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Transportation Informatics: An Image Analysis System 

for Managing Transportation Facilities – Phase II 
 
 

Executive Summary 
 
 

One of the most important tasks in maintaining transportation facilities such as highways 

and streets is the evaluation of the existing condition.  Visual evaluation by human 

inspectors is subjective in nature, therefore has issues of consistency and the speed and 

frequency of evaluation is limited due to the manual process.  Automated evaluation 

using modern digital image processing and pattern recognition techniques can increase 

the efficiency and accuracy and decrease the costs of condition evaluation.  Several 

automated condition evaluation systems have been developed, but these systems 

commonly require special devices such as strobe light, laser beams, etc, which increase 

the cost and limit the system to certain applications.  In this study, a low cost automatic 

pavement distress evaluation approach is presented.  This method can provide real-time 

pavement distress detection as well as evaluation results based on color images captured 

from a camera installed on a survey vehicle.  The entire process consists of two main 

parts: pavement surface extraction followed by pavement distress detection and 

classification.  In the first part, a novel color segmentation method based on a feed 

forward neural network is employed to separate the road surface from the background.  

In the second part, a segmentation technique based on probabilistic relaxation is used to 

separate distress areas from the road surface.  The geometrical parameters obtained from 

the detected distresses are then fed to a neural network based pavement distress classifier 

in which the defects are classified into different types.  Simulation results are given to 

show that the scheme presented in this report is both effective and reliable on a variety of 

pavement images. 
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I. Introduction 

 

Condition evaluation is an important step in maintenance and repair planning.  An 

automated pavement condition survey evaluates the condition of the existing roadway 

surface using modern imaging technologies.  As costs of image collection and 

processing decrease while analysis techniques advance, various attempts have been made 

to develop automated condition evaluation system using imaging technology.  Most of 

the existing systems record pavement surface images using a video camera or 

photographic camera mounted on a survey vehicle shown in Figure 1. 

 

 
Figure 1: A van with pavement inspection device 

 

In the late 1980s, the Japanese consortium Komatsu built an automated-pavement distress 

survey system [1], comprised of a survey vehicle and data processing system on board to 

simultaneously measure cracking, rutting, and longitudinal profiles. A maximum 
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resolution of 2048 x 2048 was obtained at the speed of 10 km/h.  The Komatsu system 

worked only at night to control lighting conditions.  The system represented the 

implementation of the most sophisticated hardware technology at that time.  However, it 

did not output the types of cracking and only functioned during the night.  

 

Earth Technology Corporation [2] created a research unit called Pavement Condition 

Evaluation Services (PCES).  The automated system created by PCES was the first to 

use line-scan cameras at a 512-pixel resolution to collect pavement data.  However, this 

effort was discontinued as the necessary technologies associated with the image capturing 

and processing was not advanced enough at the time.   

 

In the early 1990s, Haas and Hendrickson [3] proposed a standard model to represent 

pavement surfaces that moved toward a unified and automated acquisition of key 

characteristics for improving data quality.  Laser ranging was executed within a subset 

of the source image which designated an area of interest.  The laser ranging would then 

complement or reject the vision data, so that dark areas which were not caused by 

pavement distress such as tire marks, oil spillings, and shadows, could be ruled out.  

Walker and Harris [4] also reported the development of a crack identification system 

using these laser ranging technologies.  Velinsky and Kirschke [5] designed a machine 

vision system requiring laser ranging to overcome the shortcomings of an optical system. 

 

Guralnick et al. [6] proposed a method using shadow moiré interferometer to measure 

coarse pavement distress, such as abnormal elevations and large sized potholes.  The 

method allows detection of areas of the pavement that deviate from specified flatness 

criteria.  The shadow moiré interferograms provide surface elevation variation 

measurements that cannot be obtained through ordinary videotaping.  They can detect 

severe road elevation deformations caused by heavy loads, and potholes with undefined 

borders, which optical methods cannot detect. 

 

Systems based on the Swedish PAVUE technology were used in the U.S. briefly in the 
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mid 1990s.  The Swedish PAVUE data acquisition equipment includes four video 

cameras, a proprietary lighting system, and four S-VHS videocassette recorders [7].  The 

image collection subsystem is integrated into a Laser RST van. The off-line workstation 

is based on a set of custom designed processing boards in a cabinet to analyze continuous 

pavement data from the recorded video images. Surface images are stored on S-VHS 

tapes in analog format. 

 

In the late 1990s, RoadWare Corporation was actively involved in using a new product, 

WiseCrax [8], for an automated survey of pavement surface.  The data collection uses 

two analog cameras synchronized with a strobe illumination system, with each camera 

covering about half the width of a pavement lane. The image processing is done in an 

off-line office environment relying on the host CPUs to conduct image processing at a 

speed of two or three miles per hour with substantial operator assistance. 

 

In the past few years, researchers at the University of Arkansas made substantial progress 

in automatically identifying and classifying pavement surface cracks at highway speed 

using a data collection system with one high-resolution digital camera and parallel 

processing of the data [9]. The current system can collect two-dimensional pavement 

surface images, identify and classify four types of cracks at a speed of over 60 MPH. The 

four types of cracks are longitudinal, transversal, alligator and block. The size of the 

cracks that can be identified and classified is about 2-millimeters.  However, those 

existing automated systems commonly require special devices such as lights, laser, etc, 

which dramatically increases costs and limits the system to certain applications only.  

Thus, methods that are more economical, efficient, and practical for automatic pavement 

inspections are required.  

 

This research aims to provide a reliable low cost automated pavement distress evaluation 

system capable of detecting cracks from complicated backgrounds while evaluating the 

severity of the damage.  The proposed model consists of two major parts: pavement 

surface extraction and pavement distress detection as well as damage evaluation. In the 
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first part, a multistep color segmentation method is presented to separate the road surface 

from the background areas, such as houses, bushes, grass and trees.  Following the road 

segmentation, a pavement distress detection algorithm based on probabilistic relaxation is 

described in the second part to further enhance the contrast between the cracks and the 

background.  Based on the geometrical and topological parameters obtained from the 

crack structure, a neural network based pavement distress classifier is designed to assign 

the cracks into different types and severity groups.  The overall procedure of the 

proposed system is illustrated in Figure 2. 

 

 
Figure 2: Overall diagram of the proposed iterative algorithm 

 

 

Original image 

Image pre-processing 

Region growing 

Pavement region merging 

Pavement surface 

Background subtraction 

Crack detection based on 
Probabilistic relaxation  

Crack classifier and damage 
severity evaluation 

Distress analysis results 
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II. Methodology 

 

In this section, we present an automatic pavement surface extraction method that aims to 

separate the pavement surface from its complicated background.  The input to the 

system is a series of forward view images continuously captured by a camera installed in 

front of the testing vehicle as it travels.  A color segmentation approach was developed 

that consists of three successive steps.  First, the input image is smoothed using a 3 x 3 

median filter to remove the noise while preserving the edge sharpness.  Then an initial 

region segmentation procedure based on region growing [10, 11] is applied to partition 

the image into small homogeneous regions.  Finally, a novel region merging method 

based on a neural network is developed to differentiate the road surface from its 

background regions. 

 

 

Figure 3: The input image to the system 
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2.1 Region growing  

The RGB color space is commonly used in color image segmentation in which color is 

represented by triplet red, green and blue intensity values.  Color distance is used as a 

measurement of color similarity where pixels/regions satisfying a certain degree of color 

homogeneity are grouped to form a cluster. 

 

Let 𝐼(𝑖, 𝑗) be the color of the pixel located at image coordinates  (𝑖, 𝑗), in which  𝐼(𝑖, 𝑗) is 

defined in terms of color components(𝑅! ,𝐺! ,𝐵!).  The color distance between pixel 

𝐼 𝑖, 𝑗   and    𝐼 𝑖′, 𝑗′  is defined as, 

D 𝐼 𝑖, 𝑗 , 𝐼 𝑖 ′, 𝑗 ′ =    (𝑅! − 𝑅!′)! + (𝐺! − 𝐺!′)! + (𝐵! − 𝐵!′)!       (1) 

 

Assume(𝑖!, 𝑗!) is the first pixel from the upper left corner to be examined for generating 

a new region.  The region growing scheme operates from the pixel(𝑖!, 𝑗!)  in all 

directions to select the neighborhood pixels which are close enough to the pixel under 

study in terms of its color. If the neighborhood pixels satisfy the criterion, 

                  D 𝐼 𝑖, 𝑗 , 𝐼 𝑖 ′, 𝑗 ′ < 𝑇!"#$                                    

(2) 

where 𝑇!"#$ is a threshold value for initial region growing, they are clusterized as a 

region and the 𝑅!   𝐺!   𝐵!   values from equation (1) are replaced by the average RGB values 

of this region.  This process is reiterated until no pixel meets the growing criterion.  

Then a new original pixel is chosen to start a new region growing process until every 

pixel in the image is assigned to a region.  
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Figure 4: The initial segmentation by region growing 

 

2.2 Pavement region merging 

 

After initial segmentation, we have a number of undesired small regions in addition to the 

pavement region, as shown in Figure 4.  To extract the pavement surface, we need to 

define a set of rules to guide the region merging process. In this section, a 3-layer feed 

forward artificial neural network is used to distinguish the pavement surface regions from 

the background regions.  Figure 5 illustrates the basic framework of the neural network 

model.  Each input node receives a feature descriptor that represents one aspect of the 

region.  The output layer consists of 2 nodes that denote the pavement surface region 

and background region, respectively.   
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Figure 5: Neural network architecture for region merging 

 

2.3 Feature selection 

 

Appropriate selection of the input features from each region is very important to the 

success of the merging process.  It is obvious that a region can be described in many 

respects, such as the color, texture, shape and size, etc.  A detailed explanation of 

various features and their distinct characteristics are provided in the following. 

 

2.3.1 Color feature 

In the context of a pavement extraction application, color is considered to be more robust 

than other feature descriptors to represent the pavement surface. This is because the 

initially segmented small regions of the pavement surface often vary significantly in 

texture and shape due to the shadows and distresses, while their colors preserve a high 

degree of similarity.  To represent the statistical characteristics of color distribution, 

color histograms in 3 different channels of the RGB color space are obtained as shown in 

Figure 6.   It is evident that pixels that belong to the pavement surface take a dominant 

proportion of the whole image and mostly share a similar color.  Therefore, an inference 

can be drawn that the pavement portion of the image corresponds to the most significant 

peak value in the color histograms. 

Input layer  Hidden layer  Output layer 

Color similarity 

Spatial distance 
 

Pavement 

	
  
Background 

n	
  Size of the region 

Texture similarity 
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To measure the similarity between a given region and the pavement surface, we only need 

to calculate the color distance from the average RGB value of the region to the peak value 

of each histogram using the following equation, 

 

D!"#"$ R  ,Pavement = (R! − Peak!)! + (R! − Peak!)! + (R! − Peak!)!   (3)  

 

The measure of color similarity will serve as a main feature to the input of the neural 

network. 

 

Figure 6: Histograms of the color image 

2.3.2 Texture feature  

The grayscale pavement image is used to derive the spatial texture features, which can 

then be combined with other features to produce the final segmentation.  Like many of 

the existing algorithms for texture analysis and synthesis, our approach is based on 

multiscale frequency decomposition [12].  
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The key idea of the proposed method is that we are not interested in recognizing every 

little detail in the image.  Rather, large areas with complex texture distribution such as 

grass and houses can be classified as “complex regions”, while areas with relatively 

uniform texture distribution such as the sky and pavement surface can be classified as 

“smooth regions”.  In this way, only four major texture classes (“smooth,” “horizontal,” 

“vertical,” and “complex”) are defined.  

 

In our texture analysis, we use the bi-orthogonal wavelet decomposition [13] which is a 

separable filter and considered to be computationally efficient.  Since discarding the HH 

band does not result in significant loss of visual quality, only the HL and LH bands are 

used (note, H and L stand for the high-pass and low-pass bands in each of the horizontal 

and vertical orientations).  

 

The most commonly used feature for texture analysis in a wavelet domain is the energy of 

the subband coefficients.  Since the coefficients are quite sparse, it is necessary to 

perform some type of filtering operation to obtain a more uniform characterization of the 

texture.  Here, we use a median energy filter.  The advantage of the median filter is that 

it tends to remove the textures associated with transitions between regions.  In such 

cases, the increase in wavelet coefficients due to the region boundary is concentrated 

along the edge and is not intensified by the median operator. The size of the window must 

be large enough to capture the local texture characteristics, but not too large to avoid 

border effects.  We found that for the given image resolution and viewing distance, a 9 x 

9 window size gives the best results. 

 

Several clustering approaches are tested to obtain the texture segmentation.  The 

simplest and most effective was to apply two-level K-means to each of the horizontal and 

vertical components separately.  One of the cluster centers was always fixed at 0 

(smooth texture) and the other was determined by the K-means algorithm.  The added 

advantage of this approach is that we obtain four texture classes with obvious 
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interpretations: smooth texture, vertical texture, horizontal texture, and complex texture.  

Figure 7 shows the results, with smooth texture represented by white, vertical by light 

gray, horizontal by dark gray, and complex by black. 

 

Figure 7: Image after texture segmentation 

 

2.3.3 Other features 

Other than the color and texture, size and location information of the regions are selected 

to be the other two descriptors as input into the neural network.  Based on our 

experience, size and location can provide valuable information for the following reasons: 

 Most of the small regions are more likely to be merged with the larger ones. 

 Regions near the image boundary are more likely to be components of the 

background while regions located at the lower or middle part of the image have a 

higher probability of being parts of the pavement.  

 

To keep track of the size of each region, we simply count the number of pixels in the 

region, and the number is recorded as an input to the neural network. As far as the 

location information is concerned, the centroid point of each region (highlighted by ‘*’ in 
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Figure 8) is calculated to represent the location of the region by averaging the index of all 

pixels within the region.  The last feature descriptor to the neural network is obtained by 

calculating the spatial distance between the centroid of each region and a pre-defined 

pavement surface marker (highlighted by ‘o’ in Figure 8).  The distance between a 

region R and the pavement marker is the following Euclidian distance, 

 

 D!"#$%#& R  ,Pavement = (X! − X!"#$%#)! + (  Y! − Y!"#$%#)!          (4) 

 

 

Figure 8: Spatial distance of each region from the road marker 

 

These features will then be available to the neural network shown in Figure 5.  After 

training the network with a set of artificial data, the final segmentation result is shown in 

Figure 9. 
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Figure 9: Pavement surface extracted by the proposed method 

 

III.  CRACK DETECTION AND EVALUATION 

3.1 Non-uniform background removals 

Crack detection on the pavement surface using image processing techniques is considered 

to be a difficult problem due to the presence of noise in the image of the pavement 

surfaces.  To prevent the influence of the shadings and to provide a more uniform 

background, a background subtraction method is applied ensuring the same background 

lighting condition for all parts of the pavement images.  To extract the background of the 

image, a relatively large size median filter is applied to the image to eliminate the detailed 

information on the pavement surface.  In this way, the cracks with a thin structure are 

removed from the image, leaving the raw pavement background only.  Then the 

extracted background is subtracted from the original image to obtain a subtracted image, 

of which the non-uniform illumination effect is fully removed.  Figure 10 illustrates the 

process of removing light variations using a median filter. At first, we use a 15 x 15 
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window size median filter to smooth the original image while blurring the image [14].  

Then the original image is subtracted from the smoothed image in order to remove the 

non-uniform background illumination. 

 
(a) Original image 

   
(b) Smoothed image with the median filter 

 

(c) Background subtracted image 

Figure 10: Non-uniform illumination removal by median filtering 
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3.2 Crack detection  

In this section, a probabilistic relaxation [14] technique is used to label the crack pixel 

from the noisy pavement images. For each pixel in the image, the initial probability 

P! λ!  corresponding to a crack is assigned according to the intensity value of the output 

of pre-processing by, 

 

                                                                                                      P! λ! =
log 𝐼!"# + 1
log 𝐼! + 1

                                                                                                          (5) 

 

where 𝐼! means the intensity value of pixel i, 𝐼!"# is the minimum value in the image, 

and λ!    denotes the label for a crack pixel.  

 

The probability of a pixel to be a crack is then updated by considering the label 

probabilities of its neighborhood.  However, in crack detection, if the estimation of an 

isotropic neighborhood is used as a non-ambiguity, line structures like cracks in the image 

may be removed unexpectedly due to its structural property.  Therefore, we divide the 

neighborhood into eight sub-regions according to the direction and then estimate the 

non-ambiguity in each sub-region, in order to remain line structures as cracks.  This 

means that eight estimations of each pixel are calculated along different angles and 

structures passing through the pixel.  The maximum value of eight estimations is used to 

update the probability.  We can update probability  𝑃!′ 𝜆!  by, 

                              𝑃!! 𝜆! = Min
P! λ! max(Q!(λ!))
1
𝑁 P! λ!!∈!"#$%

, 1                                                                                                                   (6) 

 

                                                      Q! λ! =
1

𝑁 R!
P! λ!

!∈!!

                                                                                                                                      (7) 

where R! is one of the eight sub-regions illustrated in Figure 11.  This probability 

updating process is repeated until it reaches a convergence.  In the next step, an Otsu’s 
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thresholding method based on the obtained probability instead of the original intensity 

value is applied for the purposes of the segmentation.  Since the pixels located within the 

crack structures are of a higher probability to be a crack than the isolated noise pixels, this 

thresholding technique is able to remove undesirable disconnected pieces of noise 

components while filling in missing parts of cracks. 

 

Figure 11: Eight sub-regions considered for updating the crack probability 

 

 

Figure 12: Crack detection results 
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3.3 Crack classification and damage severity evaluation 

 

To reduce the computational complexity of the distress classification process, the binary 

image is partitioned into “tiles” [15].  Whether a tile is a crack tile or not is determined 

based on the percentage of crack pixels in a tile.  If the percentage of crack pixels in a 

tile is greater than the predefined threshold, the tile is considered to be a crack tile.  

From the image of crack tiles, two kinds of histograms are computed: a vertical histogram 

and a horizontal histogram to represent the distribution of crack tiles in each column and 

row, respectively, as shown in the following equations, 

            𝐻 𝑖 = 𝑐𝑟𝑎𝑐𝑘_𝑡𝑖𝑙𝑒𝑠
!

!!!

𝑖, 𝑗 , 𝑖 = 1,2…𝑁                                                                (8) 

 

            𝑉 𝑖 = 𝑐𝑟𝑎𝑐𝑘_𝑡𝑖𝑙𝑒𝑠
!

!!!

𝑖, 𝑗 , 𝑖 = 1,2…𝑀                                                                (9) 

where V and H represent the vertical and horizontal histograms, M and N denote the 

number of rows and columns, respectively.  

 
Figure 13: A tile image with vertical and horizontal histograms   
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Histograms show a clear pattern of a crack.  If the crack is developed in a longitudinal 

direction, there would be a peak in the vertical histogram.  On the other hand, if the 

crack is developed in the transversal direction, there would be a peak in the horizontal 

histogram.  If the crack is of a block type, the peaks could be found in both vertical and 

horizontal directions.  To represent the above observations, two accumulations of the 

differences between adjacent histogram values are calculated using Equations (10) and 

(11), 

                              𝐴! = 𝐻
!

!!!

𝑖 + 1 − 𝐻 𝑖 , 𝑖 = 1,2…𝑁                                                                        (10) 

                            𝐴! = 𝐻
!

!!!

𝑗 + 1 − 𝐻 𝑗 , 𝑗 = 1,2…𝑀                                                                      (11) 

 

The values of these two accumulators will serve as inputs to a specially designed artificial 

neural network to begin the process of crack classification.  The network is a 3 layer 

feed forward neural network.  The connection weights of the neural network are 

obtained from the training process by using artificial tile images.  Note, Num represents 

the number of crack tiles of an image. 

 
Figure 14: Architecture of the neural network for distress classification   

 

 

 

 

Block crack 
Longitude crack 

Transverse crack 

No crack 

𝐴! 

𝐴! 
Num	
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IV. EXPERIMENTAL RESULTS 

This section evaluates the performance of the proposed method by considering more than 

100 actual pavement images. The images are of size 600 x 400 pixels captured from a 

camera generally installed in front of a testing vehicle on highway road surfaces.  

Figures 15 and 16 illustrate pavement surface segmentation along with crack detection 

results of the proposed system. 

 

Tables 1 and 2 show the detailed training parameters for the region merging and distress 

classification neural networks, respectively. Thirty actual pavement images are utilized to 

train the network under manual supervision.  With a learning coefficient equal to 0.01, 

the neural networks could achieve a high training accuracy of 95% and higher.  

 

Table 1: Training process for the region merging neural network 

Learning coefficient Nodes for each layer Epochs Accuracy 

0.01 3-6-2 500 97% 

 

 

Table 2: Training process for the distress classification neural network 

Learning coefficient Nodes for each layer Epochs Accuracy 

0.01 3-30-4 1500 95% 
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Figure 15: Pavement distress detection result No.1    
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Figure 16: Pavement distress detection result No.2   

 

There are two main criteria used to assess the performance of the system: one is 

processing time and the other is classification accuracy. As shown in Table 3, the 

algorithm is able to correctly classify all cases with typical parameters like transversal 



23	
  
	
  

cracks and longitudinal cracks.  For pavement with a combination of different types of 

cracks, the cracks are all grouped into the combination category.  In this category, no 

specific crack type can be determined by the input parameters, but the damage severity 

level can still be determined by counting the number of crack tiles in the image.  

 

Table 3: Performance of the proposed system 

Crack 

type 

Average processing 

time 

Accuracy Severity level Num. of test 

images 

No crack 

Transversal  

Longitudinal  

Block crack 

(Combination of 

different types) 

1.9 s 

2.2 s 

2.1 s 

 

 

2.5 s 

100% 

100% 

100% 

 

 

95% 

Low               16 

Low               15 

Low               22 

 

High               23 

Median             19 

Low                5  
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V. CONCLUSION 

This project further extends the scope of our earlier investigation in providing a more 

generalized solution in a less restricted environment.  In the current study, we consider a 

road scene containing grass, trees, buildings and other objects in addition to the pavement 

itself.  The presence of various objects and features in an acquired image poses a 

considerable challenge in detecting the desired structural failure patterns such as cracks 

and other surface anomalies.  In other words, the presence of various features brings in 

complications for a recognition system to classify the desired patterns. Hence, this 

necessitates the application of a more sophisticated segmentation process involving 

texture features to extract and identify the pavement region from the rest of the aerial 

image prior to the extraction of the cracks from the pavement region. 

In the segmentation process, we use both the color and texture information to extract the 

pavement regions.  A probabilistic labeling scheme is utilized to extract the crack 

features from the pavement images. In addition, neural networks are designed to process 

the pavement images and are also used as a decision tool to provide a classification of 

various types of cracks.  The proposed approach, in addition to producing competitive 

accuracy, has the positive attributes of design simplicity and computational efficiency.  

Our experimental results show that the method gives good crack detection results on 

different types of pavement images.  
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