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Abstract Decades since the initial establishment of zebra
mussels (Dreissena polymorpha) in North America, under-
standing and controlling the invasion of aquatic ecosystems
continues to be a problem in continent-wide conservation and
landscape management. While the high economic and
conservation burden of this species makes accurate predic-
tions of future invasions a research priority, forecasting is
confounded by limited data, tenuous model assumptions, and
the stochasticity of the invasion process. Using a new method
for niche identification, we profiled invasion vulnerability for
1,017 lakes in the Great Lakes region of the Unites States. We
used a nonparametric geoadditive regression model to test for
effects of two water quality variables on the present
distribution of zebra mussels. We then used the support vector
data description (SVDD), a support vector machine for one-
class classification, to estimate the boundary of the ecological
niche. By disentangling niche estimation from distributional
assumptions, computational niche models could be used to
test an array of fundamental concepts in ecology and
evolution, while species invasions forecasting is representa-
tive of the wide range of potential applications for niche
identification in conservation and management.

Keywords Invasive species . Niche . Support vector
machines . Zebra mussels

Introduction

Colonization by non-indigenous species is a leading
environmental issue (Sala et al. 2000; Mooney et al.
2005; Strayer et al. 2006) and an important component of
global change (Mooney and Hobbs 2000) and biotic
homogenization (Rahel 2002). In North America, freshwater
ecosystems support a large endemic fauna and provide
valuable ecosystem services and are therefore particularly
vulnerable to invasion (Vanderploeg et al. 2002). Thus,
forecasting invasions in freshwater ecosystems has been
identified as a leading challenge for ecological forecasting
(Clark et al. 2001; Jones and Ricciardi 2005) and risk
analysis (Bossenbroek et al. 2005).

Disentangling the relationships between species and their
environments—species niches—is crucial for forecasting
biological invasions (Peterson 2003). Though the niche is a
fundamental ecological concept (Chase and Leibold 2003),
niche identification has been plagued by conceptual
ambiguity and technical obstacles (Pulliam 2000). Further,
when identifying niches for invading species, the distribu-
tion of observations available for modeling is necessarily
non-stationary, as the invading species is progressing across
a landscape encountering new and different environments,
violating the assumptions of most conventional statistical
methods. The result is that niche models are commonly
severely biased.

We used a machine-learning approach to overcome these
obstacles and profile vulnerability to invasion by zebra
mussels (Dreissena polymorpha) for 1,017 lakes and
reservoirs in the Great Lakes region of North America.
The zebra mussel is a nuisance in freshwater ecosystems in
North America (Schloesser et al. 1996; Ricciardi et al.
1998) and Europe (Karatayev et al. 1997), dramatically
altering ecosystem cycles (Strayer et al. 1999; Vanderploeg
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et al. 2002), fouling underwater industrial infrastructure
(O’Neill 1997), and threatening the viability of endemic
clam populations (Ricciardi et al. 1998). Zebra mussels
have been designated by the World Conservation Union
Invasive Species Specialist Group as one of the one
hundred worst invasive species worldwide (http://www.
issg.org/database). Here, we set up a framework for
computational niche identification and show how the
support vector data description (SVDD), a machine-
learning algorithm for one-class classification, can be used
for niche modeling. Following this, we deploy the approach
to profile ecosystem vulnerability to invasion by zebra
mussels across the Great Lakes region of the United States.

Niche theory Hutchinson (1957) defined the ecological
niche as the set of environments in which a species can
persist. The implied subjunctive conditional—that if species
S was introduced to environment E, and E was a member of
the niche, then S would persist in E—has been a sticking
point for niche identification, since data on persistence are
typically available from only a fraction of possible environ-
ments. We represent the relevant features of a species’
environment at a location i by a vector of observations or
measurements corresponding to each of n niche axes,
xi ¼ yi;1; yi;2; yi;3; . . . ; yi;n

� � 2 , where is the set of all
(possible) environments (Hutchinson 1957; Chase and
Leibold 2003). Through the use of appropriately specified
niche axes, any quantitative or qualitative characteristic of
the environment is allowed. Thus, a niche axis may take as
its domain the real numbers, non-negative integers, or
binary indication {0, 1}, and possibly others. The domain
of the niche axis is the set, , of possible niche conditions
y. Examples are temperature (a continuous quantitative
variable), the number of competitive species in the
community (a discrete quantitative variable), soil type (a
categorical variable), and the presence of a mutualist
symbiont (a binary indicator). While not a part of our
analysis below, in general other species or combinations of
other species might be considered as niche axes. Histori-
cally, this has been a point of confusion, i.e., in the theory
of competitive exclusion where one conception of the
problem uses niche restriction to detect competition while
another conception holds that competition is constitutive of
the niche, being part of its definition. We remark that these
differences are matters of convention and that our concep-
tion of the niche can be modified to accommodate these
distinctions and others by partitioning into subsets.

We now turn to the criterion of persistence. Roughly,
populations persist when average individual fitness, λ, a
function of the environment and population size, is greater
than one, i.e., λ(x, z)>1, for some population size z, z<<zmax,
where zmax is the maximum size of the population. The niche

may be therefore defined as .

Finally, for any niche axis there will be a subset of
habitable conditions, , the set of all conditions that
appear in any environment x belonging to the niche,

. In short, the only niche
conditions which are not habitable are those that do not
belong to any niche environment. Importantly, some regions
of the niche may not occur in nature. Thus, following
Jackson and Overpeck (2000) we define the realized
environmental space, , as the subset of environments
realized in nature and subsequently define the potential
niche, the subset . Niche identification, the
estimation of the extension of , from observations drawn
from is generally a difficult problem.

Computational niche identification The goal of identifying
(or ) is not original to this study (Grinell 1917), and is

a necessary step for numerous applications in ecology,
evolutionary biology, and environmental science. We
submit that our approach, described below, is optimal in
the sense that it eliminates unwarranted theoretical restric-
tions (particularly relaxing the requirement that the niche
include all environments in the product space of habitable
conditions; cf. Hutchinson 1957; Stockwell 2007) while
retaining the intuition that the niche should be connected.
Connected, in this sense, means that any niche environment
x is reachable from any other niche environment by a series
of operations on the elements of x in which an element is
individually incremented or decremented within the local
neighborhood of nearest points. While niches need not be
continuous (some niche axes may be discrete), it is an
empirical conjecture that they are not disconnected in the
sense that two niche environments may be separated by an
intermediate non-niche environment. Equivalently, niche
and non-niche environments may be separated by a
hyperplane.

Ideally, niche identification would proceed by estimating
λ(x, z) directly from observed data on individual growth,
survival, and reproduction (cf. Pulliam 2000). Obtaining
such data is costly, however, requiring intensive long-term
fieldwork. Thus, one typically assumes that much less
costly observations of species occurrence are indicators of
local persistence and therefore a reliable surrogate for high
fitness environments. In terms of our notation, numerous
methods for identifying (but not generally ) based on
a set of occurrence data and associated environmental
measurements have been proposed in recent years (Hirzel et
al. 2002; Elith et al. 2006; Pearce and Boyce 2006; Phillips
et al. 2006). Some of these methods have shown remark-
able accuracy when compared with validation data and
reported accuracy has improved as increasingly sophisti-
cated methods are introduced (Stockwell and Peterson
2002; Elith et al. 2006). However, all methods with which
we are familiar fail to fully avoid one or both of the
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following problems. First, data are typically unbalanced
with observations of species occurrence vastly outnumber-
ing confirmed locations of species absence, if any absence
data are available at all. Further, misclassification errors in
the data are also asymmetrical (true occurrences are more
likely to be classified incorrectly as absences than vice
versa), either due to sampling error, or (as in the case of a
species invasion) because the current true distribution of
environments inhabited by the species is transient. The
severity of this problem will vary among species. Clearly,
for organisms that disperse slowly, experience frequent
local extinction, or are unable to thoroughly explore
pockets of habitat (perhaps due to fragmentation) this
problem will be severe. These and other problems pertain-
ing to the balance of observations have come to be known
as the problem of “presence-only data” since the limit case
comprising only observations of species presence with no
observations of species absence is the most commonly
available form of data (Hirzel et al. 2002; Brotons et al.
2004; Pearce and Boyce 2006). Second, data are generally
not independent. Regardless of how data are obtained (i.e.,
by computationally sampling from maps of species distribu-
tions with GIS, merging records from museum collections,
or new field collections), they represent geographically
distributed populations in which autocorrelation will be high
at some spatial scales (and may not be isotropic) and for
which the grain of subsampling that would ensure
statistical independence is unknown. Often data exhibit
other unknown investigator-induced correlations as well.
In our view, these problems—the balance of observations
and non-independence—conspire to seriously confound
hypothesis tests and estimation. The effects of these
problems are exacerbated when sampling in not even across
the species distribution.

Because of the need to avoid these problems, niche
identification methodology is now an active area of
research (Guisan and Thuiller 2005; Moisen et al. 2006).
New techniques have been introduced to overcome these
problems, but to our knowledge none addresses both.
Heuristic methods to circumvent the problem of presence-
only data include simulating species non-occurrences
(Stockwell and Peters 1999; Engler et al. 2004) or avoiding
the classification formulation altogether by estimating the
multivariate distribution from which observations are drawn
(e.g., Hirzel et al. 2002; Phillips et al. 2006). In the former
case, there are well-known theoretical problems and some
practical ones (Hirzel et al. 2002; Pearce and Boyce 2006),
though the procedure has sometimes proved reliable
(Anderson et al. 2003). In the latter case, the estimated
distribution does not in general reflect the actual distribu-
tion of eventually colonized habitats because it is affected
by the distribution of habitat availability, the sampling
process, the spatial trajectory of the invading species, the

process of resource selection by organisms, and the spatial
configuration of different environments (Keating and
Cherry 2004; Manly et al. 2004; Lele and Keim 2006).
Often, the autocorrelation problem is ignored (for an
example from our own research, see Drake and Bossenbroek
2004; cf. Wood and Augustin 2002; He et al. 2003).

We suggest an alternative approach to forecasting
species invasions that proceeds in two steps. First, to
identify niche axes, use a local probabilistic regression
method that controls for effects due to spatial autocorrela-
tion to identify variables that are important predictors of the
species present transient distribution. We use geoadditive
modeling, though for a population that has achieved a
stationary spatial distribution autologistic regression might
be preferable. Second, use statistically significant variables
to estimate niche boundaries, i.e., contours of extreme
values of the distribution from which the observations are
drawn or a decision boundary for classification of niche
from non-niche environments. Importantly, however, we
advocate using methods that make limited assumptions
about the statistical properties of actual observations. Given
the complicated conditional relationships among the pro-
cesses leading to the distribution of observations, a non-
probabilistic approach could be particularly useful. We
applied this two-part approach to a dataset on zebra mussel
presence in 1,202 lakes and reservoirs across the Great
Lakes region of the United States.

Materials and methods

Data As for other mollusks, water chemistry is an
important determinant of zebra mussel habitat. Specifically,
dissolved calcium and pH are critical for larval survival,
growth, and shell formation (Vinogradov et al. 1993). An
earlier study found that these two variables predicted
occurrence in Europe with 92.7% accuracy when data on
both occurrence and absence were available (Ramcharan et
al. 1992). Accordingly, we envision that each lake is
represented by the pair xi=[y1, y2], corresponding to pH
and dissolved calcium concentration. Water quality data
were obtained from the EPA STORET data bank (http://
www.epa.gov/storet/index.html) and the USGS National
Water Information System (http://waterdata.usgs.gov).
From each data source, we retrieved records of pH and
dissolved calcium for all lakes for which they were
available in each of the eight states that contain multiple
inland lakes or reservoirs infested by zebra mussels (Illinois,
Indiana, Michigan, New York, Ohio, Pennsylvania,
Vermont, and Wisconsin). Kansas and Oklahoma together
have only three reservoirs with zebra mussels and were
excluded from the study. Records of pH and calcium
were attributed to individual lakes using a geographic
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information system (ArcGIS, ESRI, Redlands, California).
To diminish the influence of spurious outliers, the top and
bottom 5% of parameter values for each lake were
trimmed before calculating mean dissolved calcium and
pH for 185 invaded lakes and reservoirs and 1,017 non-
invaded lakes and reservoirs. Dissolved calcium data
were log10-transformed prior to analysis.

Hypothesis tests for niche axis identification We tested for
an association between zebra mussel occurrence and our
two putative niche axes (dissolved calcium and pH) using
geoadditive models (Kammann and Wand 2003). Geo-
additive models are generalized additive models (GAMs) in
which the two-dimensional effect of space is included as a
covariate. For the reasons discussed above, we chose to use
geoadditive models to accommodate the highly probable
situation in which invasion status of lakes is spatially
correlated. For zebra mussels the causes of spatial autocor-
relation include proximity to propagule sources, density of
habitable ecosystems, stream connections, geospatial vari-
ation in the human behaviors resulting in introductions, and
the effect of spatially correlated covariates, particularly
large-scale features of bedrock and surface geology. Our
model is fully specified by the assumption that the binary
response variable (invaded or not invaded) was binomially
distributed with mean

h ¼ t x; yð Þ þ s z0ð Þ þ s z1ð Þ þ s z2ð Þ;

where t(x,y) is a tensor-product smooth interaction (with
thin-plate regression spline basis) describing the spatial
effect at longitude x and latitude y, and the s(zi) are thin-
plate regression splines for effects of dissolved calcium,
pH, and lake area (Wood 2006). Lake area was included as
a measure of lake attractiveness (Reed-Andersen et al.
2000; Bossenbroek et al. 2001), which in turn affects
inbound propagule pressure and could therefore be a
confounding factor (Leung et al. 2006). Models were fit
in the statistical programming language R (R Development
Core Team 2007) with the mgcv package (Wood 2001);
tuning parameters were selected automatically minimizing
the unbiased risk estimator (UBRE), which can be
interpreted as an approximation to Akaike’s Information
Criterion for nonparametric models (Wood 2004).

Niche boundary identification and risk profiling Support
vector machines (SVMs) are a class of non-probabilistic
statistical pattern recognition algorithms for estimating,
among other quantities, the boundary of the set from which
a collection of observations is drawn. By design, SVMs are
insensitive to large numbers of similar observations,
thereby circumventing the autocorrelation and nonstatio-
narity problems. Operationally, SVMs make use of a

function (the kernel) to project observations with complex
statistical properties in the natural input space (e.g., the
niche axes) into a higher dimensional feature space in
which they are more simply represented, for instance for a
classification problem by a separating hyperplane (Schölkopf
and Smola 2002). For niche identification, the goal is to
estimate a function that distinguishes from
using only observations from —the observations of
species occurrence. The function should return a set of
points in the input space that represents a boundary
between the two classes, while the assumptions about the
data and the target class must be minimal. In statistical
pattern recognition, the task of identifying counter
examples to a set of training data (i.e., points belonging
to ⌝ ) is referred to by the nearly synonymous terms
“novelty detection”, “one-class classification”, and “con-
cept learning” (Manevitz and Yousef 2001; Tax 2001;
Markou and Singh 2003). SVMs for novelty detection
satisfy these conditions. Particularly, it is not assumed that
data are independent, that data are distributed in proportion
to the true distribution of the species in the environment,
that the niche is a convex set, or that the observations agree
in expectation with the average of the true distribution, (cf.
Phillips et al. 2006). We do assume that the niche is not a
disconnected subset of , and optimize the tuning
parameter to ensure that the set of environments compris-
ing the estimated niche is simply connected. Finally, we
remark that accuracy will improve with the degree to which
the distribution of observations are representative of the true
potential distribution, in the sense that the range of the
distribution has been sampled even if in a biased and unknown
fashion. Particularly, performance will be improved when the
boundary of the unknown distribution actually sampled, the
boundary of , is coincident with the boundary of . We
believe that this is the minimally restrictive approach to
representing the ecological niche as classically defined by
Hutchinson (1957). To our knowledge, the similarity
between the problem of novelty detection and niche
identification has not been remarked previously.

The support vector data description (SVDD) is an SVM
for finding the boundary around a set of observations (Tax
and Duin 2004). This boundary is the simplest boundary in
the sense that it represents the smallest possible hyper-
volume (a hypersphere) containing a specified fraction of
the observations in the projected feature space. The SVDD
retains the general property of being insensitive to the
distribution of the training data as long as the data are
representative of the set of possible observations (Tax
2001). In particular, extreme observations provide a great
deal of information about the boundary of the niche which
can be exploited by the SVDD, but (if over-representative
of their actual occurrence) would give a biased estimate of
the distribution of the species in nature. Indeed, by avoiding
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estimating the density directly, the SVDD obtains a better
estimate on the boundary of the niche than would be
obtained from estimating the full density and “backing out”
its supporting set from contours of tail probabilities (Tax
and Duin 2004). Further, consistent with Vapnik’s principle
to avoid solving a more general problem as an intermediate
solution to a particular objective, the SVDD seeks to extract
maximal information about a particular feature of a
distribution (its boundary) by avoiding estimating unneces-
sary features (e.g., central tendency, dispersion, and skew;
see discussion in Tax (2001), pp 67-ff.). For niche
identification, this should result in maximally accurate
estimates of niche boundaries.

Model training and performance estimation Prior to model
estimation, occurrence data were randomly assigned to
model training (80%) or model testing (20%) subsets.
Using only the training dataset for model estimation, the
SVDD was obtained by solving the quadratic programming
problem

min
X
i;j

aiajK xixj
� �

:
X
i

ai ¼ 1; 0 � ai � C

( )
ð1Þ

where K(xi,xj) is the kernel describing the similarity
between vector-valued object xi and xj, the α’s are the
Lagrange multipliers, K is the Gaussian radial basis
function (RBF) K xi; xj

� � ¼ exp � xi � xj
�� ��2.s2

n o
with

tuning parameter s, and C is a parameter that trades off
the volume of the hypersphere against the errors (Tax
2001). Our rationale for choosing the Gaussian RBF kernel
was twofold: (a) its theoretical underpinnings suggest this
kernel can be understood as a generalization of, and
compromise between, the rigid hypersphere and Parzen
density estimators (Tax and Duin 2004), which alternately
may be considered as the extreme cases of the boundary
estimation approach adopted in this paper (the hypersphere)
and the density estimation approach commonly adopted
(Parzen density estimator), and (b) our experience is that it
is the most numerically stable of the standard kernels.

For model estimation, we only used pH and dissolved
calcium. We suspect that large lakes are invaded first,
because of high rates of human visitation, and that the
significant effect of lake area obtained in the geoadditive
model is at least accentuated during the early phases of
invasion and probably temporary altogether. The parameter
C was determined implicitly by defining a tolerable error
rate on the target distribution " 2 0:1; 0:05; 0:025f g.
Because of the very high economic and environmental
costs of zebra mussel invasion (Leung et al. 2002), we
submit that ε=2.5% (representing one in forty chance of
misclassifying a niche ecosystem as non-niche) is the
maximum tolerable error rate in practice and focus our

subsequent discussion on these analyses. The selection of s
was automated to obtain the simplest description of the
target set subject to the specified error ε. For detailed
formulas for the estimated niche boundary and the
associated test procedure we refer the reader to section 2.1
of Tax and Duin (2004).

The false negative error rate was estimated by executing
the trained algorithm on the 20% of occurrences in the testing
dataset. Estimating the false positive rate is trickier. Since the
invasion is ongoing, susceptible lakes not yet invaded and
properly identified as susceptible would score as false
positives, the estimated false positive rate obtained by the a
posteriori classification of lakes known not to be invaded
could be severely biased. Therefore, we adopted an alternative
suggested by Tax and Duin (2002) and estimated the false
positive rate as the fraction of the sphere with radius equal to
the radius of the target data occupied by the trained classifier.
We recognize that the distribution of non-niche ecosystems
in nature may not reflect the uniform distribution generated
using this procedure and that some generated outliers will
belong to the true target distribution (so that the error rate
estimated on the simulated outliers is overestimated). Tax
and Duin (2002) suggest that this method will be most prone
to failure when observations from the “target class” (i.e.,
niche environments, ) are “scattered over the complete
feature space” (i.e., the space of possible environments, ).
Equivalently, one can readily appreciate that the distribution
of outliers generated this way will be most accurate when (a)
the true boundary of set is a highly restricted subset of
(so that few outliers are generated within the niche space),
and (b) the set of realized environments is evenly
distributed over the domain . Recognizing these rather
restrictive limitations, in this paper, we primarily use the
estimated false positive rate to compute the receiver–operator
curve, to facilitate evaluating our procedure and comparing
with other models. Given the positive bias in the estimated
false positive rate, our estimate of the summary area-under-
curve statistic (AUC) should be conservative.

All data processing and estimation was performed in
MATLABversion 7.2 (Mathworks, Inc., Natick,Massachusetts).
Solution of the SVDD program in Eq. 1 was performed using
the Data Description Toolbox (version 1.5.4, [Tax 2006]) and
Pattern Recognition Toolbox (version 4.0, [Duin et al. 2004]).

Results

Invasion extent Zebra mussels were found in 185 of 1,202
lakes in our sample. Of these, five are in Illinois, two are in
Indiana, 119 are in Michigan, 19 are in New York, 11 are in
Ohio, five are in Vermont, and 25 are in Wisconsin. In a
few instances, larger lakes are represented by more than one
observation because parts of the lake belong to separate
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USGS polygons. Thus, as an extreme example, Lake
Champlain is included in our data set seven times. Average
measurements of the trimmed data series for dissolved
calcium ranged from 0.83 mg L−1 to 586.43 mg L−1, while
dissolved calcium in infested lakes was between 6.2 mg L−1

and 436.39 mg L−1 (median: 31.6). Average measurements
of pH ranged from 3.9 to 10.3, while pH in infested lakes
was between 6.9 and 9.0 (median: 7.8).

Niche axes All effects in the geoadditive model were
significant (p<0.0001; R2=0.37; Table 1). However, the
estimated degrees of freedom (e.d.f.) for the effect of pH
was indistinguishable from one, so a second model was fit
in which pH was included as a linear covariate. All effects
retained their significance in this second model (Table 2).
The effect of dissolved calcium increased noticeably from low
to intermediate values, at which it levels off at a threshold
around 1.5×101mg L−1 (Fig. 1). Interestingly, the estimated
coefficient for the effect of pH is negative, i.e., conditioned
on dissolved calcium, pH has an inhibitory effect on mussel
establishment that is constant across the observed range.
Exponentiation of the fit coefficient obtains an estimate of
the effect of increasing pH by one unit on the odds of having
been invaded by zebra mussel, i.e., e−0.66≈0.5 indicates that
the odds are reduced by approximately half.

Invasion risk profiles Out of 1,017 presently uninvaded
lakes, 645 fall within the estimated zebra mussel niche at
the most restrictive false negative error tolerance of ε=
0.025 (Fig. 2). Relatively few of these are excluded when
the error tolerance is increased to ε=0.08 (Fig. 3). The
zebra mussel niche appears to be a relatively restricted

subset of the environmental space occupied by lakes in
general. Vulnerable lakes were identified in all states for
which analysis was performed, but are concentrated in the
Midwest, particularly in Michigan’s Lower Peninsula

Table 2 Output for the final geoadditive model with linear effect of
pH; all other effects represented as smooth terms

Effect Term p est. d.f.

Spatial distribution t(x,y) 2.0e−11 9.7

Dissolved calcium s(z0) 1.9e−5 3.8

pH (linear fit coefficient: −0.66) b0 0.035

Lake area s(z2) <2e−16 3.6

Table 1 Output for the first geoadditive model with all effects
represented as smooth terms

Effect Term p est. d.f.

Spatial distribution t(x,y) 2.0e−11 9.7

Dissolved calcium s(z0) 1.9e−5 3.8

pH s(z1) 0.035 1.002

Lake area s(z2) <2e−16 3.6

Fig. 1 The partial relationship between infestation by zebra mussels
and the concentration of dissolved calcium (after log10 transformation)
increases to a point and then levels off in a geoadditive model. Plot
shows mean effect with 95% confidence intervals
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Fig. 2 The support vector data description estimated niche for zebra
mussel (Dreissena polymorpha) in North America. Circles (red)
represent observations of zebra mussel occurrence and dots (grey)
represent lakes for which zebra mussel has not been reported. The
model was trained only on observations of occurrence. The blue line is
a non-probabilistic estimate of the niche boundary tuned to contain
97.5% (ε=0.025) of occurrence observations, the magenta line
contains 95.0% (ε=0.05) of occurrence observations, and the red line
contains 90.0% (ε=0.08) of occurrence observations
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(Fig. 3). Individual lakes and their vulnerability status are
listed in Appendix S1.

The single tuning parameter (s) was selected to obtain
the simplest model consistent with the target error rate in
cross-validation. It is our experience that model results are
generally remarkably insensitive to the choice of this
parameter. Figure 4 shows the cross-validation error rate
as a function of the tuning parameter. Ideally, this figure
would show a very steep shoulder with a sharp turn in the
vicinity of the target error rate. In this case, a somewhat
simpler model might have been chosen by tolerating an
error rate twice as large, but the actual estimated niche
boundary is not markedly complicated (cf. Fig. 2). That is,
there are no irregular corrugations in the estimated

boundary. Our confidence is further supported by inspect-
ing the receiver–operator curve, which shows the variation
in the true positive rate as ε is varied over its possible
range. The estimated AUC was 0.88, while the receiver–
operator curve is quite flat in the vicinity of the target error
rate ε=0.025 (Fig. 5).

Discussion

Using data from publicly accessible databases, we profiled
the risk of zebra mussel invasion for lakes and reservoirs of
the Great Lakes region of the United States. Our method
circumvents most problems associated with presence-only
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Fig. 3 Map of lakes predicted
to be susceptible to zebra
mussels. Susceptible (colored)
or unsuitable (black) lakes are
based on the ecological niche
identified with a support vector
machine. Lakes colored red
occupy the most interior region
of the niche (ε=0.08), followed
by lakes colored magenta
(ε=0.05) and lakes colored blue
(ε=0.025). A table listing the
individual lakes is available as
Appendix S1
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Fig. 5 The receiver–operator curve showing the rate at which truly
susceptible lakes are correctly identified (true positive rate) as a
function of tolerance for falsely classifying unsuitable lakes as
susceptible (false positive rate). The circle shows the point on the
curve at the target error (false negative) rate of 2.5%
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data and unknown correlations, including spatial autocor-
relation. Our results confirm that dissolved calcium and pH
within observed ranges are determinants of zebra mussel
habitat. Further, we have identified individual ecosystems
at risk for zebra mussel invasion (S1). Our analysis
demonstrates that the ecological niche, conceptualized as
a subspace in the set of possible environments, can be
estimated using support vector machines, and that compu-
tational approaches to data mining large, heterogeneous
ecological datasets can be marshaled for ecological fore-
casting. Long-term ecological data are commonly beset by
unknown dependencies, unbalanced observations, and non-
random sampling. Our study shows that non-probabilistic
machine-learning approaches to data analysis can avoid
some of these obstacles.

We confirmed that two hypothesized niche axes (pH and
dissolved calcium) significantly affected invasion status of
lakes in the United States, independent of possible confound-
ing influences of spatial correlation and lake area. Interestingly,
pH was found to have an unexpected inhibitory effect, though
compared with other factors (dissolved calcium, lake area, and
spatial location) the evidence for an effect of pH is weak (p=
0.035). A speculative explanation is that this effect results
from reactions of the different carbon species as pH varies.
As pH increases, the majority of dissolved carbon changes
from free CO2 to bicarbonate (HCO3

−) to carbonate (CO3
2−),

affecting relative proportion of each (Wetzel 2001). Conse-
quently, when pH is high, i.e., >8.5, calcium is primarily
bound by carbonate and therefore unavailable for uptake by
mussels. Alternatively, eutrophy is often correlated with pH
(Jeppesen et al. 1990), and hypereutrophic lakes are known to
be poor habitat for zebra mussels (Strayer 1991). However,
given the relatively weak evidence for the association
between pH and occurrence, future research should confirm
that this pattern is not spurious. After identifying pH and
dissolved calcium as important niche axes, we estimated
niche boundaries using the SVDD to identify a large number
of lakes in the Great Lakes region as vulnerable to invasion
by zebra mussels. The accuracy of the estimated model was
very good by disciplinary standards. Particularly, the ob-
served area-under-curve statistic (0.88) was higher than in
any comparable study of which we are aware (e.g., Elith et al.
2006); cf. discussion [Drake et al. 2006]).

Other studies have previously taken a landscape ap-
proach to quantifying zebra mussel invasion risk (Strayer
1991; Drake and Bossenbroek 2004; Whittier et al. 2008).
The picture emerging from these analyses is that landscape
scale management may halt or slow the westward spread of
this nuisance species. Accordingly, multi-state projects like
the 100th Meridian Initiative (http://100thmeridian.org/)
have been developed to intercept zebra mussels and
respond rapidly when infested lakes are detected. However,
within the continent-wide potential distribution of zebra

mussels there clearly will be unsuitable ecosystems,
pockets of non-habitat, and other lakes that are highly
vulnerable. Bioeconomic models have shown that preven-
tion and control of zebra mussels at the ecosystem scale
would be expedient (Leung et al. 2002; Bossenbroek et al.
2009), but until now a simple, reliable model for profiling
lake vulnerability based on data from North America has
not been available. Further, our approach is not limited to
zebra mussels but could be used for forecasting invasion of
any species in which habitat availability is at least a partial
determinant of spread.

Our approach accommodates the presence-only and spatial
autocorrelation problems that have often afflicted niche
estimation. Our approach does not solve the problem,
presented by coupled source-sink habitat patches, in which
organisms are found in environments that do not belong to the
niche (Gomulkiewicz et al. 1999; Pulliam 2000). In our case,
the data are unlikely to be contaminated by such false
positive observations because zebra mussels are rarely
observed before a self-sustaining local population is estab-
lished. Though this fortunate situation will not generally
occur, we remark that since source habitats and sink habitats
must be spatially coupled, a signature of the niche boundary
will almost certainly remain in the correlations among
environments in which species are observed. This will not
be a simple relationship, as the source-sink dynamic further
erodes the structure of an already problematic dataset. We
regard this as an open problem for statistical learning.

To conclude, we remark that the SVDD approach to
niche estimation could be applied to other conservation
problems and in basic research. As an element of
population viability analysis for threatened and endangered
species, niche modeling could be used for habitat assess-
ment (Elith and Burgman 2003). Similarly, risk assessment
for release or escape of genetically modified organisms
should identify the eventual range such species might
occupy (Wolfenbarger and Phifer 2000). But, at best, only
experimental data (not geographic distribution) will be
available to such models. The non-probabilistic nature of
the support vector machine admits such contrived data.
Further, combined with models for regional and global
climate change, our approach to niche modeling could be
used to predict future species distributions, particularly
since statistical downscaling of course-grained models
could be embedded within the statistical learning process.
Finally, combined with resampling approaches to hypoth-
esis testing (e.g., Manly 1991), these methods could be
used to shed light on such longstanding questions as the
relative importance of environment versus species inter-
actions and community drift in determining species dis-
tributions and abundance (Hubbell 2001), adaptation
(Gomulkiewicz et al. 1999), evolution of species ranges
(Kirkpatrick and Barton 1997), niche conservatism (Holt

196 Theor Ecol (2009) 2:189–198

http://100thmeridian.org/


1996), and habitat effects on population dynamics in
heterogeneous landscapes (Engen et al. 2002). The problems
of presence-only and autocorrelation data have made these
questions difficult to resolve.
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Appendix S1

The file “appendix.csv” contains locations of 1,017 lakes
screened for vulnerability to invasion by zebra mussels.
Overall, 645 out of 1,107 (63.4%) lakes were vulnerable at
the ε=0.025 level, 592 out of 1,107 (58.2%) lakes were
vulnerable at the ε=0.05 level, and 514 out of 1,107 (50.5%)
lakes were vulnerable at the ε=0.08 level. Columns are
longitude, latitude, state name, county name, lake name,
vulnerable (1/0) at the ε=0.025 level, vulnerable (1/0) at the
ε=0.05 level, and vulnerable (1/0) at the ε=0.08 level.
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