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SUMMARY OF RESULTS    
 

Our project has four major mile-stones for the second year: 

   Mile-stone #1: Develop Dynamic Inter-modal Transportation Optimization Models: For 
mostly air-road network and inter-modal networks significant to OHIO 
MICHIGAN regions and our collaborators 

  Mile-stone #2: Develop Dynamic Operational Response Optimization Models: For supply 
chain operations identified in the case studies with collaborator Ford  

 Mile-stone #3: Develop efficient heuristic solution algorithms for the above Dynamic 
Optimization Models 

 Mile-stone   #4: Validate Dynamic Optimization Models and heuristics using case study data 
   
The Research Team, made up of Dr. Alper Murat (Project PI), Dr. Ratna Babu Chinnam (Project 
Co-PI), Dr. Snehamay Khasnabis (Project Co-PI), doctoral student – Farshid Azadian, has made 
very good progress with respect to all these four milestones over the second year.  
 
In what follows, we summarize our achievement with respect to these milesones. 
 
Mile-stones #1 & #2:  
 
We have concentrated the majority of our efforts in developing stochastic models and algorithms 
for dynamic routing on intermodal networks in the form of Stochastic Dynamic Programming 
(SDP). We have met and exceeded our goals in terms of the practicality of the models and 
algorithms developed.  
 
In particular, we have expanded the scope of the models developed in the first year, where we only 
considered a single inter-modal shipment. While this approach is suitable in most part for the 
shippers (e.g. for our collaborator Ford) and to some extent for the freight forwarders (e.g. 
C.H.Robinson), multiple shipments with milk run deliveries is the most common scenario in the 
freight forwarding industry and to some extent for the shippers with multiple facilities. For 
instance, Ford often receives inbound containers full of parts and then break-bulks them and 
delivers to different parts assembly plants. Therefore we have expanded the scope of our modeling 
approach and solution algorithms based on SDP to account for the multi-leg delivery and pick up 
aspects. The consideration of the multiple shipments (pickup and delivery) not only increases the 
complexity of the models but also makes the solution intractable.  
 
In order to leverage our earlier work, we have again considered the air-road inter-modal problem 
and developed models and algorithms for solving this problem with alternative access airports. We 
developed a case study which considers Detroit and Toledo airports as the alternative access 
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airports. The problem, called dynamic air-cargo routing with milk run pickups and deliveries, is 
to pickup multiple customer air-cargo shipments, deliver to different airports and airship them on 
the air network with dynamic routing using real-time flight information. In the case study, we 
consider a set of customers dispersed geographically in the Ohio-Michigan region. Each 
customer's shipment vary in terms of size (weight, volume) and has different shipment 
requirements (e.g. delivery time). The shipments are picked up by trucks and delivered to the 
selected airports for air shipment. The decisions are the customer-truck-trip assignments, truck-
trip-airport assignments, truck-trip routes, and customer-flight assignments. This problem is a 
novel problem and extends the existing literature on vehicle routing problems. In the existing 
literature, the customer-flight assignment (and hence airport assignment) decisions are assumed to 
be made a priori. The routing decisions are then made given the customer-airport assignments. 
However, as we illustrated in our earlier work, it is advantageous to consider dynamic routing with 
real-time congestion information, especially for time sensitive air-cargo shipments originating 
from urban areas with multiple access airports. This work is described in Section A.  
 
A limitation of the milk run air-cargo pickup and delivery is the assumption of deterministic travel 
times on the road network. Whereas the stochastic congestion modeling is important for the air 
network, the road network congestion is also important for dropping off the cargo shipments on 
time for loading on a particular flight. We have addressed this limitation by developing robust 
tour selection models and algorithms for truck milk run trips where the trucks are dynamically 
routed in the stochastic congested road network. This model considers a single truck (e.g. single 
tour) and a given set of customers whose loads are to be picked up. Hence this model serves as an 
accurate estimator of the tour delivery performance (on time and variability) for the milk run air-
cargo pickup and delivery problem described above. In this work, we leveraged the synergies 
between this project and another project funded by DOT's University Transportation Centers 
Program (MI-OH UTC). The results are presented in Section B. While we have developed and 
tested the robust tour selection model formulations and algorithms, we have not integrated it with 
the milk run air-cargo pickup and delivery. This integration will be accomplished in the final year 
of the project.  
 
As for the operational response to remedy the effect of congestion at intermodal facilities, we have 
developed dynamic operational response models which extend the previous year's static models. 
 
Mile-stones #3 & #4:  
 

We have approached the development of heuristic methods in two alternative ways. First, we have 
reduced the state space of our SDP formulations through state space filtering and state 
aggregation. Secondly, we have developed and tested the AO* heuristic algorithm for routing on 
the stochastic-time dependent air and road networks. While the preliminary results obtained with 
AO* is encouraging in the sense that the state space searched to a lesser extent than the SDP 
method, we found that its overhead calculations are time consuming and eliminates other 
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advantages. The benefits of the AO* is most notable whenever there is accurate lower bound 
information on the objective function. This information is seldom available given the sparsity of 
the data regarding dynamic air cargo routing. Hence we have primarily modified our exact SDP 
algorithms and developed heuristic versions through the state space filtering and state aggregation 
to reduce the computational burden. In fact, our algorithms can now find optimal or close to 
optimal solutions in minutes which is acceptable for practical applications.  
 
For the dynamic operational response models, we have refined the Progressive Hedging Algorithm 
(PHA). We further developed hybrid heuristic algorithms combining the Sample Average 
Approximation with PHA. Our tests with these heuristic algorithms are still ongoing and will be 
completed in the first half of the final year.  

Description of Sections A, B, and C 

In Section A, we propose a modeling and solution framework for the dynamic air cargo routing on 
the air-road intermodal network with milk run customer pickups and airport deliveries. We show 
that the routing problem on the air-network can be separated from the routing on the road network 
after accounting for the cost-to-go profiles at the airport for each customer-flight assignment. We 
developed a stylized experimental study to illustrate the effect of number of trucks, number of 
customers, and number of alternative access airports on the performance. In addition, we present a 
case study in the Ohio-Michigan region where the Toledo Express airport (TOL) and the Detroit 
Metro Wayne County airport (DTW) are considered as the alternative access airports. 
  
In section B, we relax the deterministic travel time assumption and consider the stochastic 
congestion on the road network. The trucks picking up customers' air cargo shipments and 
delivering to alternative access airports are subject to recurrent and non-recurrent traffic 
congestion en route. Hence, the routing decisions need to account for the delivery reliability to the 
airport. We developed an approach to determine robust tours for trucks where the truck picks up 
customers' air cargo shipments in such a way (e.g. sequence of visits) that the delivery reliability 
at the airport is increased. We report on experiments with and without time-windows at the 
customer locations. Results show that by dynamically routing between customer pairs, the trucks 
can avoid the congestion and increase the reliability of delivery to the airports.  
 
In section C, we briefly summarize our efforts in developing heuristic methods for dynamic 
routing models on intermodal networks and operational response models. These heuristic methods 
are complementary to state space filtering and state aggregation heuristics that are applied in 
conjunction with the stochastic dynamic programming algorithm. For the dynamic routing on 
stochastic and time-dependent intermodal networks, we outline the AO* heuristic algorithm 
developed and tested. For the stochastic programming formulations obtained from the operational 
response models, we summarize our efforts in developing hybrid methods which combine the 
Sample Average Approximation with the Progressive Hedging Algorithm. 
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A. Dynamic Air-Cargo Routing on Air-Road Intermodal 
Networks with Milk Run Pickups and Deliveries 

1.1 Problem Statement 

Air-road intermodal routing consists of picking up shipments from a set of customers by a fleet of 
vehicles (e.g. trucks) and delivering them to the airports for air-shipment. The air-shipment 
includes routing on the air-network by selecting a flight sequence that carries the cargo from 
origin airport to destination either directly or by passing through connecting airports. Accordingly, 
this problem integrates two sub-problems: the road-network routing and the air-network routing. 
In the road-network routing, decisions are customer to truck assignment and customer visit 
schedule for each truck. On the other hand, in the air-network routing, a network of flights and 
transit airports are available. The operational decisions include selecting a sequence of flights for 
each customer’s order. The connection point between these two sub problems is the customer-
flight assignment, which dictates which airport a truck must visit to deliver orders and in what 
time window.  
 
In this project, we focus on time-sensitive cargo delivery. According to the Bureau of 
Transportation Statistics, time-sensitive shipments, which are mostly characterized by light-weight 
expensive packages, are responsible for the 80% growth in air-freight shipping industry. The 
primary characteristics of the air-freight shipping are the agility and reliability of delivery. 
Accordingly, customers are willing to pay extra fare for these service characteristics. In this work, 
our main objective is to minimize the overall shipping cost that only includes flights’ expenditures 
and delivery tardiness penalties. We ignore the vehicle costs for two reasons. First, the road 
transportation cost is not as significant as the cost of air transportation. Second, the vehicle 
expenditures that can be incorporated in the objective are merely variable costs directly related to 
the routing decisions. The fixed cost of acquiring and operating the trucks are in most part 
independent of the routing decisions.  
 
The routing problem on air-network has been extensively studied in the earlier work. In that work, 
we present an efficient algorithm to construct routing policy on a given air-network in both 
deterministic and stochastic settings. As demonstrated, the routing policies characterize the 
optimum flight choice at each airport based on the arrival time of the cargo to the airport and flight 
network status. The objective is to minimize the expected overall shipping cost based on the real-
time flight delay information available.  
 
Since the routing on the air-network is extensively presented in the previous report, we will not 
repeat herein. Rather, we briefly discuss the relevant information whenever needed in the 
remainder of this work. In the earlier work, we determined the routing policy based on the 
expected cost-to-go of choosing an available flight from an airport given the real-time flight 
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departure information. Clearly, choosing a flight affects the future choice of flights through the 
flight path. Hence, the expected cost-to-go is based on both the immediate cost of using a flight 
and the cumulative cost of subsequent flight choices until the arrival to the destination airport. The 
cost-to-go of selecting a flight is also dependent on the time the decision is made.  
 
An illustration of the time dependence of the cost-to-go of a flight is presented in Figure 1. In the 
deterministic setting (e.g., no stochastic flight departure delays at the origin airport), the  cost-to-
go of the flight is constant prior to the scheduled departure time. After the flight departure, the cost 
increases instantaneously to a failure penalty (e.g. not able to deliver order). On the other hand, in 
the stochastic setting (e.g., with stochastic departure delays at the origin airport), actual departure 
may happen later than that of the scheduled departure time. Accordingly, in contrast with 
deterministic setting, the cost-to-go increases gradually to the failure penalty. The difference, as 
illustrated in Figure 2, is a nonlinear curve for cost-to-go which can be approximated with piece-
wise linear functions. With this approximation, the modeling and solution algorithm aspects for 
both the stochastic and deterministic cases are identical. Hence, we herein consider only the 
simple case (e.g. deterministic) setting as far as the departure delays at the origin airport are 
concerned. Note that the we still account for the stochastic departure delays in the remainder of the 
air network and the cost-to-go step functions are determined accordingly. 
 

 
Figure 1. Schematic flight cost-to-go based on cargo arrival time for scheduled departure  

time at 9:00 am for deterministic (left) and stochastic (right) 
 
Each airport has a set of flights available with varying scheduled departure times and destination 
airports. Given the arrival time to the airport, the optimum policy selects the flight with the 
minimum cost-to-go. This recommendation is time-dependent and thus will change as flights 
depart. Figure 2 illustrates a typical cost-to-go profile for an airport with three flight alternatives 
based on the cargo arrival time. As can be observed, flight A has the lowest cost-to-go before its 
departure time. After that, flight B would be the best choice, which in turn will be preferred over  
flight C. Accordingly, the flight selection policy for this example suggests choosing flights A, B 
and C at each marked time-window, respectively (policy table in Figure 2). It should be noted that, 
in practice, there are a large number of flights at each airport which can be chosen. However, 
given that the cargo is time-sensitive and thus has delivery due date, it is possible to filter out the 
set of flights with cost-to-go greater than or equal to the failure penalty. In other words, at each 
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airport, we only need to consider a finite set of flights when the cost-to-go is less than equal to the 
delivery failure penalty. 

 

Policy  
Time Table Cost-to-go (flight) 

6:00 – 9:00 100 (A) 
9:00 – 12:00 200 (B) 
12:00 – 
16:00 

300 (C) 

16:00 – 
24:00 

1000 (-) 

Figure 2. Typical flights cost-to-go at an airport (left) and relative policy table (right)  
Flight departure times: A=9:00 am, B=12:00 pm, C 4:00 pm  

 
For the case with deterministic departures from the origin airport, the cost-to-go profile for an 
airport is a time dependent step function based on the best choice of flight at a given cargo arrival 
time to the airport. Accordingly, the optimum cost-to-go from an airport only depends on the 
cargo arrival time to the airport. Therefore, the air-network routing problem is dependent on the 
solution of the road-network routing problem through the cargo arrival time. By characterizing the 
cost function of the road network routing problem as the cost-to-go at the airport, we can separate 
these two problems.  This is the key distinction from the previous research.  
 
Based on the separability of the air-network routing and road-network routing problems, in the rest 
of this section, we focus on the modeling and solution of the road-network routing of the 
intermodal time-sensitive cargo shipments. First, we present the problem formulation and discuss 
different approaches to improve its solution efficiency. Next, we study the benefit of alternative 
access airports and analyze the effect of problem parameters on the objective function. We 
perform this sensitivity analysis via a simulation study on a sample set of problems. Next, we 
present and discuss the case study results of the problem on the southeast Michigan northwest 
Ohio region. Finally, we conclude this section by summarizing the findings. 

1.2 Problem Formulation 

Let ܩ ؠ ሺܸ,  ሻ be the directed graph that represents the problem network. Let ܸ be a set of nodesܣ
(e.g. depot, customer, and airports) and ܣ a set of arcs connecting the nodes. The set of nodes 
consists of a depot, a set of customers (denoted as C), and a set of airports (denoted as H). The 
customer pickup and airport deliveries are performed by a set of trucks (ܭ) each of which departs 
from the depot, visits a set of customers to pick up their orders and then delivers them to an 
airport. This cycle can be repeated until all the orders are picked up and delivered to an airport, 
e.g. a truck can make multiple trips. From now on, we refer each path that starts from the depot or 
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an airport and ends at an airport as a trip; let ܶ denote the set of trips. For each airport ݄ א  let ,ܪ
ܴ௛ denote the set of flights available. Each flight r has a scheduled departure time noted as ܳ௛௥. 
Each customer ݅ א  ௜௛௥ at airport h ifܨ ௜. Each customer i has a cost-to-go ofݑ has an order of size ܥ
shipped by flight r which is calculated based on its delivery destination and due date. Since order 
splitting is not allowed, a customer's order must be shipped on the same flight as a whole. The 
flight time on each air-network arc, connecting node i to j, is noted by ݈௜௝. The depot opening and 

closing times are ߠௗ
ை and ߠௗ

஼, respectively. All trucks can leave and must return during the depot's 

operating hours. Let ܽ௜ be the arrival time at customer ݅ and ݖ௛
௞௧ be arrival time of truck ݇ at 

airport ݄ in ݐ௧௛ trip. Besides ܽ௜ and ݖ௛
௞௧, other decision variables are ݔ௜௝

௞௧, which indicates whether 

node i is visited right after node j by truck k in trip t,, and ݕ௜௛௥
௧ , which indicated whether the order 

of customer i is picked up in the tth trip to be shipped by flight i departing from airport h. 
 
Our problem is formulated as follows: 
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In this model, the objective function is to minimize the overall shipping cost; shipping cost is 
calculated based on summation of cost-to-go of the selected flights. The cost-to-go of each flight 
includes both the flight cost and any delivery tardiness penalties. Constraints set (2) prevents 
infeasible connections. For instance, any direct connection from depot to airport is not allowed 
since there is no reason for an empty truck to visit an airport. Constraints (3) indicate that all 
customers must be visited exactly once. Constraints (4) allow trucks to leave the depot only in the 
first trip. Moreover, all the trucks that left the depot in their first trip must end their first tour in 
one of the airports. Constraints (5) and (6) impose flow conservation for customers and airports 
respectively; if a truck arrives at a customer during a trip, it must leave that customer in the same 
trip. As for the airports, if a truck arrives at an airport during a trip, it must leave that airport in the 
next trip. Constraints (7) calculate the arrival time at customers. The main purpose of these 
constraints is to prevent the sub-tours by preventing cycles consisting of only the customers. In 
this aspect, these constraints are similar to the Miller-Tucker-Zemlin sub-tour elimination 
constraints for the traveling salesman problem (Miller et al., 1960). Constraints (8) calculate the 
arrival time at the airports for each truck and for each trip. Constraints (9) prevent assigning a 
customer's cargo shipment to a flight if the airport arrival time for the truck carrying that 
customer's cargo is later than the flight's scheduled departure time. Similar to (9), constraints (10) 
prohibit assigning customers’ cargo shipments to flights departing from unvisited airports. 
Constraints (11) imply that all the customer shipments must be assigned to a flight. 
 
It is possible to improve the efficiency of this model by tightening the constraints via introducing 

aggregated variables. The following constraints (12) and (13) define decision variables ݏ௜
௞௧and 

௜ݓ
௞௧that play as aggregated variables for connecting decision variables ݔ௜௝

௞௧; for instance, 

௜ݏ
௞௧indicates whether node i has any outgoing in trip t by truck k. Empirical study supports the 

efficiency of this approach of formulation. 
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This model is nonlinear as a result of constraints (9), (10) and (11). By defining M as a very large 
number, we can rewrite these constrains in a linear form so as to make the model linear. 
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The validity of these constraints is ensured by setting ܯ ൒ z୦
୩୲  ݄׊ א ,ܪ ݇׊ א ,ܭ ݐ׊ א ܶ. 

Linearization of the model is important since most of the available algorithms can handle linear 
models far better than non-linear models, especially when it comes to finding the optimal solution. 
Accordingly, the revised formulation for the problem is as follows. 
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This model is a mixed integer linear program that can be solved using conventional methods for 
integer programming problems. We can improve the efficiency of the formulation further by 
lifting the constraints. As presented by Desrochers and Laporte (1991), the linearized form of 
constraints (14) can be lifted as follows by taking the reverse arc (j, i) into account: 
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In the next section, we demonstrate the solution method for this model using ILOG CPLEX 
platform. 

1.3 Solution Method 

The model presented in the previous section is a mixed integer linear programming (MILP) model. 
In the field of integer programming and combinatorial optimization, various solution algorithms 
are available for tackling MILP models. We decided to use an efficient Branch-and-Cut (B&C) 
algorithm to solve our model. The method solves the linear program without the integer constraint 
using the regular simplex algorithm. When an optimal solution is obtained, and this solution has a 
non-integer value for a variable that is supposed to be an integer, a cutting plane algorithm is used. 
 
The cutting plane method for MILP works by solving a non-integer linear program, which is the 
linear relaxation of the given integer program. The obtained optimum is tested for being an integer 
solution. If it is not, there is guaranteed to exist a linear inequality that separates the optimum from 
the convex hull of the true feasible set. Finding such an inequality is the separation problem, and 
such an inequality is a cut. A cut can be added to the relaxed linear program to cut off the current 
non-integer solution.  
 
At this point, the branch and bound part of the B&C algorithm starts. The problem is split into two 
versions, one with the additional constraint that the variable is greater than or equal to the next 
integer greater than the intermediate result, and one where this variable is less than or equal to the 
next lesser integer. In this way new variables are introduced in the basis according to the number 
of basic variables that are non-integers in the intermediate solution but which are integers 
according to the original constraints. The new linear programs are then solved using the simplex 
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method and the process repeats until a solution satisfying all the integer constraints is found. 
During the branch and bound process, further cutting planes can be separated, which may be either 
global cuts, i.e., valid for all feasible integer solutions, or local cuts, meaning that they are satisfied 
by all solutions fulfilling the side constraints from the currently considered branch and bound sub-
tree. 
 
If such an inequality is found, it is added to the linear program, such that resolving it will yield a 
different solution which is hopefully less fractional. This process is repeated until either an integer 
solution is found, which is then known to be optimal, or until no more cutting planes are found. 
To implement the solution algorithm, we developed a Matlab program that acts as our main 
platform and manages the data files, runs solution enquiries to ILOG CPLEX and processes the 
solutions. As for the solution engine, we used the ILOG CPLEX platform version 5.5. ILOG 
engines are commonly used to solve linear and IP problems. This engine is equipped with 
advanced sub-algorithms to solve models efficiently and quickly. As far as our B&C algorithm is 
concerned, ILOG is equipped with clique cuts, cover cuts, implied bound cuts, flow cuts, zero-half 
cuts, and Gomory fractional cuts, which are used to cut non-integer solutions. 
 
Briefly, a clique is a relationship among a group of binary variables such that at most one variable 
in the group can be positive in any integer feasible solution. Before optimization starts, 
ILOG CPLEX constructs a graph representing these relationships and finds maximal cliques in the 
graph. On the other hand, if a constraint takes the form of a knapsack constraint (that is, a sum of 
binary variables with nonnegative coefficients less than or equal to a nonnegative right-hand side), 
then there is a minimal cover associated with the constraint. A minimal cover is a subset of the 
variables of the inequality such that if all the subset variables were set to one, the knapsack 
constraint would be violated, but if any one subset variable were excluded, the constraint would be 
satisfied. ILOG CPLEX can generate a constraint corresponding to this condition, and this cut is 
called a cover cut. As for implied bound cuts, in some models, binary variables imply bounds on 
continuous variables. ILOG CPLEX generates potential cuts to reflect these relationships. Flow 
covers are generated from constraints that contain continuous variables, where the continuous 
variables have variable upper bounds that are zero or positive depending on the setting of 
associated binary variables. The idea of a flow cover comes from considering the constraint 
containing the continuous variables as defining a single node in a network where the continuous 
variables are in-flows and out-flows. The flows will be on or off depending on the settings of the 
associated binary variables for the variable upper bounds. The flows and the demand at the single 
node imply a knapsack constraint. That knapsack constraint is then used to generate a cover cut on 
the flows (that is, on the continuous variables and their variable upper bounds). Zero-half cuts are 
based on the observation that when the left-hand side of an inequality consists of integral variables 
and integral coefficients, then the right-hand side can be rounded down to produce a zero-half cut. 
Finally, Gomory fractional cuts are generated by applying integer rounding on a pivot row in the 
optimal LP tableau for a (basic) integer variable with a fractional solution value. 
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To be able to use ILOG CPLEX, we developed a program based on ILOG CPLEX scripting 
language that performs data processing using the data files generated by the Matlab codes. The 
results are then saved on the disk for Matlab to retrieve and process them.  

1.4 Experimental Study   

In this section, we study the effect of different parameters by performing sensitivity analysis using 
simulation.  In our experimental study, we analyze the effect of the number of trucks available, the 
number of alternative access airports, and the number of customers. For this purpose, we generate 
a set of problem instances and solve each problem instance using the algorithm described in the 
preceding section. The results are then recorded and compared for assessing the effect of the 
number of trucks, alternative access airports and customers. The model developed in the preceding 
section is suitable for testing the effect of the number of trucks since the model formulation does 
not enforce utilization of all the available trucks. In contrast, we need to introduce additional 
constraints to be able to impose limitations on the number of airports chosen. Accordingly, we add 
the following constraints to the model: 
 

N
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kt
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In these constraints, h indicates whether the airport h is used or not; N is the total number of 

airports that are allowed to be used. 
 
In this section, we first describe the data generation process. Next, we present and discuss the 
sensitivity analysis results. 

1.4.1 Data generation 

 
For our experimental study, we first define a region based on the number of customers and then 
randomly generate customer nodes within this region. By relating the number of customers to the 
size of the region, we are able to control the density of customer nodes throughout the region. The 
locations of nodes (e.g. a depot, customers and airports) are generated randomly and 
independently based on uniform distribution over the region. The customer order sizes are 
randomly selected between 1 and 10 based on uniform distribution. The travel time between each 
pair of nodes is calculated based on Manhattan distance2 (i.e. City Block Distance). Compared to 

                                                 
2 The Manhattan distance or City Block Distance computes the distance that would be traveled to get from one point 
to the other if a grid-like path is followed. The Manhattan distance between two items is the sum of the differences of 
their corresponding components. 
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the Euclidean distance, the Manhattan distance approach better represents the travel time by going 
through city blocks (see figure 3). Moreover, this approach conserves the distance triangularity 
property that is needed for transportation problems. This implies that the direct travel time 
between two nodes is always equal to or less than the travel time of an indirect path; in other 
words ݈௜௝ ൑ ݈௜௞ ൅ ݈௞௝. 

 
Figure 3. Euclidean distance (green) vs. Manhattan or City Block distance (blue, yellow or red) 

 
In any feasible solution to this problem, each truck completes its trip at the depot by returning 
from an airport. Accordingly, to ensure the existence of a feasible solution, each airport should 
have a flight with a scheduled departure time late enough for shipping out the customers' cargo 
picked up in the truck's last trip. A simple way to achieve this is to construct a single trip that visits 
all the customers in an arbitrary sequence and then deliver the cargo to the airport. The truck 
arrival time in this solution can then be used as the departure time for the last flight at that airport. 
Let ܳ௠௔௫ be this departure time. Accordingly, the flight departure time is randomly and uniformly 

generated in  ሾܳ௠௜௡, ܳ௠௔௫ሿ, where ܳ௠௜௡ is calculated as follows.  
 

ܳ௠௜௡ ൌ ܳ௠௔௫/(20)             ߩ 
 

In this formula, ߩ ൒ 1 represents the tightness of the departure times. Increasing the value of ߩ 
advances the mean of the flight departure times and thus makes the flights more difficult to get on. 
Our empirical studies show that the reasonable value for ߩ lies in [2,4]. In our experimental study, 
we use the Next-Best Sequence3 for the ܳ௠௔௫ calculation with ߩ ൌ 3. The flight departure times 
are always sorted in increasing order such that the final flight departs latest. 
 
The cost-to-go of every flight for every customer is generated randomly and uniformly between 
[100, 300]. The cost-to-go of flights is then sorted in increasing order as in the case of flight 
departure time. Therefore, the first flight at an airport departs first and has the cheapest cost-to-go 
(e.g. most desirable). Moreover, the latest flight at each airport acts as the safety flight to ensure 
the existence of a feasible solution. The cost-to-go of this flight serves as an upper bound of all 
flight costs outgoing from the same airport. We generated 4 flights per airport in our experiments. 

                                                 
3 In Next-Best Sequence, the trip starts at the depot and at each step the closest node is visited next. 
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In the experimental study, we used three problem sizes: small, medium, and large with 7, 15 and 
20 customers, respectively. For each problem size, we generated 100 problem instances and solved 
them with different a number of trucks and number of alternative access airports.  

1.4.2  Results of the Experiments 

In our problem setting, we included at most three airports since using more than three airports in 
an alternative access airport approach is rare (Hall 2004). As for the number of available trucks, 
we allow at most 4 trucks. The results of our simulations are presented in Table 1. In this table, for 
each class of the problem (e.g. small, medium and large), we regard the one truck and one airport 
combination as our baseline and measure the performance of the other combinations in 
comparison with this baseline scenario. We report on the average performances on the solution of 
100 problem instances generated for each combination of customer set, airport set, and number of 
trucks.  
 

Table 1. Sensitivity results for different problem scenarios. Results present the optimal total 
shipment cost of a particular scenario as a percentage of  the baseline scenario (for the same 

number of customers)  

4 Flights per Airport 1 truck 2 trucks 3 trucks 4 trucks 

7  
customers 

1 airport 100 % 92.1% 91.3% 91.0% 
2 airports 93.5% 90.7% 90.2% 90.2% 
3 airports 93.2% 88.7% 88.3% 88.1% 

15 
customers 

1 airport 100 % 87.8% 85.2% 84.8% 
2 airports 85.9% 81.3% 79.0% 75.3% 
3 airports 82.6% 77.7% 73.5% 72.2% 

20 
customers 

1 airport 100 % 85.5% 81.8% 80.9% 
2 airports 79.0% 72.4% 70.6% 64.5% 
3 airports 73.5% 67.2% 63.7% 62.5% 

 
In small size problems (e.g. 7 customers) with only one airport, an increase in the number of 
available trucks at first improves the objective function. However, further increase in the number 
of trucks has no significant affect and the objective function remains almost constant. When two 
airports are allowed to be used, we observe a significant improvement in the objective function 
indicating the benefits of having alternative access airports. The benefit of having alternative 
access airports increases as the number of trucks increase (from one truck to two trucks). 
However, similar to the pattern observed in the single airport case, increasing the number of trucks 
soon becomes ineffective. Finally, in the case of three airports, we still observe improvement in 
comparison with the two airport case. However, this improvement is less significant compared to 
increasing the number of airports from one to two. In other words, although the alternative access 
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airports can notably improve the objective function, increasing the number of airports beyond two 
airports provides diminishing improvements in the objective function. 
 
The results of the medium sized problems (e.g. 15 customers) show a similar pattern as in the case 
of the small sized problem. However, the superiority of having at least one alternative access 
airport option is more pronounced. As can be observed in the results, with a single truck, 
increasing the number of airport choices from one to two improves the objective function more 
than  in the case of the small sized problem. This can be explained by the fact that in medium size 
problems, due to the greater number of customers, there is more opportunity to benefit from the 
extended choice of flights. The effect of increasing the number of trucks for a given number of 
airport choices diminishes slower than in the small sized problem. For instance, with two airport 
choices and two trucks, increasing the number of trucks still improves the objective function. 
 
With large sized problems (e.g., 20 customers), we observe similar patterns of the objective-
function responses to different parameter combinations (e.g. number of trucks and airports). 
However, these effects are slightly more pronounced compared to the medium and small sized 
problems. The main reason is that a large number of customers provide a better chance of 
exploiting the additional flight options as the number of alternative access airports is increased. 
 
As described above, for each of the 100 problems instances, we generated the customer node 
locations randomly and independently over the region. After studying the individual problem 
instances, we noticed a relationship between the distribution of the customer nodes and the effect 
of alternative access airports and the number of trucks. In particular, we observed that when 
customers are clustered (e.g. close to each other), the effect of increasing the number of trucks and 
the number of airport choices (beyond 2) become less significant. To further study this 
observation, we designed another simulation experiment. In this experiment, we use a medium 
sized problem (with 15 customers) and generated all the parameters as before except for the 
customer locations. The locations of depot and airports are randomly and independently generated 
as before. We generated customers in three clusters with five customers in each cluster. We first 
randomly generate three locations as the cluster centers. Then, for each cluster we generate five 
customers based on the following expression. 
 

൜
௜ݔ ൌ ௖ݔ ൅ .ߛ ߮ሺ0,1ሻ
௜ݕ ൌ ௖ݕ ൅ .ߛ ߮ሺ0,1ሻ

      ሺ21ሻ 

 
where ߮ሺ0,1ሻ is a standard normal distribution and ߛ is a cluster expansion factor; ሾݔ௖,  ௖ሿ andݕ
ሾݔ௜,  ௜ሿ denote the coordinates of the cluster c center and customer i location,  respectively. Theݕ
travel times are calculated based on the Manhattan distance as before. Figure 4 illustrates the 
distribution of the customer locations with the clustering based method (on the left) and with that 
of the previous method based on uniform sampling (on the right). Clearly, in the cluster-based 
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method, the customers are more likely to be close to each other and dispersed around respective 
cluster centers.  
 

 
Figure 4. Typical problem instance for clustered (left) and random customers’ locations 

 
Next, we study the effect of parameter combinations on the objective function. The results are 
presented in Table 2. As before, we regard the one truck and one airport combination as our 
baseline and measure the performance of the other combinations in comparison with this baseline 
scenario. We report on the average performances on the solution of 100 problem instances 
generated for each combination of the airport set and number of trucks.  

 
Table 2. Sensitivity results for different problem scenarios. Results present the optimal total 
shipment cost of a particular scenario as a percentage of  the baseline scenario (in the same 

customer clustering category)  

Medium Size Problem 1 truck 2 trucks 3 trucks 4 trucks 

Non-
clustered 
customers 

1 airport 100 % 88.9% 86.4% 85.7% 
2 airports 86.3% 82.5% 81.1% 74.6% 
3 airports 82.3% 78.0% 73.5% 70.2% 

Clustered 
customers 

1 airport 100 % 87.2% 85.9% 85.1% 
2 airports 87.9% 83.0% 81.8% 80.3% 
3 airports 85.1% 79.9% 72.7% 71.9% 

 
As can be observed in Table 2, the effect of increasing the number of trucks and airport 
alternatives is similar to that shown in Table 1. While an increase in the number of trucks 
improves the objective function, this effect is less notable in the clustered problem. This is 
attributable to the fact that the increased proximity of customers in the clustered scenario reduces 
the effect of additional trucks since, in most cases, a single truck can service an entire cluster. In 
contrast, in the problems with non-clustered customers, increasing the number of trucks can be 
beneficial for customers located far away from other customers.  
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The effect of increasing the number of alternative access airports improves the performance in 
both the clustered and non-clustered customers cases. However the significance  is different in 
these two cases. In the clustered customer problems, increasing the number of airports has lesser 
impact on the objective function improvement compared to the non-clustered customer problems. 
This can be explained by the fact that the proximity of the clustered customers reduces the airport 
delivery times and thus customers are not able to benefit from the extended choice of flights. 

1.4.3 Experimental Study Conclusion 

In this experimental study, we setup a series of controlled experiments to investigate the effect of 
problem parameters on the solution performance. We studied the influence of the number of trucks 
and the number of alternative access airports. We also carried out a separate experiment to study 
the effect of customer clustering on the performance. It was observed that the existence of 
alternative access airports is always beneficial. This effect further increases with the number of 
trucks and is more significant for larger problems with more customers. This observation can be 
used to estimate the optimum number of trucks for a given scenario.  
 
Moreover, our experimentation with clustered customers shows that the effect of parameters is 
reduced with the clustering. Particularly, the effect of the number of trucks becomes less 
significant, especially when it exceeds the number of clusters. This observation confirms the 
common practice of integrated carriers (e.g. UPS) in dividing a market area into different regions 
and assigning exclusive trucks to service the customers in each region. 

1.5 Case study 

In this section, we present the case study application of the proposed model in a real world 
scenario. To study the regional benefit of our proposed model, we generated a case study over the 
southeast Michigan and northwest Ohio region. The case study problem is concerned with the 
collection of  customers’ air cargo in the region and delivering them to the local airports for air-
shipment. We use the most demanded airports in this region for freight transportation: Detroit 
Metropolitan Wayne County airport (DTW) and Toledo Express airport (TOL). We performed a 
similar case study in our previous work that mainly focuses on the air-network routing. Our main 
goal in this case study, however, is to study the road-network routing and road-air intermodal 
connectivity. In what follows, we first discuss the data gathering approach and then present the 
results including the results of a sensitivity analysis.   

1.5.1 Case Study Data 

In this case study, the main goal is to analyze the routing on the road network for picking up 
orders and delivering them to the airports. We use the DTW and the TOL airports. While the 
DTW is a mixed freight-passenger airport, the TOL is mostly a freight shipping airport. Since 
passenger flights are legally obligated to report their operational details, comprehensive 
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operational information is available through the BTS database for passenger flights at the DTW. 
On the other hand, at TOL, most of the freight flights are privately operated or chartered and are 
not obligated to report their operational details. Accordingly, although we have very detailed 
information on DTW flights, the TOL flight information is not as complete. Further, an analysis 
based on the historical flight information (e.g. number of departing flights, flight connection and 
destinations, departure schedule) would not serve well for the case study's purpose of evaluating 
alternative access airports for dynamic inter-modal routing with milk run pickups and deliveries. 
Since the air-network routing is not the focus of this analysis, we use randomly generated flight 
data (scheduled departure time and cost-to-go) for both airports. We generate the same number of 
flights at each airport. These flights are randomly and independently generated.  
 
We used the Google API to generate the geographical locations for customer originations of the 
air cargo. In this approach, our computer program first generates a random geographical 
coordination (latitude & longitude) on the case study region ( southeast Michigan and northwest 
Ohio). Next, we sent an inquiry to Google map using Google API protocol to verify that this 
location is a valid address and accessible through the road network. If the location is a valid 
address, it is accepted; otherwise, it is rejected and replaced by a another randomly generated 
location. This approach excludes all unrealistic locations including, but not limited to, empty 
fields, out of road locations, lakes and parks. One outcome of this approach is that locations with 
higher road connectivity (e.g. cities) have more chance of being selected as customer locations.  
 
Another key element of the case study is the location of the depot. Since customer locations are 
generated randomly and independently of the location of airports and the depot, the proximity of 
the depot to any of the airports does not necessarily imply that the closest airport to the depot will 
be chosen for all air cargo shipments. However, it can favor one airport over the other rather 
indirectly. Accordingly, we consider the location of the depot as one of the parameters in this case 
study and study its effect on the performance. In practice, freight forwarders are more likely to 
locate their deports close to the airports. Therefore, we define three scenarios for depot locations: 
in the vicinity of DTW, in the vicinity of TOL, and in between TOL and DTW (around Monroe, 
Michigan). 
 
The next step in the data generation for the case study is to calculate the travel time for each pair 
of nodes (customers, airports, and the depot). We used the Google API to calculate the travel time 
between each pair of nodes based on the actual road network travel time. In this approach, we send 
an enquiry to the Google API for the travel time between a pair of locations. Then, the Google API 
finds the path with the shortest travel time between the requested locations using the real road 
network considering the speed limits and report back the estimated travel time with turn-by-turn 
direction (see figure 5). It should be noted that travel times calculated in this approach are not 
necessary symmetric since the same routes may not be used in a reverse trip. However, since the 
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Google API always returns the shortest path, the triangularity property is still valid for the 
calculated travel times (݈௜௝ ൑ ݈௜௞ ൅ ݈௞௝). 

 
Figure 5. Google API travel time and turn-by-turn direction demonstration; snap shot from 

original Google map (left) and graph generated by our Matlab code for direction inquiry from the 
Detroit airport to the Toledo airport; estimated travel time is 72 minutes 

 
In the case study, we consider 20 customers and generated 300 geographical distribution instances 
for these customers.  

1.5.2 Case Study Results 

In our case study, we study the effect of the number of trucks and having an alternative access 
airport on the performance. We consider up to 3 trucks. The results of our simulation are presented 
in Tables 3 and 4. In Table 3, we present the effect of the parameters on the objective function. In 
this table, for each depot location scenario, we consider one truck and one airport combination as 
our baseline and then measure the performance of other combinations relative to this baseline 
scenario. Table 4 presents the percent of the time the TOL airport is selected over the DTW airport 
when only one airport choice is allowed.  
 

Table 3. Sensitivity results for different problem scenarios. Results present the optimal total 
shipment cost of a particular scenario as a percentage of  the baseline scenario (for the same depot 

location)  

Depot 
Location 

4 Flights 
per Airport 

1 truck 2 trucks 3 trucks 

DTW 
1 airport 100% 85.4% 84.8% 
2 airports 89.7% 82.1% 81.0% 

Monroe 
1 airport 100% 82.6% 80.4% 
2 airports 91.2% 78.9% 77.1% 

TOL 
1 airport 100% 83.8% 83.0% 
2 airports 86.1% 80.2% 78.5% 
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Table 3 results demonstrate that with only one truck the alternative access airport improves the 
objective function. This effect, however, is not the same for different depot locations. The best 
results are achieved when the depot is in the vicinity of one of the airports. It appears that the 
proximity to an airport allows the truck to quickly deliver the customer orders in the vicinity of the 
depot to the nearby airport and then deliver other orders to the alternative access airport. 
Moreover, the performance improvement is slightly more if the depot is closer to TOL  than to  
DTW. This can be explained by considering the final distribution of customers. As mentioned in 
the data generation section, since the DTW airport is closer to population centers, it is more likely 
to have more customers closer to the DTW airport than the TOL airport. The worst result is 
achieved when the depot is in Monroe (between the two airports).  In this scenario, the freight 
forwarder cannot fully benefit from the proximity to any of the airports. The observed 
phenomenon confirm the freight forwarders' practice of establishing their depot close to major 
airports.  
 
As the number of trucks increase, an interesting change in the performance of depot locations is 
observed. While the performance improvement profile remains as before for the single airport 
alternative, the Monroe depot becomes the best option with the alternative access airport. This can 
be explained by the fact that, when two trucks are available, a depot can potentially send one truck 
to each airport while splitting the orders among the airports. Clearly, under this scenario, the 
trucks departing from a depot that is located at a balanced distance from either airport can reach  
the customers faster and therefore have better performance. 
 

Table 4. Percent of the time the TOL airport is selected over the DTW airport when only one 
airport choice is allowed 

Depot 
Location 

1 truck 2 trucks 3 trucks 

DTW 40.8% 40.8% 40.9% 

Monroe 43.4% 44.1% 42.5% 

TOL 45.7% 45.5% 45.8% 

 
Table 4 presents the choice between two airports when only one is allowed to be used for air-cargo 
shipment. Results indicate that DTW seems to be a more desirable choice in this particular 
example. This can be explained by the fact that the majority of the customers are likely to be 
closer to the DTW airport. Although the DTW airport has a slight advantage over the TOL airport, 
the overall difference is not significant across different depot locations. After reviewing the 
solutions to the individual problem instances, we notice two typical solution outcomes with the 
single airport alternative. These solution outcomes are dependent on the flight departure times and 
the cost-to-go functions and occur when the depot is located close to one of the airports (Figure 6). 
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Note that customers are visited according to the numbered ordering shown in Figure 6. These trips 
do not necessarily correspond to the shortest tour, e.g. customers located close could be apart in 
the visit sequence. The rationale is that when the customers can be visited and still have their 
cargo loaded on the desirable flight, then the shortest distance traveled is not a requirement. 
 
One solution outcome is the case when the trucks first pickup orders near the home airport and 
then head toward the distant airport to pickup distant orders and drop them off them at the distant. 
The other case is when the trucks perform multiple trips ending at the home airport and then go for 
a long trip to collect orders closer to the distant airport and then return to the home airport for 
delivery. These observations, particularly the first solution outcome, are counterintuitive.  

 
Figure 6. Solution paths for single truck and single choice of airport in different depot location 

scenarios (customers visited according to the numbered ordering) 



 24

In the case of the Monroe depot, there is no specific pattern in the solutions. The trucks are more 
likely to choose the airport with higher density of customers. This reconfirms the tendency of the 
freight forwarders to locate their depot close to the airports airport.  

1.5.3 Case study Conclusion 

In this case study, we consider dynamic intermodal routing on the air-road network with milk runs 
in the southeast Michigan and northwest Ohio region. We consider two major airports in the 
region (i.e. DTW & TOL). We study the effect of the number of trucks and airport choices for 
three different locations of depots on the performance. Results indicate that the alternative access 
airport is always beneficial. This benefit improves as the number of trucks increase. 
 
Moreover, we also observe that the location of the depot can have a significant effect on the 
performance of a freight forwarder. Results favor depot locations close to an airport and in the 
areas with higher customer density.  

B. Dynamic Routing in Stochastic Time-Dependent Networks 
for Milk Run Tours with Time Windows 

2.1 Introduction 

Freight forwarders often receive their orders in less than truck load and need to pick up these 
orders from several customers by sending a truck from the depot. In determining which customers 
to visit in a given tour and  the visit sequence in the tour, the most important consideration is the 
flight schedules at the airport. However, the congestion on road networks causes high variability 
in travel times (Chen et al.) that makes it difficult to catch flights. For example, in a survey in 
California 85% of trucking company managers state that they are missing their schedules at some 
levels because of congestion. Further only 22% of the managers state that the time-windows for 
pickup and deliveries do not force their drivers to work in congested conditions (Golob and 
Regan, 2003). Different than the earliness and tardiness in the manufacturing environments  which 
are subject to soft time windows, the earliness and tardiness in scheduled freight flights have hard 
time windows and result in stepwise penalties. In this work, we address the milk run tour of a 
truck picking up air cargo shipments from a known set of customer locations and delivering them 
to the airport. We model the problem as a Traveling Salesman Problem (TSP) with hard time 
windows. In addition we consider the road network congestion and model the network arcs having 
random travel times conditional on the time-dependent congestion states.  
 
TSP is the problem of finding the least cost tour that visits each site exactly once with a given set 
of customers and the cost (time/ distance) between each pair of customers. Based on the treatment 
of arc costs (e.g., deterministic, stochastic time-dependent travel times, etc.), the nature of the 
network (e.g., dynamic customer arrival), and the presence of time windows (e.g., hard, soft) the 
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TSP takes different forms. Even the simplest forms of the TSP are known to be NP-hard (there are 
no solution algorithms with complexity that grow polynomially as a function of the size of the 
network). In our problem setting we are dealing with TSP problems with time windows under 
stochastic time-dependent arc travel times, as well as congestion states that require “dynamic” 
routing policies. Since these settings make the problem impractical to seek “optimal” routing 
algorithms, we developed effective heuristics to build “robust” TSP tours. The methods from the 
literature assume a direct arc (or a static path) between sites and/or the availability of travel time 
distribution. However with time varying structure of the network it might happen that taking other 
paths requires less travel time. There is also no modeling of congestion (either recurrent or non-
recurrent) in TSP literature. 
 
The congestion is classified as recurrent (e.g., experienced during rush hours) and non-recurrent 
(e.g., occurs during incidents, inclement weather, etc.). In this study we only model recurrent 
congestion. To find an optimal policy between customer locations under recurrent congestion, we 
assume the traffic dynamics follows a Markov process. Namely, the state of the next time period 
depends only on the state of the previous time period. Then recurrent congestion may be modeled 
based on the Markov decision process (MDP). We assume that the state set of the MDP is based 
on the position of the vehicle, the time of the day and the congestion states of the arcs.  The 
congestion state classes (i.e.: congested, uncongested, etc.) of the roads are a function of the time 
of the day and determined with historic traffic data based on a Gaussian Mixture Model (GMM). 
Since not all network information affects an optimal decision, we assume the arc set of a state such 
that only the arcs close to the vehicle affect the decision. We also assume that the traffic data for 
some of the arcs may not be available. 
 
In this work we do not assume a fixed route, but rather employ a stochastic time-dependent (STD) 
routing policy between depot, airport, customer sites (for consistency we will use “site” to refer to 
depot, airport, customer, etc.). Since we need travel time distributions between sites to identify the 
TSP tour, we first derive dynamic routing policies (for each pair of sites and by time of day) and 
estimate the time-dependent travel time distributions from the derived policy through simulation. 
Then we identify the robust TSP tours by applying a dynamic programming (DP) for the problem. 
Since the travel times are STD, we exploit a convolution method from Chang et al. (2009) to 
estimate the distribution of site arrival times in stochastic time-dependent networks during the 
execution of DP. The tours are “robust” in the sense that they are generally effective given normal 
congestion patterns. However, the actual routing of the truck between sites will be based on real-
time traffic flow information guided by dynamic routing policies.  A key aspect of the proposed 
approach is the “robust” tour that will trade-off catching earlier flights with the risk of on time 
delivery to the airport. While we commit to the robust tour, we still dynamically route the truck 
between sites. 
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The rest of the section is organized as follows. A survey of literature is given in section 2. In 
section 3, the modeling of the stochastic time-dependent TSP is described. Section 4 presents the 
experimental studies to show the robustness of the proposed model. Section 5 concludes the study 
and suggests some future direction. 

2.2 Literature Survey 

In the literature this kind of problem is studied as a stochastic time dependent traveling salesman 
problem with time windows. In the standard version of the TSP, we are given a set of sites and the 
distances between each pair of sites, and it is asked to find the shortest tour that originates from an 
origin site, visits each site exactly once, and returns to the origin site. The TSP has been studied 
for more than 50 years and a wide variety of exact and heuristic algorithms have been developed. 
Johnson and McGeoch (1997) and Junger et al. (1995) are two of the sources from literature on 
algorithmic and computational aspects of the TSP.  
 
Different variants of the TSP have been studied in the literature. Malandraki and Dial (1996) 
presented a DP and a “restricted” DP (that also exploits nearest-neighbor heuristic) approach to 
solve time-dependent TSP (TD-TSP). They modeled the time dependency in travel time by 
discrete step functions such that the planning horizon has a number of different time zones and 
travel times differ only at different time zones. The limitation of using such step functions, i.e.  a 
later depart time might lead to an earlier arrival time where steep speed increases occur, was 
emphasized later by Ichoua et al. (2003) as being essential in modeling time-dependent travel 
times. They also proposed alternative models that comply with the FIFO (first in, first out) 
principle and constructing models to build the TSP tour. 
 
Another variant of the TSP is stochastic TSP where travel times between sites are random. This 
variant is mostly studied as the vehicle routing problem (e.g. Laporte et al., (1992) and Lambert et 
al., (1993)) where the TSP is a special vehicle routing problem in which there is one vehicle and 
the capacity constraints of the vehicle are relaxed. Jula et al. (2006) and Chang et al. (2009) 
studied the stochastic time-dependent TSP with time windows (STD-TSP-TW). Jula et al. (2006) 
estimated the first two moments of arrival time of the vehicle at each site based on the first (or 
second) order Taylor approximation of arrival times. They defined a service level based on arrival 
time to sites and eliminate those routes which the service levels do not satisfy. They also 
performed a state elimination test based on expected travel times. These two eliminations were 
used to reduce the state space of dynamic programming and eventually reduce the computational 
time. Chang et al. (2009) developed a convolution–propagation approach (CPA) to estimate the 
mean and variance of arrival times at sites assuming the arc travel times are normally distributed. 
They proposed a heuristic algorithm that uses the n-path relaxation of deterministic TSP by Houck 
et al., (1980) to solve the problem. 
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Although the problem that we are considering is the same as that in Jula et al. (2006) and Chang et 
al. (2009), the modeling concept is very different. The main difference of our study is the 
existence of dynamic routing between sites and modeling congestion that takes into account real 
time traffic information and projects the future traffic. Jula et al. (2006) and Chang et al. (2009) 
also assume a direct arc between sites and/or the availability of travel time distribution while we 
allow dynamic routing between sites. To the best of our knowledge, there is no earlier study on the 
dynamic routing for the stochastic time-dependent TSP problem. 
  
Dynamic routing and modeling real time information is mostly studied under shortest path 
problems in the literature. Polychronopoulos and Tsitsiklis (1993) is the first study to consider the 
stochastic temporal dependence of arc costs and to suggest using online information en route. 
They defined the environmental state of nodes that is learned only when the vehicle arrives at the 
source node. They considered the state changes according to a Markovian process and employed a 
DP procedure to determine the optimal policy. Kim et al. (2005a) studied a similar problem as in 
Psaraftis and Tsitsiklis (1993) except that the information of all of the arcs is available in real-
time. They proposed a DP formulation where the state space includes states of all arcs, time, and 
the current node. They stated that the state space of the proposed formulation becomes quite large 
making the problem intractable. They reported substantial cost savings from a computational study 
based on a southeast Michigan road network. To address the intractable state-space issue, Kim et 
al. (2005b) proposed state space reduction methods. A limitation of Kim et al. (2005a) is the 
modeling and partitioning of travel speeds for the determination of arc congestion states. They 
assumed that the joint distribution of velocities from any two consecutive periods follows a single 
unimodal Gaussian distribution, which cannot adequately represent arc travel velocities for arcs 
that routinely experience multiple congestion states. Moreover, they also employed a fixed 
velocity threshold (50 mph) for all arcs and for all times in partitioning the Gaussian distribution 
to estimate state-transition probabilities (i.e., transitions between congested and uncongested 
states). As a result, the value of real-time information is compromised rendering the loss of 
performance of the dynamic routing policy.  

2.3 Modeling Dynamic Routing for Milk Runs 

The dynamic routing model for milk runs requires estimating time-dependent travel time 
distributions between every pair of sites. These travel time distributions are estimated through the 
following steps: 
 

 Develop a dynamic routing policy (action set for every state) between every pair of sites 
and possible departure times.  

 Estimate the travel time distribution through simulation for every possible departure time. 
 
Once the travel time distributions are estimated for every pair of sites and possible departure 
times, we then employ stochastic time dependent dynamic programming (STD- DP) to identify the 
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most robust tour. We also exploit the convolution approach of Chang et al. (2009) to identify 
arrival time distributions at sites for partial tours during the execution of STD-DP. 
 

Let  ,G N A  be a directed graph in which N  is the set of nodes and A N N   is the set of 

directed arcs. The (decision) node n N represents an intersection where the driver can decide 

which arc to take next. A directed arc is represented by an ordered pair of nodes  , 'n n A
 
in 

which n is called the origin and 'n  is called the destination of the arc. Let M N  be the set of 

(e.g. depot, supplier, or customer) sites. Note that sites are also decision nodes, while the opposite 
statement needs not to be true. Assume 0 is the origin site (depot) and there are m-1 sites to be 
visited, represented by nodes 1,..., 1m   which represent customer/supplier sites. For the time being, 

let’s assume that the vehicle at site j will visit site k  next, where ,j k M and assume that there is 

an optimal policy, jkπ , between every sites  ,j k .  Let  ,j k jt  and   ,j k jVar t be the expected 

travel time and variance when following the optimal policy. 
 

Section 3.1 explains how to find optimal policy jkπ  to estimate  ,j k jt  and   ,j k jVar t . And 

section 3.2 describes building milk run tours with using these parameters by STD-DP algorithm.  

2.3.1 Estimation of travel times between sites 
 

A directed arc  , 'n n A  is labeled as observed if its real-time traffic data (e.g., velocity) is 

available through the intelligent transportation system. An observed arc can be in 1r    

different states that represent the arc’s traffic congestion level at a given time. Let  as t  be the 

congestion state of arc a  at time t , i.e.
      Congested at level as t i i   for 1, 2,..., 1 i r   and be 

determined as follows: 

        1,if i i
a a a as t i c t v t c t    (1)  

where  ac t
 
denotes the cut-off velocity. For instance, if there are two congestion levels (e.g.,

1 2r   ), then the states will be       Uncongested 0as t    and      Congested 1as t   .  

We assume that the state of an arc evolves according to a non-stationary Markov chain. In a 

network with all arcs observed,  S t
 
denotes the traffic congestion state vector for the entire 

network, i.e.,         1 2 | |, ,..., AS t s t s t s t  at time t . For presentation clarity, we will suppress ( t ) 

in the notation whenever time reference is obvious from the expression. Let the state realization of 

 S t  be denoted by ( )s t . It is assumed that arc states are independent from each other and have the 

single-stage Markovian property. In order to estimate the state transitions for each arc, the 
velocities of two consecutive periods are modeled jointly. Accordingly, the time-dependent single-
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period state transition probability from state  as t i
 

to state  1as t j   is denoted by 

    1 | ( )ij
a a aP s t j s t i t    . The transition probability for arc a , ( )ij

a t  is estimated from the 

joint velocity distribution as follows: 

 
           

     

1 1

1

< 1 1 1

<

i i j j
a a a a a aij

a i i
a a a

c t V t c t c t V t c t
t

c t V t c t


 



      



 (2)  

Let  , 1aTP t t   denote the matrix of state transition probabilities from time t  to time 1t   then we 

have    , 1 ij
a a ij

TP t t t     . Note that the single-stage Markovian assumption is not restrictive in 

our approach as we could extend our methods to the multi-stage case by expanding the state space 

(Bertsekas, 2001). Let the network be in state  S t
 
at time t , and we want to find the probability 

of the network state  S t  , where   is a positive integer number. Given the independence 

assumption of the arcs’ congestion states, this can be formulated as follows: 

      
1

| ( ) | ( )
A

a a
a

P S t S t P s t s t 


    (3)  

Then the congestion state transition probability matrix for each arc in   periods can be found by 
the Kolmogorov’s equation:

 
       , 1 ...ij ij ij

a a a aij ij ij
TP t t t t t                      (4)  

With the normal distribution assumption of velocities, the time to travel on an arc can be modeled 
as a non-stationary normal distribution. We further assume that the arc’s travel time depends on 
the congestion state of the arc at the time of departure (equivalent to the arrival time whenever 
there is no waiting). It can be determined according to the corresponding normal distribution: 

      2, , ~ , , , , ,a a at a s N t a s t a s    (5)  

where  , , at a s
 
is the travel time;  , , at a s and  , , at a s are the mean and the standard deviation 

of the travel time on arc a at time t with congestion state  as t . 

2.3.2 Dynamic routing model with recurrent congestion 

 
Assume that the objective of the dynamic routing model is to minimize the expected travel time 

based on real-time information such as the trip originates at node 0n
 and ends at node dn . Let's 

assume that there is a feasible path between  0, dn n  where a path  0 1,.., ,..,k Kp n n n 
 
is defined as 

the sequence of (decision) nodes such that 1( , )k k ka n n A  , 0, .., 1k K   and K  is the number of 

nodes on the path. Note that while all nodes are decision nodes, only origin and destination nodes 
are (depot, airport, or customer) sites for the problem.  
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We define set  1,k k ka n n A   as the current arcs set of node kn , denoted with  kCrAS n . That is, 

    1: ,k k k k kCrAS n a a n n A    is the set of arcs emanating from node kn . Each node on a path 

is a decision stage (or epoch) at which a routing decision (which node to select next) is to be made. 

Let kn N
 be the location of k

th decision stage, kt is the time at k
th decision stage where 

 1,...,kt T  1KT t  . T  is an arbitrarily large number and is used to limit the planning horizon for 

modeling purposes. Note that we are divide the planning horizon into uniformly spaced discrete 
time epochs.  
 
While the optimal dynamic routing policy requires real-time consideration and projection of the 
traffic states of the complete network, this approach makes the state space prohibitively large. In 
fact, there is little value in projecting the congestion states well ahead of the current location. This 
is because the projected information is not different from the long run average steady state 
probabilities of the arc congestion states. Hence, an efficient but practical approach would trade 
off the degree of look-ahead (e.g., the number of arcs to monitor) with the resulting projection 
accuracy and routing performance. This has been very well illustrated in Kim et al. (2005b). Thus, 
we limit our look-ahead to a finite number of arcs that can vary by the vehicle location on the 
network. The selection of the arcs to monitor would depend on factors such as arc lengths, the 
value of real-time information, and the congestion state transition characteristics of the arcs. For 
ease of presentation and without loss of generality, we choose to monitor only two arcs ahead of 
the vehicle location and model the rest of the arcs’ congestion states through their steady state 
probabilities. Accordingly, we define the following two sets for all of the arcs in the network. 

 kScAS a , the successor arc set of arcs ka ,
    1 1 1 2: ( , )k k k k kScAS a a a n n A       , i.e., the set of 

outgoing arcs from the destination node ( 1kn  ) of arc ka .  kPScAS a , the post-successor arc set of 

arc ka ,    2 2 2 3: ( , )k k k k kPScAS a a a n n A       i.e., the set of outgoing arcs from the destination 

nodes ( 2kn  ) of arcs 1ka  . 

 
Since the total trip travel time is an additive function of the individual arc travel times on the path 
plus a penalty function measuring earliness/tardiness of arrival time to the destination node, the 
dynamic route selection problem can be modeled as a dynamic programming model. The state

 1 2,, ,
k kk k ka an t s
  of the system at k

th decision stage is denoted by k . This state vector is 

composed of the state of the vehicle and network and thus is characterized by the current node  

( kn ), the current node arrival time ( kt ), and 
1 2 ,k k ka as
   , the congestion state of arcs 1 2k ka a   

where   1 1: kk ka a ScAS a    
and   2 2: kk ka a PScAS a    at k

th decision stage.  

 

The action space for the state k  is the set of current arcs of node kn ,  kCrAS n . At every 

decision stage, the trip planner evaluates the alternative arcs based on the remaining expected 
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travel time. The expected travel time at a given node with the selection of an outgoing arc is the 
summation of expected arc travel time on the arc chosen and the expected travel time of the next 
node. Let  

0 0 1 1, ,...,
dn n K   π  

be the policy of the trip that is composed of policies for each of 

the K-1 decision stages. For a given state  1 2,, ,
k kk k k ka an t s
   , the policy  k k   is a 

deterministic Markov policy which chooses the outgoing arc from node kn , i.e., 

   k k ka CrAS n    . Therefore, the expected travel cost for a given policy vector   is as 

follows: 

      
2

0 1
0

, ,
k

K

k k k k K
k

F E g g


 






        
  
  (6)  

where  0 0 0 0, ,n t S   is the starting state of the system. k  is the random travel time at decision 

stage k, i.e.,     , ,k k k k a kt s t    .  ( , , )k k k kg     is the cost of travel on arc 

   k k ka CrAS n     at stage k , i.e., if travel cost is a function ( ) of the travel time, then 

   ( , , )k k k k kg       and  1Kg  is the terminal cost of earliness/tardiness of the arrival time 

to the destination node under state 1K . Then, the minimum expected travel time can be found by 

minimizing  0F   over the policy vector  as follows: 

 
 

 
0 1 10

*
0 0

, ,...,
min

n n Kd

F F
   

  
π

 (7)  

The corresponding optimal policy is then: 

 
 

0
0 1 10

*
0

, ,...,
arg min

d
n n Kd

n n F
   

 
π

π  (8)  

 
Hence, the Bellman’s cost-to-go equation for the dynamic programming model can be expressed 
as follows (Bertsekas, 2001): 

      * *
1min ( , , )

k k
k k k k k kF E g F

 
         (9)  

For a given policy  k k  , we can re-express the cost-to-go function by writing the expectation in 

the following explicit form: 

     

         
, 1 , 11 2

1 1 21 1 11 1, , ,

| | , , ,

|

k

a k a kk k

k k k

k k k k k k k k

k k k k
s s

k k ka a a

F a P a g a

P s t s t P s t F


 

  

     

    

 



 
 (10)

where  | ,k k kP a   is the probability of travelling arc ka  in k  periods.   2 11,k kkaP s t
   is the 

long run probability of arc  2 2: kk ka a PScAS a    being in state 
2 1,k kas

   
in stage 1k  . This 

probability can be calculated from the historical frequency of a state for a given arc and time. 
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We use the backward dynamic programming algorithm to solve  *
kF  , 1, 2, .., 0k K K   . In 

the backward induction, we initialize the final decision epoch such that,  1 1 1 1, ,K K K Kn t s     , 

1Kn   is the destination node, and  1 0KF  
 
if 1Kt T  . Accordingly, a penalty cost is accrued 

whenever there is delivery tardiness, e.g., 1Kt T  . Note that 1Ks    since the destination node’s 

current and successor arcs states congestion state information. 

2.3.3 Estimating travel time distributions between sites 
For the time being, let’s assume that the vehicle at site j will visit site k  next, where ,j k M and 

assume that there is an optimal policy, jkπ , between every sites  ,j k .  Simulating the optimal 

policy jkπ  at departure time, jt yields the expected travel time and variance denoted with  ,j k jt  

and   ,j k jVar t , respectively. 

2.4 STD-DP algorithm for STD-TSP tours 

We describe a DP algorithm to find a robust STD-TSP tour for a given starting time in this 
section. The algorithm is adapted from Malandraki and Dial (1996) and Jula et al. (2006) and uses 
a convolution approach from Chang et al. (2009): 
 
There are m-1 sites (other than the depot, assuming the vehicle is at the depot) to be visited, 

represented by nodes 1, ..., 1m M  . Let  , / {0}C k M
 
be an unordered set of sites where k C  

is the last visited site. Define partial tour as a tour that starts from the depot, visit all the sites in 

 ,C k  only once and ends the tour at site k . Note that there may be more than one partial tour for 

a state  ,C k . Let  ,T C k be the random variable of arrival time at site k taking the partial tour 

 ,C k . Let also  ,E T C k   and   ,Var T C k  be the mean and variance of arrival time  ,T C k , 

respectively. 
 

Initialization step: For all  , 1C k   where  , { }, / {0}C k k k M  , we initialize
 

   0 0 0, (0) kE T C k T s t       and      0 0, kVar T C k Var t , where (0)T is the arrival time to 

the site 0 (depot), 0s  is the service (or preparation) time at the site 0, and  0 0k t is the expected 

travel time from site 0 to site k  as a function of the departure time , 0t . The departure time of a 

site (i.e. 0t for site 0) is the sum of the arrival time to the site and the service time at the site; in this 

example 0 0(0)t T s  . Without the loss of generalization we assume the service time at sites are 

deterministic. 
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Main step: For all  , 1C k   consider visiting k , /{0, }k M j  immediately after j

  for all /j C k  and look up  ,E T C j    and   ,Var T C j from the previous step. So we have 

from Chang et al. (2009): 

     
1

, , *
j

j

T

j jk j t
t
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

            (11)
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where js  is the service time at node j;  jk jt  is the travel time from site j to site k  at the 

departure time  ,j jt E T C j s     ; 
jtp is the probability of departing at time jt  from node j. To 

determine 
jtp let ( )  be the cumulative distribution function of the standard normal distribution 

and ()  be the corresponding density. Define  
  

,

,

j

j

t E T C j
t Var T C j

z
    , then we have    1j j jt t tp z z    . 

Perform the elimination of partial tour tests defined in Jula et al. (2006). Keep only states  ,C k  

those pass the tests. Do main step until {0}C M  . 

 
Termination Step: To complete the tour at the depot, set k=0 and perform the main step. Select 
the tour with the minimum cost as the robust tour.  

2.4.1 Time windows 

 
When there is a time window at a site, there are three possible cases of arrival at that site with 
regard to the time window: early, late, and in-time arrival. In our model, we allow early arrivals (if 
earliness is not greater than a pre-specified value) by forcing the truck to wait until the beginning 
of the time window and we do not allow late arrivals (e.g. if the possibility of tardiness is greater 
than a pre-specified probability, we discard that partial tour). 
 

Assume a truck traveled up to site j with a random arrival time of  ,T C j  and without violating 

any time windows. Let the time window at site j be  ,j je l , where je  is the earliest time and jl is 

the latest time to start service at site j.  

 

 A vehicle is assumed to be early if the probability of arriving later than je is less than the 

early arrival probability :   , jP T C j e   . A vehicle can wait only if    , jT C j e   , 
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where   is the maximum allowable waiting time at a site; otherwise the vehicle is assumed 
to be too early and the partial tour is discarded not to waste time. Note that if a vehicle is 

accepted, then the start time to service is   max , , jT C j e . 

 A vehicle is assumed to be late and the partial tour is discarded if the probability of arriving 

later than jl is greater than the maximum allowable tardiness probability : 

  , jP T C j l   . 

 A vehicle is assumed to be in-time and is accepted if   , jP T C j e    and 

  , jP T C j l   . 

Given these definitions  ,E T C j    and   ,Var T C j  in equations (9) and (10) can be calculated 

with the following formulas from Chang et al. (2009): 

    , max , , j jE T C j E T C j e s         (13)

        2 2, max , , max , ,j jVar T C j E T C j e E T C j e        
 (14)

2.4.2 Elimination of partial tours 

 
There are some opportunities to decrease the number of partial tours under investigation and 
eventually to reduce the number of states and computational burden during the execution of the 
algorithm. The eliminations can be done through time windows and dominancy tests: 
 
Time window test: A partial tour is eliminated if it does not satisfy the time windows (i.e. a too 
early or a late vehicle) at any stage of the execution of the algorithm. 
 

Dominancy test: As noted earlier, there may be more than one partial tour for a state  ,C k . 

Let’s assume  1,C k  and  2 ,C k  are two partial tours of state  ,C k  that cover same sites. We 

eliminate the partial tour  1,C k  if  2 ,T C k  dominantes  1,T C k ,(e.g.    2 1, ,E T C k E T C k         

and      2 1, ,Var T C k Var T C k  (Jula et al., 2006). 

2.5 Experimental Studies 

We tested our procedure on a road network from Southeast Michigan (Fig. 1). The sample 
network covers major freeways and highways in and around the Detroit metropolitan area. The 
network has 140 nodes and a total of 492 arcs with 140 observed arcs and 352 unobserved arcs. 
Real-time traffic data for the observed arcs was collected by the Michigan ITS Center and 
Traffic.com for 66 weekdays of May, June, and July 2009, for the full 24 hours of each day at a 
resolution of one observation per 5 minutes. To better illustrate the methods and results, we first 
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present the data and congestion state separation and identification procedures for a sample road 
leg, arc between nodes 7 and 8, as an example.

 

 
Fig. 1 Southeast Michigan road network considered for experimental study. 

 
 
The speed data for arc (7, 8) for the given weekdays are illustrated in Fig. 2a. The mean and 
standard deviations of speed for the arc (7, 8) are plotted in (Fig. 2b). From Fig. 2a and b, it can be 
seen clearly that the traffic speeds follow a highly stochastic and non-stationary distribution that 
vary with the time of the day. 
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(a)      (b) 

 
Fig. 2 For arc (7,8),  (a) raw traffic speeds for 66 weekdays; (b) mean (mph) and standard deviations of speeds by the 

time of day with 15 minute time interval resolution. 

 
Given the traffic speed data, we employed the Gaussian Mixture Model (GMM) clustering 
technique to determine the number of recurrent-congestion states for each arc by time of day. In 
particular, we employed the greedy learning GMM clustering method of Verbeek et al. (2003) for 
its computational efficiency and performance. The parameters of the traffic state joint Gaussian 
distributions (i.e., , 1 , 1;i i

t t t t μ Σ ) along with the computed cut-off speeds (if GMM yields more than 

one state) are employed to calculate travel time distribution parameters and the transition matrix 
elements as explained in section 3. In the event that two states are identified by GMM, let ߙ௧ 
denotes the probability of state transition from congested state to congested state whereas ߚ௧ 
denotes the probability of state transition from uncongested state to uncongested state. Fig. 3a 
illustrates the transition rates for arc (7, 8) with a 15 minute time interval resolution during the 
day. The mean travel time of arc (7, 8) for congested and uncongested traffic states is given in Fig. 
3b. 

 

(a)      (b) 
Fig. 3 For arc (7, 8) (a) congestion state-transition probabilities: α, congested to congested transition; β, uncongested 

to uncongested transition probability (b) mean travel time(min.) for congested and uncongested congestion states. 
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After calculating the parameters for every arc in the network we employed the dynamic routing 

algorithm to find the dynamic routing policy jkπ between every pair of customer sites  ,j k . We 

then estimated the travel time distribution between sites with simulation of the policy. 
 
We want to highlight that it is a fact that in real transportation networks the congestion states 
among the arcs are highly correlated. However during the simulation each arc congestion states 
are simulated independently. This leads to uncorrelated arc states and misleading the results. To 
overcome this problem we simulate the network with historical data one day at a time. Explicitly, 
in the first run of the simulation all arcs on the network followed the historic data of day one and 
so on. We ran the simulations for 66 weekdays in May, June, and July 2009. Although with this 
kind of simulation the number of runs is small, we believe it captures the dependency and 
represents the real situation better. 

2.5.1 Experiment 1: Stochastic Time­Dependent TSP 
In this experiment we assume there are no time windows at customer sites. Although this case is 
not common in the freight forwarding industry, we use the results of this experiment to define the 
time windows in experiment 2. This experiment also illustrates (if any) the savings better, because 
it examines all possible tours.  
 
In milk runs the number of stops per tour in urban areas for a vehicle is equal to or greater than 5 
stops per tour:  approximately 5.6 in Denver  (Holguin-Veras and Patil, 2005), 6 in Calgary (Hunt 
and Stefan, 2005), and 6.2 in Amsterdam (Vleugel  and Janic, 2004). Conforming to the literature 
we also assume that there are 5 stops per tour one of which is the airport site and the other 4 are 
supplier sites. We also assume there is not any prerequisite about the sequence of site visits and 
the truck has enough capacity to visit all sites in a tour. Also, we assume that the truck begins its 
tour from the airport.  
  
Node 80 is considered as the origin site (airport) while the nodes 61, 103, 51, and 132 are 
considered as the customer sites (Fig. 1) of the tour. To illustrate the behavior of traffic and 
consequently the total travel times during the day, the trip starting times are taken as every half 
hour during the day. Since there is no time window none of the tour was eliminated as a result of 
time window constraints. Thus, there are (5-1)!=24 possible dominated and non-dominated tours. 
We assume the service times are 15 minutes at sites. Since there are 4 sites, the total of service 
time is 60 minutes for each trip.  
 
We give the results of total travel times (total trip time - total service time) in (a)    
  (b) 
Fig. 4 for the following two settings. 
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Setting 1: In practice, almost all commercial logistics software aims to identify TSP tours based 
on the given (static) path (between a pair of sites) costs which are best on average. In this context, 
given the traffic histories for the arcs of the network, the best path between every pair of sitesis 
identified first. Then, for every trip the starting time of the best tour is found by the DP algorithm 
for STD-TSP based on the given costs. Note that although the paths between sites are static, the 
milk run tour is time-dependent and might change over the time of the day. 
 
Setting 2: In this setting, unlike the commercial logistics software there is no given static path (as 
a result cost) between customers. Based on the given traffic data of the network, first policies are 
generated between every pair of sites based on section 2.3.1. Then, these policies are used to find 
the travel time distribution as described in section 2.3.1. Finally, for every trip starting time the 
most robust tour is found by the DP algorithm for STD-TSP. 

 
(a)      (b) 

Fig. 4 (a) Mean travel time (b) Standard deviation for 48 trip starting times during the day for setting 1and setting 2. 

 
To illustrate the results better we highlighted the mean and standard deviation of tour travel times identified 
by the two settings for two particular departure times in Table 1.Table 1Table 1 Tour, mean travel time, and 
standard deviation for a sample of trip starting time for the two settings. Tours are represented with the visit sequence 
of nodes. 

Setting  Tour  
Departure 

Time 

Mean Trip Time 

(min.) 

Mean Travel 

Time (min.) 

Std. Dev. of 

Travel Times 

1st  80132103516180  7:00 am  244.1  184.1  16.1 

2nd  80132103516180  7:00 am  218.4  168.4  14.2 

1st  80132103516180  7:30 am  253.4  193.4  16.8 

2nd  80611035113280  7:30 am  223.2  163.2  13.2 

2.5.2 Experiment 2: Stochastic time­dependent TSP with Time Windows 
In this experiment we assume there are time windows at sites. We assume the service times are 15 
minutes at the sites. We also assume there are 6 shifts each day and shifts starting times in hours 
during the day are as followings: ST= {0:00; 4:00; 8:00; 12:00; 16:00; 20:00)}. In experiment 1 
with setting 2, 4 tour are found to be dominating tours (e.g., with better mean trip times) for 48 
different trip starting times. To illustrate we give the mean trip times (travel time + service time) 
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to complete the tours and their associate standard deviations in Table 2 for shift starting times. 

From these tours, the tour (denote with 1st) 80132103516180 is the most robust one. 

The other tours are the followings: 2nd tour: 80132511036180; 3rd tour: 

80611035113280; and 4th tour: 80615110313280. 
 
Table 2 Tours mean trip times and standard deviations at the beginning of shifts based on setting 2. 

Start Time  Mean  Std. Dev.   

Tour  0:00  4:00  8:00  12:00 16:00 20:00 0:00 4:00 8:00 12:00  16:00 20:00

1st   169.8  182.6  211.3  191.7 181.7 175.4 5.1 7.3 12.4 5.6  12.4 6.5

2nd   175.9  182.9  218.9  189.4 191.7 179.3 6.0 6.8 14.2 6.8  11.5 6.5

3rd   181.4  193.5  209.3  188.4 190.9 187.3 6.2 9.4 13.8 8.2  13.5 7.2

4th   179.9  199.2  221.6  192.8 194.2 185.3 6.3 9.9 12.5 7.8  12.3 7.0

 
Table 3Simulated mean arrival times to the nodes based on setting 1. 

Start Time  Mean  Std. Dev.   

Site  0:00  4:00  8:00  12:00  16:00 20:00 0:00 4:00 8:00 12:00  16:00 20:00

80  0  0  0  0  0 0 0 0 0 0  0  0

132  17.6  18.1  26.3  18.3  26.1 17.9 0.82 0.90 1.45 0.98  2.18 1.17

103  65.1  68.7  98.7  75.1  96.4 76.5 2.54 2.72 4.13 3.02  4.82 3.11

51  96.7  102.0  141.2  110.9  129.1 107.8 3.42 3.51 5.33 3.71  6.62 3.82

61  142.2  155.5  202.1  161.6  180.5 153.1 4.37 5.03 9.32 5.06  9.94 4.88

80  172.8  185.6  242.1  196.0  218.2 191.5 5.59 7.24 17.02 6.82  14.11 6.67

 
Table 4 Simulated mean arrival times to the nodes based on setting 2.  

Start Time  Mean  Std. Dev.   

Site  0:00  4:00  8:00  12:00  16:00 20:00 0:00 4:00 8:00 12:00  16:00 20:00

80  0  0  0  0  0 0 0 0 0 0  0  0

132  16.4  17.3  21.2  18.2  23.6 17.9 0.71 0.82 1.12 0.94  1.78 1.04

103  63.6  67.8  87.6  74.2  79.4 66.2 2.43 2.71 3.96 2.93  4.38 3.23

51  95.5  101.3  120.7  106.5  112.5 97.4 2.95 3.17 5.17 3.25  6.24 3.35

61  140.3  151.8  171.9  151.2  156.9 142.4 3.73 4.93 9.27 4.61  9.53 4.28

80  169.8  182.6  211.3  181.7  188.5 175.4 5.14 6.3 11.8 5.58  12.43 5.74

 
We assume the time windows are 30 minutes and the center time point of the windows are the 
average arrival times during the day to the nodes in the sequence of the 1st tour. We also assume 
the truck starts a trip in a shift and must return to the depot in that shift. We give the site time 
windows in Error! Not a valid bookmark self-reference.. 
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Table 5 Sites' time windows  

Site  80  132  103  51  61 

Earliest  0  5  61 93 142 

Latest   240  35  91 123 172 

 
We give the results with the two settings in section 2.4.1 based on the simulation of historic data. 
Percentages are the performance of each setting for 66 simulated days. 
 
Table 6 The % performance of the settings under time windows 

Start time  Setting 1  Setting 2

Site  0:00  4:00  8:00  12:00  16:00 20:00 0:00 4:00 8:00 12:00  16:00 20:00

132  100  100  100  100  100 100 100 100 100 100  100 100

103  100  100  100  100  100 100 100 100 100 100  100 100

51  100  100  100  100  100 100 100 100 100 100  100 100

61  100  100  20  100  32 100 100 100 94 100  100 100

80  100  98  8  96  18 100 100 100 88 100  100 100

 
Table 7 Average of waiting times at nodes over 66 days 

Start Time  Setting 1  Setting 2   

Site  0:00  4:00  8:00  12:00  16:00 20:00 0:00 4:00 8:00 12:00  16:00 20:00

132  0  0  0  0  0 0 0 0 0 0  0  0

103  0.05  0  0  0  0 0 0.04 0 0 0  0  0.04

51  0.23  0.04  0  0  0 0 1.39 0 0 0  0  0.05

61  1.99  0.02  0  0  0 0.27 0.98 0 0 0  0  0.06

80  0  0  0  0  0 0 0 0 0 0  0  0

 

2.6 Conclusions 

We developed a “robust” tour while employing dynamic routing algorithms to route the truck 
between sites (e.g., depot/airport/customer sites). This is practical in the sense that pickup/delivery 
windows are often agreed upon at the time of the pickup request. Hence, there is often little 
opportunity to change the visiting sequence of sites. While we cannot change the visiting sequence 
of sites, we could still dynamically route the truck between sites. 
 
As a future study, we will consider extending the problem where the driver not only can change 
his route between two sites but also can change the visiting sequence of sites. Hence, the visiting 
sequence of sites will be determined by an optimal policy based on the state at the time of arrival 
to the nodes rather than a “robust” tour sequence. 
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C. Heuristic Methods 

In this section we summarize our efforts in developing heuristics solution methods for dynamic 
routing models on intermodal networks and operational response models. These heuristic methods 
are complementary to state space filtering and state aggregation heuristics that are applied in 
conjunction with the stochastic dynamic programming (SDP) algorithm. For the dynamic routing 
on stochastic and time-dependent intermodal networks, we outline the AO* heuristic algorithm 
developed and tested in Section 3.1. In Section 3.2., we summarize our efforts in developing 
hybrid methods which combine the Sample Average Approximation with the Progressive Hedging 
Algorithm.  

3.1 AO* Heuristic for Dynamic Routing  

Our initial experiments based on applying the stochastic dynamic programming approach for 
solving dynamic routing problems exhibited limitations in terms of computational efficiency. With 
this limitation, we concluded that the implementation of our models for practical sized problems 
would not be feasible. Hence we identified an alternative solution method called AO* which is 
described next. 

The AO* algorithm is first presented by Nilsson (1980) and is based on the idea of using AND/OR 
networks. AO* is solution technique which is originally applied to a decomposable production 
system by defining an implicit AND/OR network (Nilsson, 1980). Different than the traditional 
networks, where arcs connect pairs of nodes, AND/OR networks have connectors directed from a 
parent node to a set of connected nodes. The AO* algorithm, beginning with a start node, 
identifies a solution graph to one or more terminal nodes in a pre-specified set of terminal nodes 
(referred as goal set). A solution graph is a graph which spans from the start node to all other 
nodes in the goal set. AO* operates by marking AND/OR network arcs for inclusion in a partial 
solution graph. A partial solution graph is a solution graph where not all the leaf nodes are 
terminal nodes (e.g. in the goal set). AO* finds a solution graph in two major operations: a top-
down graph-growing operation and a back propagation operation which performs several 
operations (revises costs associated with each node, labels nodes as solved, etc.). Whereas the first 
operation functions as a constructive solution heuristic, the second operation serves as an 
improvement iteration.  

The key characteristic of the AO* algorithm is that there is always a solution to the routing 
problem. Hence, when the algorithm is terminated at any time, there is a routing policy which is 
implementable. This is an attractive characteristic of AO* in comparison with the SDP approach 
since SDP cannot provide a solution until it is executed to completion. However, the routing 
policies obtained from the AO* are usually inferior and thus we need to solve it to optimality. This 
deficiency of the AO* can be improved if there is a good lower bound information on the optimal 
solution to the routing problem. Hence, the benefits of the AO* is most notable whenever there is 
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accurate lower bound information on the objective function. However, this information is seldom 
available given the sparsity of the data regarding dynamic air cargo routing. Therefore, we could 
not leverage the algorithmic efficiency of the AO*.  

Upon concluding that AO* is not efficiently applicable to our problems, we focused our efforts in 
improving the performance of SDP algorithms. Specifically, we have modified our exact SDP 
algorithms and developed heuristic versions through the state space filtering and state aggregation 
to reduce the computational burden. The state space aggregation corresponds to reducing the time 
epochs for which we generate a decision (routing) policy. Whereas, in some problem settings, the 
routing policies with short intervals (e.g., one minute) are necessary, our experimental results 
indicated that reducing the time resolution of our policies does not significantly impact the quality 
of the solutions obtained. Hence, we have aggregated the state space by increasing the time 
intervals for which we generate routing policies. Second modification to the SDP algorithms is to 
filter the state space. Experimental results indicated that the flight paths visited in any given 
optimal policy is limited to a few. Hence we developed worst-case and best-case heuristics to filter 
out flight paths from the state space. With these two modifications, our SDP can now find optimal 
or close to optimal solutions in minutes which is acceptable for practical applications. 

3.2 Heuristics Methods for Operational Response 

In tackling static and dynamic operational response models, we developed integer programming 
and stochastic integer programming models, respectively. In solving these models, we have 
primarily relied on off-the-shelf  solver engines. Whereas the static problems are easily solvable 
with such tools, the dynamic operational response models are significantly large and cannot be 
solved efficiently with off-the-shelf  solver engines. Hence we resorted to heuristic methods, e.g. 
the Progressive Hedging Algorithm (PHA). The PHA is efficient for single period stochastic 
programming problems but fail to preserve the same efficiency for multi-period models such as 
our operational response models. Accordingly, we have begun experimenting with alternative 
methods such as the Sample Average Approximation (SAA) method. This method is based on the 
principle of scenario sampling, e.g. taking samples from the uncertainty space, and solving the 
samples independently and subsequently choosing the best solution. The efficiency of SAA can be 
set by the analyst through the determination of sample size and number of samples. However, 
small sample size with fewer samples, the solution quality is compromised. For a sufficiently good 
quality solution, the required sample size and number of samples are large. Therefore there is a 
notable tradeoff between the efficiency and the solution quality.  

For this we began developing hybrid methods which combine PHA with SAA. The rationale is 
that PHA is efficient in decomposing problem into smaller problems for each realizable scenario, 
e.g. disruption scenario with uncertain parts delivery schedule. On the other hand, SAA has the 
advantage of not considering the entire set of scenarios by sampling the uncertainty space. Hence 
hybrid combination of these two methods would reduce the number of samples and the sample 
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size required to obtain good quality solutions. We have developed two prototype hybrid 
algorithms. Our tests with these heuristic hybrid algorithms are still ongoing and will be 
completed in the final year. 

D. Results Dissemination 

1. Conference Activity 

Conference Presentations: 
 

1. Murat, A., Aydin, N., Rossi, G. , “Impact of Flexibility on Supply Chain Resilience,” 
OEM Global Supply Chain, SAE World Congress in Detroit (April 20-23, 2009). 
 

2. Murat, A., Azadian, F., and Chinnam, R.B., “Dynamic Freight Routing on Air-Road 
Intermodal Network using Real-Time Congestion Information” - POMS Annual 
Conference 2009 - Global Challenges and Opportunities, Orlando, 1-4 May 2009. 

 
3. Azadian, F., Murat, A., and Chinnam, R.B., “Vehicle routing with alternative access 

airport selection for air cargo,” INFORMS Annual Meeting, San Diego (October 11-14, 
2009). 

 
Conference Sessions Organized: 
 

1. We organized a special session titled “OEM Global Supply Chain, SAE World Congress in 
Detroit (April 20-23, 2009). The session was co-Chaired by principal investigators Dr. 
Murat and Dr. Chinnam. 

 
Conferences Planning to Attend: 

1. Azadian, F., Murat, A., and Chinnam, R.B., “Dynamic routing on air-road intermodal 
networks with milk runs,” INFORMS Annual Meeting, Austin TX (November 7-10, 2010). 

 

2.  Journal Publications 

A journal manuscript has been dispatched to the Transportation Research Part E journal that 
reports our dynamic routing of air cargo models, algorithms and their performance. A second 
manuscript based on dynamic routing on the Air-Road network is currently under preparation 
(Section A of this report) and will be submitted to Transportation Research Part E for review in 
this semester.  
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