

HEIRL

ENERGY

American Renewable Energy Builders of Westland, MI

Development of a Low Cost, Residential Plug and Play PV System

SunShot Grant: Prime Awardee: N.C. State University Sub Awardee (\$1.25 Million Project): *University of Toledo*

Principal Investigator – Brandon Cohen, College of Business and Innovation Co-Investigator – Randy Ellingson, Dept. of Physics and Astronomy Co-Investigator – Michael Heben, Dept. of Physics and Astronomy

Student Interns

Eric Holmes, Chemical Engineering UT Hunter Rupp, Mechanical Engineering UT Harry Thaman, Engineering MIT Jordan Keefe, Chemical Engineering UT

Project Objective

Reduce total installed cost of residential solar photovoltaic systems through intermediate objectives

Background

Two Generations of development:

Each Generation has four tasks addressing-

- the structure
- the electrical components

Field Studies of Real World Residential

Rooftop Installations

- Perrysburg, OH & Columbus, OH • Yellowlite & Heirloom Energy Installations
- Avg. Labor Costs: \$0.32/Watt

- Average Installation Time: 23 minutes/Module
- Time and Cost Algorithms developed for installation practices

NCSU Plug and Play Project Desired Outcomes

In 5 Years, demonstrate PnP system that

- Can potentially reach \$1.5/Watt target.
- Contractor/homeowner can install without special training/tools in 10 man-hours.
- Supports automation of:
 - Electrical permitting and inspection
 - Structural permitting and inspection
 - Utility interconnection agreement.
- Delivered, installed, inspected and commissioned on same day.

Task 2 Team (UT)

 Cost reductions in refining over-all residential rooftop system design by reducing weight of mount, improving mount design, and

- the interface to the utility
- operation in a market/regulatory environment

Gen I – Task Overview

Onto Rails **Finished Pyramidal** Design

integration of balance of systems

 Analyze market practices in design and installation to compare progress against for new PnP systems

Installation Simulation Lab

Bosch D-Tect 150

Bosch D-Tect Scanner: Intern Study

- Stud-finding for rack mount is a slow process
- European installations are known to be faster
- Trials have been done at UT and in the field using the Bosch D-Tect 150 wallscanner. Techniques

Gen I - PnP System Program

have raised accuracy to > 85% accuracy, and installers have improved upon this.

	Trial 1	Trial 2
Intern 1	83%	67%
Intern 2	100%	100%
Intern 3	92%	83%
Net	92%	83%
* Percentage of Accurately		

Located Studs out of 24

