the early infested zones

in the Detroit area (e.g., Siegert et al. 2007) and early

data, we assumed a 10-year span from when EAB is

initially detected to the death of all ash trees within

the 270 m 9 270 m cell. Recent field evidence

indicates that the beetle can kill individual trees

within 3–6 years of detection (Kathleen Knight, US

Forest Service, personal communication; Peters et al.

in press), although it takes longer to kill all the trees

in a cell. Because we do not start the year counter

until the cell has detectable EAB (visual symptoms

have occurred, or EAB densities are high enough to

be trapped), the model is insensitive to the early years

of population increase following initial colonization.

EAB abundance in the cell was assumed to form a

modified (skewed left) bell-shaped curve, with the

multipliers picked from the curve. The maximum

abundance (multiplier = 1) occurred in years 3, 4,

and 5, a 0.61 multiplier in years 2 and 6, a 0.14

multiplier in years 1 and 7, and a 0.01 multiplier in

years 8, 9, and 10. The assumptions for this curve

include a slow EAB population increase for the first

few years after initial infestation (but not yet detected

or counted in this 10-year cycle), followed by rapid

population growth once detected, followed by peak

infestation for 3 years starting with year 3, followed

by a rapid decline as all the ash trees in the cell die

off in years 7–10. We realize that small ash saplings

remain viable and new ash germinate and establish

within the cell subsequent to the major die off, but

our model ignores these in subsequent generations

because of the difficulty in keeping track of seedling

and EAB demographics. Research underway now

will determine if regenerating ash can sustain a viable

EAB population in the wake of the killing first wave.

For each cell, the insect flight model (IFM)

calculates the probability of a new infestation, based

on our empirically derived spread rates (*20 km/

year, Fig. 1) which include a small probability that
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the insect will fly or be transported from an

occupied cell to an unoccupied cell, for all sur-

rounding cells within a specified search window of

40 km. This distance includes the EAB’s historical

and potential flight patterns (Taylor et al. 2005,

2007), but also some movement other than flight

(e.g., wind and other short-distance transport

mechanisms).

For the insect ride model (IRM), we use the same

model modified for long-distance dispersal (see later

section) up to 400 km, based on observed patterns of

long-distance dispersal and size of the state of Ohio.

Once selected for infestation, the cell starts the

10-year cycle of EAB increasing and then decreasing

as ash dies out.

In our modeling strategy, we separately model the

broad insect flight movement with the IFM and the

human-facilitated long-distance spread of risk

through various agents like roads, campgrounds,

wood products industries, and human population

density with the IRM. The spatial addition of these

two models captures the relative risk of infestation of

any 270-m cell within Ohio by EAB. Since we are

modeling risk of spread by combining two models, it

is difficult to assign a time element to the prediction;

however, based on our assessment of 2005–2007

EAB detections, a reasonable time frame to evaluate

the utility of our map would be 2–4 years.

To develop the IRM, we used GIS data to weight

factors related to potential human-assisted movements

Fig. 1 Estimate of EAB spread 1998–2006, defined by positive detection trees emanating out from the original infestation
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of EAB using various agents/factors that assist in its

rapid movement: traffic on roads, various wood

products industries, population density, and camp-

grounds. Each of these four factors was converted

into weighting layers that became multipliers for the

ash basal area component of the IRM: in effect

increasing the probability of EAB infestation accord-

ing to the insect ride factors by boosting the amount

of ash available in those cells. Thus, if no ash exists

in a particular cell, it does not matter whether there is

an escaped EAB from one of the human-assisted

factors, but if there is an ash component, an escaped

EAB would find the cell ‘more’ attractive to colonize

in proportion to the basal area of ash. We describe the

methods and the weighting schemes used in the

following sections. It should be kept in mind that with

our ‘spatially explicit’ cellular model, we are inev-

itably balancing the tradeoffs between generality,

precision, and realism that limit all model develop-

ment in ecology (Levins 1966). In our approach,

generality is somewhat sacrificed because environ-

mentally dependent rates of spread make it difficult

for models parameterized in one location to make

accurate predictions in another (Hastings et al. 2005).

Therefore, the parameters and weights presented here

are specific to Ohio, and, though the same approach

should be appropriate for other regions, a re-evalu-

ation of the model parameters and weights would

likely be necessary.

Methods

Ash quantity estimation

We have compiled estimates of ash supply at two

scales. To visualize the amount of ash available over

all the eastern United States, we used forest inventory

and analysis (FIA) data (Miles et al. 2001) compiled

at a 20 9 20 km scale (see Prasad and Iverson 2003;

Prasad et al. 2007; Iverson et al. 2008b; Supplemen-

tary Figs. 1, 2, 3, 4).

For model input, we created a detailed estimate of

ash basal area for Ohio (Iverson et al. 2008a). This

estimate, at a scale of 270 9 270 m, was created by

combining estimates of ash basal area per FIA plot

with a Landsat TM-based classification of forest

types, resulting in the total ash basal area in m2/ha

(Supplementary Fig. 5).

Collection of EAB positives

Between 2005 and 2007, the Ohio Department of

Agriculture set up nearly 20,000 detection trees

throughout the state to monitor for EAB. Detection

trees were then felled and peeled following adult

emergence (after August) and assayed for EAB. Both

the detection tree locations and the positive finds

were provided to us for analysis.

Core area of EAB infestation

To model risk of potential future spread as well as

establish a core area from which the front is

spreading, we estimated historical spread from 1998

to 2006 (Fig. 1). For this estimate of spread that

included years prior to first identification of the insect

(1998–2002), multiple data sets, GIS processes, and

assumptions were used, and for the most part,

represent the spread of visible damage to ash trees

rather than the initial infestation of EAB. First, we set

the 2002 and 2003 EAB boundaries by using web-

published pest maps (accessed from www.michigan.

gov/dnr in 2005, no longer online) of the Michigan

Department of Natural Resources. The primary

source for pre-2002 estimates were web-published

maps by Smitley and others (internet maps no longer

on the web but published in Smitley et al. 2008).

These maps were based on interstate highway exit

surveys for 2003 and 2004, with ten ash trees per exit

tallied for death/life (irrespective of what killed the

ash). The authors then mapped percent ash dead in

classes of 0–10, 11–40, 41–80, and 81–100%. We

assumed it took 5 years for a newly infested tree to

die, so that the location of the class 80–100% dead in

2003 was assumed to be infested in 1998. Similarly,

the additional area of the class 80–100% dead in 2004

was assumed infested in 1999, and so on. These data

allowed us to manually delineate estimated infesta-

tion zones for 1998–2002. For boundary estimates

after 2002, several other sources were used. A

Michigan ash damage survey from September 2004,

along with the actual locations and density of known

EAB locations as of December 2005, were obtained

from the Cooperative Emerald Ash Borer Project. In

addition, multiple dates of national EAB positive

maps were acquired to detect additional finds tem-

porally (http://emeraldashborer.info/surveyinfo.cfm).

Finally, our own field work on ash tree assessment in
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northern Ohio and southern Michigan during the

summers of 2004 and 2005 yielded additional spatial

information, particularly on ash not yet visually

affected by EAB. Further details with maps are found

in Iverson et al. (2008a). We define the ‘front’ by the

density of newly identified positive detection trees

each year. Recent studies of tree rings in the initial

zone of infestation have indicated that initial death of

ash trees occurred in 1997 (Siegert et al. 2007).

Although EAB was certainly present before 1998, we

assume that EAB abundance was low and not easily

detected before that time.

Model inputs

Weighting the parameters for the insect ride model

was difficult because we did not have reliable,

independent means of arriving at weights to the

inputs of the model. Iteratively arriving at a fit was

prohibitive in terms of time because the SHIFT

model is computationally intensive. We selected an

alternative, decision tree-based approach called

‘‘RandomForest’’ (see Prasad et al. 2006) to test our

hypothesis that the ‘non-core’ locations of geograph-

ically dispersed EAB infested locations (which we

henceforth term ‘outlier’) were correlated with road

networks, campgrounds, wood industries, and dis-

tance from the core-infested zone, and to assign

weights to these factors in the IRM based on the

importance of the predictors. RandomForest, which is

based on averaging numerous decision trees by

perturbing both data and predictors have been shown

to be a superior modeling technique for many

applications where imputed predictions are desired

(Hudak et al. 2008), but may not be an appropriate

modeling technique for applications with a strong

spatial dependency (e.g., EAB dispersing from a

small section of the territory). However, Random-

Forest can provide a list of variable importance

scores for the predictors that can be used as a guide to

assign weights to the IRM. In order to determine the

importance of the predictors in the RandomForest

(RF) model, we generated the average distance to

roads, wood product industries, campgrounds, and

occupied core zone from both the EAB positive trees

and the non-positive detection trees for the outlier

zone, and then randomly sampled by county from the

outlier positives (from a total of 255) and the

non-positive detection trees (from a total of 9,964)

in a 1 positive to 3 non-positive ratio. We stratified by

county to reduce the over-weighting of some counties

that had a disproportionate number of positives. The

most important predictor, expectedly, was distance to

occupied core zone followed by average distance to

major roads, wood products industries, and camp-

grounds. We also derived a imputed map (with an

error estimate of 8%) for the RF model to compare

with our modified SHIFT model (Supplementary

Fig. 6). We discuss this in the summarizing model

outputs section.

Our weighting scheme consisted of using the

relative values of RF-derived importance scores,

along with expert opinion, to assign weights which

essentially ‘‘boost’’ the ash basal area estimates and

hence ‘‘attractiveness’’ of the cell to EAB. While we

realize that the weightings described next may not be

appropriate across regions, extensive details for Ohio

are provided to facilitate application for other regions

(Fig. 2).

Roads

Intuitively from studying maps of the reported

positives, and also through our predictor importance

scores derived from the RandomForest model, it was

clear that the network of major highways was highly

coincident to the locations of new outlier infestations

(see Fig. 3). Evidence is mounting that many of the

new introductions may be due to insect hitchhiking,

in addition to the transport of materials like firewood

(Buck and Marshall in press). For example, a recent

detection (June, 2009) in Cattaraugus County, New

York, is very close to a busy exit on Route I-86. To

register the increased probability of insects riding on

windshields, radiators, or otherwise attached to

vehicles moving down the road, we assigned weights

to two widths (1 and 2 km) of major road corridors.

We used the National Highway Planning Network

data for the first half of 2007 (Federal Highway

Administration 2007), which reported average daily

traffic (ADT) values calculated as the number of

vehicle miles traveled divided by the number of

center line miles of highway. Classes of ADT values,

reported at the county level for all but the smallest

highways, were assigned weights to the inside buffer

(1 km), ranging from 1 to 60 as a linear proportion to

their traffic density, which ranged from 2,000 to
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164,000 cars per day. Naturally, traffic was generally

much lower in rural zones, with ADT on rural

interstate highways of \50,000 (Fig. 2a). Weights

were reduced by half for the outside buffer of 1–2-km

distance from each road.

Campgrounds

Campgrounds have often been considered likely

destinations of human-assisted EAB transport, pri-

marily through the movement of firewood. There are

many documented or highly suspected cases for this

mode of movement in Michigan and more recently

into West Virginia (West Virginia Division of

Forestry 2007). Because the general public is

involved, it is much more difficult (compared to

wood industries and nurseries) to achieve education,

regulation, compliance, and enforcement goals

related to stopping EAB spread. Campground loca-

tions were acquired from Dunn & Bradstreet and the

AAA Travel and Insurance Company. We weighted

the campgrounds with a ‘gravity model’ (described

next) combined with a campground coverage buf-

fered and scored according to number of campground

sites.

Gravity model

Unlike typical dispersal and spread models, gravity

models explicitly assume that movements are not

random but biased by the attractiveness of destina-

tions. They allow for the prediction of long-distance

dispersal events by considering not only the nature of

source populations, but also the spatial configuration

and nature of potential colonization sites. Because of

this, gravity models have the potential to more

Fig. 2 Inputs to the model

of EAB risk (see text for

weighting schemes): a
major roads rated by traffic

density in Ohio; b
campground weights; c
wood product weights; and

d human population density

by zip code
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accurately forecast species movement through heter-

ogeneous landscapes than do diffusion models, which

do not explicitly consider the spatial pattern of distant

sites (Bossenbroek et al. 2001).

Our gravity model considers traffic volumes and

routes between EAB source areas and various

distances to campgrounds. Muirhead et al. (2006)

earlier used a gravity model approach to movement

of EAB; our current model expands on that work by

incorporating more detailed data on both public and

private campgrounds. Because empirical data on the

use of campgrounds, i.e., reservation data, are

available only for public campgrounds, a modeling

framework is necessary to incorporate private camp-

grounds; in this case to predict the relative number of

campers traveling from EAB-infested areas to Ohio

campgrounds.

Gravity models calculate the number of individu-

als (e.g., campers) who travel from location i (i.e., zip

code) to destination j (i.e., a campground), Tij, as

estimated as

Tij ¼ AiOiWjc
�a
ij ð2Þ

where, Ai is a scalar for location i (see below), Oi is

the number people at location i, Wj is the ‘‘attrac-

tiveness’’ (=number of camp sites) of location j, cij is

the distance from location i to location j, and a is a

distance coefficient, or distance-decay parameter,

which defines how much of a deterrent distance is

to interaction. Ai is estimated via

Ai ¼ 1=
XN

j¼1
Wjc

�a
ij ð3Þ

where N represents the total number of destinations

and j represents each destination in the study region.

We recorded a total of 241 public and private

campgrounds in Ohio; in the absence of actual usage

data, we assumed a direct relationship between the

Fig. 3 Locations of a
detection trees in a 2006

and b 2007, and detected

EAB positives in c 2006

and d 2007
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number of camp sites and the usage of each

campground (W). The distance between a zip code

and a campground (c) was calculated as the road

network distance between these locations; for sim-

plification, we used only roads with either a state or

federal designation, excluding local roads. The num-

ber of campers in each zip code (Ai) was assumed to

be proportional to the total population, thus we used

the population of each zip code based on 2000 census

data. The point of origin within each zip code was the

road location nearest the centroids of the zip

code region, while the campground locations were

determined as the nearest point to a state or federal

road. The area of EAB infestation consisted of all the

zip codes that had their centroids within the 2006

front.

To estimate the distance coefficient (a), we

compared our gravity model with reservation data

obtained from the Ohio Division of Parks and

Recreation for 58 state parks. These records

contained the number of reservations for each

campground summed by zip code of the camper’s

residence. We used sum of squares to measure

goodness-of-fit between model predictions and the

observed data (Hilborn and Mangel 1997). By

fitting the model to the reservation data for Ohio

state parks, we assume that campers using private

and public campgrounds behave in the same

manner, i.e., the distance to and size of a particular

campground affect their travel decisions in the

same manner. Once the gravity model was param-

eterized, we used the estimated distance coefficient

value to determine the expected number of campers

that would travel to all 241 campgrounds within

Ohio. To give a relative estimate of risk we

reported the percentage of campers coming from

EAB-infested zip codes traveling to each camp-

ground in Ohio.

Each campground in Ohio had a relative score

derived from the gravity model calculations ranging

from 51 to 174,800. These were divided into quartiles

with breakpoints of 1,640, 3,902, and 8,552, and used

with increasing (but arbitrary) multipliers of 1.0,

1.33, 1.67, and 2.0, respectively. In this way, those

campgrounds with many visitors arriving from the

core zone were given double weight. The spatial

influence assumed for each campground in this

analysis was a radius of *4 km around the camp-

ground headquarters.

Weighting by size of campgrounds

The weighting (10 points for inner buffer, 5 points for

outer buffer) and buffer size (ranging from 0.5 km to

4 km) for campgrounds were based on the number of

camp sites listed in Dunn & Bradstreet data

(www.dnb.com/us/). The smallest campgrounds

(e.g., \50 camp sites) had buffers of only 0.5 and

1 km, while the largest campgrounds ([600 camp

sites) had buffers of 2.5 and 5 km. These scores of 5

and 10 were then multiplied by the multipliers from

the gravity model (1.0–2.0) to yield a maximum

possible total of 20 points for campgrounds (Fig. 2b).

Wood products

Wood products industries, including nurseries, also

have been responsible for some EAB movement

(including an outbreak near an ash handle factory in

northwestern Ohio and another via landscaping a new

restaurant in central Ohio), so a scheme was devel-

oped to weight buffers around individual businesses

dealing in wood products. Because the wood products

industries are regulated, we expect that the risk is

relatively low now and will become lower in the

future, but pre-regulation infestations or accidental

(or not) introductions still might occur.

First, we assessed industries for their potential to

use ash logs, based on the listing of standard

industrial classification (SIC) codes from Dunn and

Bradstreet. We scored each industry for likelihood of

EAB getting to the site and emerging based on our

estimate of the amount and status of ash used in the

industry: 0 = none; 2 = small likelihood; 4 = some-

what likely; 6 = higher likelihood. For example,

wood pallet industries scored a 6, while manufactur-

ers of pressed logs of sawdust or woodchips scored a

2. Movement of material from nurseries historically

has been a source for several infestations, but is a

minor component in this model of future risk because

of the close scrutiny on nursery stock movements.

Next, buffer distances around the businesses, and

corresponding weights, were created based on the

number of employees (surrogate for volume of wood)

working at the facility. For 1–10 employees, the

buffer of 0–1 km scored 8 and the 1–2 km buffer

scored 3; for 11–50 employees, the buffer of

0–1.5 km scored 9 and the 1.5–3 km buffer scored

4; and if the facility had more than 50 employees, the

362 Landscape Ecol (2010) 25:353–369
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0–2 km buffer scored 10 and the 2–4 km buffer

scored 5. Any overlapping buffers were summed with

a maximum weight of 10. Because of the lower

probability of movement via this mechanism (result-

ing from these industries being highly regulated), the

total value of the wood products component was only

10% in the composite model (Fig. 2c).

Population density

Although road densities and ADT values are good

surrogates for population densities, we included pop-

ulation by zip code to capture areas where humans

could contribute to the spread through alternative

activities or even through vehicular movement on

minor roads, which were not included in our road

network. This factor creates an imputed score over the

entire state and distinguishes rural from more urban-

ized areas. Data were acquired for 2000 from the

US Census Bureau and were divided into six classes

with scoring as follows: 1 = 1–100 people/km2; 2 =

101–200; 4 = 201–800; 6 = 801–2,000; 8 = 2,001

–4,000; 10 = 4,001–16,582 (Fig. 2d).

Quarantine zones

The Ohio Department of Agriculture quarantines a

county when EAB is confirmed from anywhere in it.

Once the county is quarantined, ash is legally allowed

to be moved within the county or to any other

adjacent quarantined counties. Thus, the possibilities

for EAB spread are enhanced within those counties.

We effectively modeled the spread risk within

quarantined counties to be twice that of non-quaran-

tined counties by finally reducing the scores achieved

from each of the other four factors by half in non-

quarantined counties.

Overall weighting scheme

The final weighting scheme was as follows: (1) the

maximum score possible for roads was 60, meaning the

traffic density was as much as 164,000 cars per day; (2)

the maximum score for campgrounds was 20, meaning

the campgrounds with a gravity model score [8,553

and the campground had [600 campsites scored the

highest possible; (3) the maximum score for wood

products industries was 10 when the number of

employees exceeded 50 and they used considerable

raw ash in their industrial process (e.g., forest nurseries

and wood pallet industries); and (4) the maximum

score for human population density (by zip code) was

10, which was achieved when the population density

exceeded 4,000 people/km2 in that particular zip code.

With 60% of the potential risk attributed to roads, we

underscore that road networks are the quickest and

most likely mode of dispersal at present and increas-

ingly in the future as campgrounds and wood product

industries become increasingly well-regulated, and

humans are better indoctrinated on the negatives of

moving wood material. The actual scores in our data

ranged from 0 to 77 (100 being the maximum possible).

These final weights were then used as multipliers on the

existing basal area in each 270 9 270-m cell through-

out Ohio. Because the range of ash basal area per cell

was 0.016–5.11 (plus we added 1 to each value to keep

values [1 for GIS and quantitative purposes), the

maximum possible score for the final insect ride

classification was 611 (actual data ranged from 1 to

440). These values were scaled back to 1–100 for

relative scoring and mapping of ‘risk’.

Development of risk map

The final risk map was derived by summing the

scores for the insect ride and the insect flight

components of the model. As such, the flight model

affects only zones within about 40 km from the core

area, beyond which the ride model is responsible for

the additional risk. The combination logically creates

maximum risk near the present core zone of infes-

tation. Because of the hybrid approach and the

combining of two models, it was difficult to assign

a prediction time for the risk. We estimate that the

risk map should be useful for about 2–4 years,

although it will be useful to rerun, and potentially

improve, the model periodically as new data on

outbreaks and other information becomes available.

Verifying and summarizing model outputs

Next we verified and summarized the model outputs

according to the confirmed EAB positive finds as of

December 2007. The number of positives that were

recorded and that lay outside the 2006 core zone from

December 2003, to December 2007, number 255: 1 in

2003, 7 in 2004, 78 in 2005, 110 in 2006, and 59 in

2007. Although visual inspection of the positives
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influenced the model building, the actual locations

were not associated with the model.

Assessment of positives versus detection trees

During late 2005 through 2006, the Ohio Department

of Agriculture designated a total of 9,670 ash trees as

EAB detection trees, and another 9,964 trees were

designated in 2007 (Fig. 3a, b). Detection trees were

girdled to make them more attractive to EAB and

were set with sticky traps during the growing season.

In the following months, the trees were removed,

peeled, and inspected for the presence of EAB. If

EAB was confirmed, the tree was considered positive.

These positive tree locations were used to analyze the

accuracy of our model (Fig. 3c, d).

Some people have proposed that the higher propor-

tion of new infestations near major roads was merely

due to greater sampling of ash trees near the highways,

rather than EAB establishing more frequently near

highways from transport of materials containing EAB

and hitchhiking insects. To test this possibility, we

analyzed the relationship between all positive trees

and the 2006 and 2007 detection trees. By comparing

the ratio of 2006/2007 positive trees to 2006/2007

detection trees for a series of variables (e.g., average

basal areas of ash and average distances from roads,

campgrounds, wood products, and the occupied zone),

we could assess the relative importance of individual

variables in detecting potential positives.

Results and discussion

Risk map of EAB spread

The risk map visually shows extremely high risk near

the current core zone, due to the additive risk of the

flight and ride models, and the availability of nearby

EAB (Fig. 4). Next in risk are the metropolitan

Fig. 4 Risk map for EAB

in Ohio
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regions of Columbus, Lima, and Cincinnati/Dayton.

These elevated risks are primarily due to all the

humans moving around, some of which inevitably

would carry EAB accidentally or via wood material.

There is a wide variability of risk elsewhere, with

areas near major roads showing more risk than minor

roads or the rural areas. These relative risk levels will

change as the EAB spreads, new counties are

quarantined, and new invasions provide new sources

of the insect to spread from.

We provide three output maps of risk: (1) risk of

the insect to fly into new zones (Supplementary

Fig. 7); (2) risk of the insect to ride with humans

(Supplementary Fig. 8); and (3) overall risk as a

combination of the flight and ride models (Fig. 4).

The risk maps show the large influence of several

factors. First, it is readily apparent that distance

from current EAB centers is very important—that

regardless of how the insects move, there is much

higher risk near where EAB is currently present.

Second, the road network is apparent in the risk

map, especially where traffic is higher, such as

along major interstates and US highways. Third,

population density matters with risk: as more people

move about, there is an increasing chance of EAB

moving with the humans. And finally, quarantined

counties show up as important in the risk map

(Fig. 4). Once EAB is initially detected in the

county, the entire county is quarantined. When that

happens, it is legal to freely move wood materials

around within the county and between adjacent

quarantined counties. Thus, the risk within quaran-

tined counties increases.

Summarizing model outputs

Of the 255 outlier locations, 82 (32%) fell in our

highest risk class (extreme) that primarily captures

those zones very near the core with high risk from

both the ride and flight models, 76 (30%) fell in the

high classes, 89 (35%) in the medium classes, 8 (3%)

in the low classes, and 0 in the least class (Figs. 4, 5).

In comparing these percentages of positives to area

within those classes, 97% of the positives were

captured in land representing the medium, high, and

extreme classes which occupy only 36.5% of the

modeled part of the state, and 62% of the positives

occurred in the high and extreme classes, which

occupy only 14% of the state (Fig. 5). Although these

are promising aspects of model outputs, we realize

that these statistics do not really validate the model

because our model results are artifacts of a weighting

scheme influenced by EAB-positive locations, even

though we used RandomForest’s predictor impor-

tance as a guide to weight the ride model. The models

of this type are inherently difficult to validate because

we do not have future data available and even the

present data set is far from ideal. When long-distance

chance dispersal events dominate as in the case of

EAB spread, accurate predictions of spread rate are

very difficult or impossible to calculate (Lewis 1997).

We therefore ascribe to the philosophy that estab-

lishing confidence in the usefulness of the model,

especially its relevance to managers, is more impor-

tant than traditional model validation, which in this

case is practically unachievable. Therefore our model

aims to provide a better vision of risk for the

Fig. 5 Percentages of EAB

positive finds and land

occupied by risk class from

the model shown in Fig. 4
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managers on the ground that are presently faced with

the unenviable facts of dwindling budgets, uncertain

information, and continued decimation of ash

resources.

However, we do demonstrate the utility for our

risk model by comparing it to known EAB positives

and to a statistical imputed map of EAB risk using

RandomForest. The RandomForest model produced a

map (Supplementary Fig. 6) that identified only 24%

of the known outlier positives, while our SHIFT

model map of medium to extreme risk identified 97%

of the known outlier positives. The RandomForest

map also modeled 81% of Ohio as having the least

risk for colonization, an underestimate compared to

the SHIFT map, which modeled 37% of the state as

having the least risk. Thus, the SHIFT model

delineates the locations of known EAB positives

quite well, and we also have the added information on

gradations of risk from low to high giving better

information to the managers on the ground.

We also tested how well the model, when using the

2005 EAB-occupied map, predicted subsequent posi-

tive EAB locations in 2006 and 2007. While the 2005

model captured the trends fairly well for the high to

extreme classes (41% of the total EAB positives in

2006 and 2007 captured), a higher proportion of

positives fell in the medium risk class (54% of the

total; Fig. 6). However, this analysis suffered from the

following drawbacks that were mostly beyond our

control: (1) Unknown sampling distribution for pos-

itives before 2006; (2) Quarantined counties were the

same in both 2005 and 2007 models; (3) Decrease in

sampling intensity over the years due to lack of

resources; and (4) Uncertain lag time between infes-

tation of ash and detection of EAB.

However, this analysis points to the need for

managers to also consider the medium risk class

important especially in proximity to other risk

factors, including their individual expertise and

experience. Because the extreme class results from

the addition of relatively high model scores from both

IFM and the IRM models, it will be infested by EAB

very quickly due to its proximity to the core infested

zone boundary. Therefore, the extreme class is not as

valuable for managers compared to the high and

medium risk classes. Our narrowing down the

possibility of infestation to about 25% of the total

area (i.e., the medium and high risk classes)

re-emphasizes the utility of our modeling effort.

Our EAB SHIFT model outputs also tend to be

consistent with the ongoing spread of the insect as

reported by the Cooperative Emerald Ash Borer

Project (http://emeraldashborer.info/surveyinfo.cfm).

It places a level of high risk around the cities of

Columbus and Dayton/Cincinnati where population,

traffic density, and wood product industries are key

influences. In 2006, 24 (22%) and in 2007, 26 (46%)

of the outlier positive trees were found either in

Columbus and Dayton/Cincinnati or in the neigh-

boring counties where these cities are located.

To explore the importance of the primary traffic

patterns in relation to the spread of outlier colonies,

eleven of the major routes from Detroit, MI, to major

cities in Ohio were subset from the total road

network; these routes also included one turn only

onto an adjoining highway. The analysis of positives

within various buffers around this subset of roads

revealed that 52% fell within 1 km, 64% fell within

2 km and 81% fell within 4 km of these few roads

that represent only 34.7% of the total road length

Fig. 6 Outlier EAB

positive finds (2006–2007)

classified by the 2005

combination of the IFM and

IRM
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used in the modeling (Fig. 2a). This result highlights

the importance of the role of major highways that are

in a connected road network in spreading EAB.

Assessment of positives versus detection trees

An analysis of the ratios of EAB positives to

detection trees validates the extra importance of

roads to EAB risk of spread. Even though a higher

proportion of positive trees fell within 2 km of the

major highways than beyond 2 km, an even greater

proportion of the detection trees were located beyond

2 km of a major highway. For example in 2006, 46%

of the detection trees fell within 2 km of the

highways, but 83% of the positives were within that

zone; in 2007, 52% of detection trees and 74% of

positives were within the 2-km zone. Thus, overall,

there is a 4.5-fold probability for a given ash tree to

be attacked by EAB if the tree is within 2 km of a

highway as compared to a distance of 4-6 km

(Fig. 7), highlighting the importance of road net-

works in the spread of EAB.

Conclusions

There is a great deal of ash resource in the eastern

United States, especially in the northern half. The EAB

is just now entering zones of extremely high amounts

of available ash—northeast Ohio, northwest Pennsyl-

vania, and southwest New York. Even in the zones of

lower ash availability, like northwest Ohio and

northeast Indiana, plenty of ash is available because

of high ash per unit of forest in small woodlots,

riparian woods, small wetlands, and field borders.

We estimate the expansion of the front from 1998

to 2006 to be roughly 20 km per year. This rate of

expansion would necessarily have to include both the

biological dispersal capacity of the insect and some

short-distance movement assisted by humans (e.g., on

or in vehicles, plant material, wood material). The

stratified nature of the dispersal makes it more

difficult to identify a specific front, increasingly so

with time.

We believe that our hybrid modeling approach

adequately captures the dynamics of the EAB spread.

The spatially explicit cell-based approach takes into

account landscape heterogeneity that mathematical

models of spread ignore, and by a novel combination

of the insect’s flight characteristics and human-

facilitated movement, addresses both short and long

range dispersal. It results in a map of spread that

estimates risk areas over approximately the next

2–4 years with much better accuracy than simple

imputed statistical maps. We are able to outline

degrees of risk in our maps that agree reasonably well

with the positive EAB locations so far. This mapping

effort should help managers better anticipate future

risk from EAB based on uncertain information by

locating areas of higher risk and thus allow them to

focus where infestations are most likely to occur. It

may also help state and county agencies in the

placement of a limited number of traps or detection

trees, or in sample plot design for researchers. In

addition, our approach can be applied to other

regions, although reassessment of the core area and

re-weighting of the insect ride components may be

needed.

To sum, we hope our modeling effort results in a

better understanding of the risk associated with the

Fig. 7 Ratio of proportion

of detection trees to

proportion of EAB positives

within various distances

from highways
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spread of this destructive insect, and, better informed

decisions can be made to detect, monitor and slow the

spread.
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