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SUMMARY OF RESULTS    
 
Our project has three major mile-stones for the first year: 
   Mile-stone #1: Data collection for the pilot studies (inter-modal freight transportation 

networks, historical data on inter-modal terminal facility disruptions and network 
incidents, etc.)  

  Mile-stone #2: Preparing case studies for model and algorithm development and pilot 
implementation 

  Mile-stone #3: Developing static optimization algorithms and implementation for pilot studies  
   

The Research Team, made up of Dr. Alper Murat (Project PI), Dr. Ratna Babu Chinnam (Project 
Co-PI), Dr. Snehamay Khasnabis (Project Co-PI), doctoral student – Farshid Azadian, has made 
very good progress with respect to all these three milestones over the first year.  
 
In what follows, we summarize our achievement with respect to these milesones. 
 
Mile-stones #1 & #2:  
 
We have concentrated the majority of our efforts on the two main project components: 
1. Dynamic routing of freight on inter-modal networks using real-time ITS information: We 

have collected data, developed models and algorithms for the air-road inter-modal network 
routing problem application in the states of Ohio and Michigan. 

 
2. Operational response of supply chains to congestion and incidents at inter-modal 

terminal facilities: Working with our collaborator Ford, we collected representative data and 
developed models/algorithms for the optimal production allocation of scarce on-hand 
inventory to cope with the delivery tardiness caused by congestion and disruptions on the 
inter-modal network. 

 
We have approached the data collection and case study preparation from multiple directions as 
described below. We begin by describing our efforts for the air-road inter-modal problem. Next, 
we summarize our data collection and case study achievements in the operational response 
problem of supply chains. 

For dynamic routing on inter-modal networks, we first considered the air-road inter-modal 
problem for freight-forwarders, carriers and shippers. For the air mode, we have collected 
historical data on the flight departure delays by origin-destination airports, carrier, time of the day 
and month of the year. In addition to departure delays, we gathered data on factors contributing to 
departure delays such as weather and customs. We have compiled these data into a database and 
developed a software tool for ease in accessing and modifying the data. These historical data sets 
allow us to estimate the expected departure delays for most air cargo shipments. Lastly, we also 
have collected historical data for flight times between national airports. We are now able to 
estimate the total delay distribution for an air cargo shipment between an origin and destination. 
The real-time airport congestion and incident (departure delay, origin/destination airport 
congestion, cancellations) information is also available from different sources. In summary, our 
data sources are 
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Historical Data on Airport Congestion and Flight Departure Delays: 

1. Research and Innovative Technology Administration (RITA)- Bureau of Transportation 
Statistics, Airline Data and Statistics. (http://www.bts.gov/programs/airline_information/ ) 

2. FAA Operations Network (OPSNET): OPSNET Delays provides daily data on reportable 
delays2  These OPSNET delays are caused by the application of initiatives by the Traffic 
Flow Management (TFM) in response to weather conditions, increased traffic volume, 
runway conditions, equipment outages, and other causes. 

3. Flight Stats: FlightStats Analytics - On-time Performance Ratings provides historical flight 
departure delay data by aggregating across multiple sources (FAA data sources, airport 
data sources, airline online sources, and published schedule data)3.  

 
Real-time Data on Airport Congestion and Flight Departure Delays: 

1. Flight Stats: Flight Segment Messaging service provides real-time flight status monitoring 
and notification including alerts on delays, gate changes, weather conditions, schedule 
changes, etc. 4  

 
In the air-road inter-modal network, our emphasis has been on the utilization of the Toledo 
Express airport versus the two Detroit Area airports (DTW and YIP) for shippers and carriers in 
the OH-MI region. While the road network congestion is not a major concern in the Toledo region, 
it is an important issue in the Detroit region, especially due to the traffic volume and the location 
of the area airports. Therefore, our data collection and calibration efforts so far spent on the 
Detroit region. For the road network, we have leveraged the synergies between our project and 
another project funded by the MI-OH UTC on the congestion avoidance on road network. From 
their results, we have gathered and generated such network structure data as the network topology, 
design parameters, link characteristics for the Detroit. For link velocity data collection, we are 
collaborating with the MITS center and Traffic.com for accessing to real-time and historical traffic 
flow data (such as velocity, occupancy). These datasets play a critical role for incorporating the 
road-network congestion into our dynamic routing models on the air-road inter-modal network. In 
addition to recurrent congestion, we also have access to data on the non-recurring congestion 
(incidents and special events) which improves the accuracy of our models. Especially, Traffic.com 
has an extensive archive of incident data for developing parametric delay models.  
 

We have developed a baseline case scenario to test and validate our static and dynamic 
routing models on air-road inter-modal networks. Our current base-line model is the allocation of 
air cargo shipments to different airports in the OH-MI region based on the flight and terminal 
congestion status (e.g., based on seasonal loads) by considering TOL, DTW, YIP and CLE 
(Cleveland Hopkins International) airports. The objective has been the validation of the 
methodology (models, algorithms) rather than a comprehensive assessment of benefits to carriers 
and shippers. Once we completely validated our algorithmic framework (especially for dynamic 
models), our next step will be to develop realistic and representative scenarios that account for 
shipment urgency, freight characteristics (e.g., weight, value, destination), multiple-shipments 

                                                 
2 "Delays to instrument flight rules (IFR) traffic of 15 minutes or more, which result from the ATC system detaining an aircraft at the gate, short of 
the runway, on the runway, on a taxiway, or in a holding configuration anywhere en route, must be reported.” - FAA Order 7210.55E 
3 The FlightStats platform of the Conducive Technology Corp. provides real-time and historical flight information. (http://www.flightstats.com/) 
4 Ibid. 
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with varying origin and destinations, and others important to freight forwarders, carriers and 
shippers. In this model, we only consider the road network congestion for Detroit. However, 
Traffic.com’s sensor network is also available for Cleveland, so, in our validation, we will 
represent the road-network and collect link velocity data for Cleveland to better account for 
recurring/non-recurring congestion on the road network. 

For the operational response of supply chains to congestion and incidents at inter-modal 
terminal facilities, we have been working with our collaborator Ford. Ford, through its suppliers 
such as Visteon, imports a significant volume of automotive components (power-train, electrical, 
chassis and steering) from Asia. For Ford and most other OH-MI supply chains, this sourcing 
strategy translates to higher pipeline and safety inventory costs. These supply chains therefore feel 
a constant pressure to reduce their inventories but at the same time improve the delivery reliability 
of their shipments on the inter-modal network (sea, rail, road, air). In this effort, we collected 
representative data and developed models/algorithms for optimal production allocation of limited 
on-hand inventory to cope with the delivery tardiness caused by congestion and disruptions on the 
inter-modal network. Our representative data contains product level data (component, 
commonality, vehicle configuration, etc.), plant level data (production levels, mix-rates, capacity 
constraints, other manufacturing flexibility characteristics, etc.), and other supply chain level 
data.5 The current model considers the production allocation as the sole operational response 
mechanism. An extension of this operational response model is its integration with the dynamic 
routing models, where we will consider break bulk shipments, i.e., a portion of the containerized 
freight is shipped via an alternative mode. For this, additional inter-modal network and terminal 
congestion/incident data from representative routes and facilities are needed. 
 
Mile-stone #3 
We have developed models and algorithms for two problems: the air-road inter-modal problem 
and the operational response problem of supply chains. Next, we describe our achievements in 
respective order. 
Majority of our efforts here went toward developing dynamic freight routing and mode selection 
models and algorithms on the inter-modal networks. We have tackled the problem specifically for 
the air-road inter-modal network as previously described. We have also gone beyond Mile-stone 
#3 in that our emphasis was not just static but both static and dynamic algorithms.  
 
 We first developed static models for the air-road freight shipments based on expected 
departure delays, travel times, flight times, and other congestion factors (e.g., security and customs 
processing) on the road and air modes. These models are large-scale discrete mathematical 
programs and implemented within the ILOG modeling and optimization platform. Next, we 
developed compact yet effective parametric stochastic models for estimating flight departure 
delay and airport incidents (e.g. cancellations, diverted flight) based on historical data as well as 
real-time information. These stochastic models for the air mode are then integrated with the 
stochastic models developed for the recurring and non-recurring road network congestion. We 
then have developed Stochastic Dynamic Programming (SDP) based dynamic models and 
algorithms for air cargo routing and mode selection under real-time traffic and flight-airport 
information. These SDP algorithms yield optimal routing policies, however they are not 
computationally efficient for real-world inter-modal networks. This is because, in the presence of 
multiple modes with different delay intervals and departure schedules, the state space 
                                                 
5
 Our current data sets are representative of the actual operations data and modified to preserve Ford’s confidentiality.  
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representation of SDP becomes prohibitive. Currently, we are testing the algorithmic efficiency of 
our SDP models and making improvements by investigating ways to decompose the problem by 
mode so that we could tackle each mode separately with dedicated sub-models. We will use the 
solutions of SDP models for testing and benchmarking the effectiveness of fast heuristic 
algorithms that are under development.6 
 
 We have developed static operational response models for manufacturers with JIT operations 
such as our collaborator Ford and many other supply chains in the OH-MI region. These models 
are used for optimal production allocation of scarce on-hand inventory to cope with the delivery 
tardiness caused by congestion and disruptions on the inter-modal network. The decisions made 
by these models are the production schedules, plant idling, production shift decisions, and 
component substitutions. The static models take into account uncertainty in delivery times and 
quantities via their expected values, hence are deterministic mathematical programs which can be 
solved efficiently. We implemented these models within ILOG modeling and optimization 
platform and are able to solve them in reasonable time. However, solving dynamic models with 
more realistic size and characteristics (e.g., break bulk) will be a challenge, which we are currently 
pursuing. 

Description of Sections A, B, and C 

In Section A we propose a modeling and solution framework for the dynamic air cargo routing on 
air networks subject to stochastic flight departure delays. After developing a stylized experimental 
setup, we illustrate the effect of various network factors on the dynamic routing efficiency. In 
addition, we present a case study using the real data for a dynamic air cargo routing originating 
from the Cleveland Hopkins International Airport (CLE) and destined to the Seattle-Tacoma 
International Airport (SEA). 
 
In section B, we extend our approach in Section A to the integrated dynamic routing on the air-
road intermodal network. In addition to routing on the air network, we also make alternative 
access airport selection and dynamic routing decisions on the road network. We illustrate the 
approach via a case study for a cargo originating from the regions of southeast Michigan and 
northern Ohio. We consider three main commercial airports in this region Detroit Metropolitan 
Wayne County Airport (DTW), Toledo Express Airport (TOL) and Cleveland-Hopkins 
International Airport (CLE) and determine alternative access airport for the cargo under various 
scenarios. 
 
In section C, we consider the operational response model of an automotive manufacturer facing 
with a delay in shipments of a component. We consider the case where the manufacturer allocates 
scarce component inventory among different product lines such that the impact of shipment delay 
is minimized. We illustrate the modeling and solution methods in a stylized example from a major 
OEM. 

                                                 
6 We will first consider the dynamic routing of freight on the inter-modal network using real-time information. However, in the presence of delay, 
one option is to split the load and ship different portions via various modes. This is especially important for our collaborators (Ford MP&L and 
C.H. Robinson) to increase the delivery reliability. We will extend the functionality of models for break-bulk shipments.  
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A. Static and Dynamic Routing using Real-time Information 
– Air Network 

1 Introduction 
 
In the last decades, the US has seen massive growth in  air-truck transportation. According to the 
Bureau of Transportation Statistics (BTS), air-truck intermodal shipments show an increase of 
88% in value and 20% in ton-miles from 1993 to 2002 (BTS, 2006). Increasing demand for faster 
and more reliable shipments of lighter and more expensive goods is the key catalyst for this trend 
(BTS, 2002). In contrast with the sharp rise of demand, the total number of airports has increased 
only less than 9% whereas the growth in aircraft fleet has been about 19% from 1995 to 2005 
(BTS, 2008). Further, the air travel demand of airline passengers, which share the same assets and 
infrastructures capacity (e.g., air space and runway) with the air-road shipments, has increased 
only 51% in the period (BTS, 2005). This steep increase in demand and lagging capacity 
investments is causing more and more congestion in the air-road multi-modal network. For 
instance, in 2007, more than 21% of flights had over 15 minute departure delays and the on-time 
performance of air carriers have been in steady decline from 2002 to the present (BTS, 2008).  
 
There are two alternative solutions to address and mitigate this congestion. The first solution is to 
increase capacity by constructing more airports or expanding the runway capacity of existing 
airports. However, these capacity expansions are not only costly and slow but also limited with 
such constraints as unavailability of land or resistance from the public. An alternative solution is 
to optimize the utilization of existing capacity through more balanced distribution of the demand 
load. In this study, we are motivated with the later solution where the users (e.g., freight 
forwarders or shippers) selectively utilize the air-mode transportation capacity by dynamic routing 
and allocation based on the congestion state of facilities. Hence, we adopt the perspective of users 
who, typically, do not own the fleet and use air carrier service non-exclusivity. Clearly, this group 
does not have control over capacity expansion or utilization of the air network. However, 
optimizing the routing of time-sensitive shipments to avoid congestion potentially leads to more 
balanced distribution of system load and thus, increased system utilization. 
 
The ability to choose the optimum route for cargo shipments relies on two factors: ability to 
change path and proper knowledge to support that decision. The former is possible through 
flexible contracts with air carriers and the latter is achieved as a result of IT enhancements during 
the last decade.  
 
As mentioned, air cargo is used whenever shipments are urgent, perishable, or have a particularly 
high unit value. It follows that the demand for air cargo services is actually often generated at 
short notice before the actual shipping date. In fact, the majority of bookings are taken within a 
very short time-span and a large percentage of bookings, primarily high yield bookings, are even 
made within the last 48 hours before departure (Becker and Dill, 2007). Accordingly, the option of 
booking or canceling the shipment in the last hours is not a new subject to the air-cargo industry. 
Moreover, especially in recent years, many carriers are offering more flexibility in contracts as a 
result of excessive competition in the market.  It is even observed that in some markets most of the 
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freight forwarders  tend toward flexible contracts (volume-based) for their business (MECo, 
2006).  
 
In this paper, the term “flexibility in contract” is used for any situation which allows the freight 
forwarder to alter the shipment route through the shipping process. This option can be realized by 
having contracts with one or more air carriers who offer alternative paths from the origin to 
destination and lets the shipper make/change the routing decisions almost dynamically. Long-term 
contracts are one type of business agreement, which allow this flexibility. That is, the freight 
forwarder has the option of choosing different flights from a carrier and finally pays by the total 
amount of shipment done based on an agreed measure for a given period.  
 
Another practical method to implement the routing flexibility is replacing cargos in a freight 
forwarder inventory. Usually, a middle size shipping company has contracts with different carriers 
for various flights during the day to provide time flexibility for accepting and delivering cargo 
during the day. However, not all the cargos are time sensitive. Accordingly, the required flexibility 
can be achieved through replacing the cargos and sending the more time sensitive ones via 
(expected) faster routes. In this case the committed capacity on the carrier side remains the same. 
 
Having the option of routing, freight forwarders can benefit from  dynamic routing decision 
support tools only if appropriate information is available to justify the decisions. Fortunately, the 
recent advancement in information technology provides the opportunity to access the almost real 
time data on air-network status. Nowadays, not only the online flight status is accessible but also 
the user can be informed about the delay announcement before the delay really happens through 
delay forecasting services. 
 
Our main objective here is to address the problem of air routing in a dynamic network from the 
point of view of a freight forwarder. The stochastic dynamic programming approach proposed in 
this paper uses the available online information to booster the quality of decisions and optimize 
the routing to improve delivery performance criteria.  
 
The rest of this manuscript is organized as follows: Section 2 reviews relevant current literature. 
Section 3 formulates the problem statement. Section 3.2 provides details on the proposed routing 
approach. Section 4 presents the experimental study conducted to analyze the effect of problem 
parameters. Section 5 details a cargo shipment case study and presents the results  of the 
performance of the approach in comparison to static approaches. 
 

2 Literature Review 
 
The problem of routing and specifically finding the shortest path is a subject of interest for many 
researchers. A plethora of various approaches is proposed for solving this problem. Some of the 
classic approaches are collected by Deo and Pang(1984). However, Hall (1986) first studied time-
dependent stochastic shortest path and showed that in such problem, adaptive decision policy is 
more effective than single path selection. Results of his proposed dynamic programming (DP) 
approach was a set of policies which indicate the optimum action based on both location and time. 
Wellman et. al. (1990) followed up this algorithm with an optimization of reducing the number of 
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paths considered on a network that obeys the principle of stochastic consistency. The 
implementation of the optimization algorithm of Wellman et. al. (1990) significantly reduces the 
running time of Hall’s (1989) algorithm. Wellman et al. (1990) also proved that as long as the 
Stochastic Consistency is held, the principles of traditional shortest path(s) algorithms can be used 
with the stochastic networks. Kaufman and Smith (1993) also proposed an optimization on Hall’s 
algorithm by using a heuristic to find upper and lower bounds on the travel time of the final path, 
so that many paths need not be considered. Furthermore, Wellman et al. (1995) proposed an 
approximation algorithm in which stochastic consistency and stochastic dominance were used to 
find approximate shortest paths within continuously tightening upper and lower bounds (Wu and 
Hartley, 2005).  
 
Various assumptions are made in the literature to define how the realizations of the stochastic 
network are revealed to the travelers (decision makers). Some assumed that one realized the  travel 
cost on arriving at the node from which the link emanates including Andreatta and Romeo (1988), 
Polychronopoulos and Tsitsiklis (1996), Cheung (1998), Fu (2001), Waller and Ziliaskopoulos 
(2002) and Provan (2003). Some like Azaron and Kianfar (2003) assumed that the states of the 
current arc and immediately adjacent arcs are known on arriving.  
 
No matter when the current state of the network revealed to the decision maker, he always needs 
to have some evaluation of the expected state of the network based on the available information. 
In the proposed framework, the main stochastic parameter of the network is departure delay, 
which directly affects the link travel time. Accordingly, the ability of forecasting the departure 
delay is essential for improving the networks future state estimation. Predicting the on-time 
performance of air carriers is a subject of interest to various groups for different purposes. 
Consequently, there is a notable amount of research in this realm focusing on different factors to 
satisfy the need of different customers. Traditional linear or nonlinear regression methods have 
been applied to explain the influence of causal factors on delays by Hansen and Hsiao (2005), 
Hansen and Zhang (2004) and Vigneau (2003). Micro and macro-level simulation tools have been 
applied to simulate delays at different levels of detail, for instance, by Hoffman (2001) and Wang 
and Schaefer (2003). An extensive review of the models and their advantages/disadvantages in 
forecasting and modeling the flight delays is presented in Xu (2007).  
 
The problem we address in this paper can be distinguished from the existing literature in two ways 
that make it  new research and  pioneering work  in the field. First, in this problem setting, we 
have the option of waiting at the nodes for the links(flights) to be available. Actually, the links 
(flights) in this problem are only accessible for a moment and then will become useless afterward.  
However, although we wait at the node, we cannot change the path during the waiting period and 
go through another link unless the link (flight) is canceled. Accordingly, the waiting duration is 
not part of the link travel time.  
 
Moreover, all the waiting times are stochastic in this problem. The decision maker will never 
realize the exact state of the network; however, he might get an estimation of the network 
parameters as real-time information. This information also is not constant and changes 
stochastically during the routing process. That is, the knowledge of the decision maker may 
improve as the cargo goes through the network.  
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3 Dynamic Air Cargo Routing Using Real-time Information 
 

3.1 Routing Model 

Let ),( ANG   be a directed graph representing the air network with a finite set of nodes Nn  
representing airports and a set of arcs l A  representing connecting flights between the airports. 
There could be multiple arcs between any two nodes designating separate flights. Hence, let i 
denote the flights and AAl  denote the set of flights between airports n  to n   where lAi  and 

 nnl  , . A dynamic routing problem on this air network is concerned with departing from the 

origin node on  and arriving to the destination node dn  via a series of flight selection decisions. 

The goal is to find an optimal routing policy that minimizes the total cost criteria. 
 
The arcs have three parameters affecting the flight selection decision. As in most network models, 
each arc has a deterministic travel time )0( i , which corresponds to the flight time. The second 

parameter is the scheduled departure time of flight i ( i ), which, in essence, results in an unknown 

waiting time at the nodes. Note that, although the scheduled departure times are exactly known, 
the arrival time to the airport node is unknown and thus makes the waiting time a stochastic 
variable. The final parameter, which is absent from most routing models, is a stochastic departure 
delay ( 0i ) corresponding to an uncontrollable waiting time at the origin node of the arc (flight 

i) before traveling through it. This departure delay is attributable to a multitude of factors 
including congestion at the origin and destination airports, cargo-processing delays, and the like. 
Departure delay is non-negative, indicating that the flight departs only after the scheduled 
departure time. Accordingly, if the flight has not departed past the scheduled departure time, the 
actual departure time depends on i  and is stochastic. Once the flight has departed, the arc 

becomes unavailable. This temporal change in arc availability is, indeed, another attribute that 
distinguishes this problem setting from the stochastic shortest path problems. 
 
The flight selection decision is made upon cargo arriving at a node, with no recourse decision at 
that node meaning the flight decision is permanent. This is a reasonable assumption since the 
freight forwarders are not at liberty to get cargo loaded and unloaded at a short notice. Usually, the 
carriers sell their cargo capacity some time in advance (e.g., in hours), which is sufficient for the 
freight forwarder to commit to a flight while en route in preceding airports.  
 
 
Departure Delay Distribution 
We denote the cumulative distribution function of the departure delay for link i  with )( ii  . The 

assumption is that the flight will depart during the finite period of time like  . Accordingly, after 

 the flight is defiantly departed, i.e. 1)(   ii . On the other hand, since departure before the 

scheduled departure time is not allowed, i could not be negative. Ergo 0)(  ii   when 0i . 

The detailed explanation of the departure delay distribution estimation is provided latter. 
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Departure Delay Announcement 
Upon the arrival of cargo at a node at time t, the real-time information regarding the distribution of 
departure delay of all flights in the current and all the future nodes are revealed to the freight 
forwarding agent. This information is called the departure delay announcement and characterized 
by a 2-tuple,     tt ii  , , defining the upper and lower bound on departure delay. It is assumed 

those announcements are reliable meaning the actual final departure delay is always bounded by 
the announced bounds at any time t,   )()(0 tt iii , where   is the maximum allowed 

departure delay. We further assume that the quality of announcement (e.g. spread between the 
bounds) will improve over time or at least remain the same, 

       ttandttttttAi iiii   '':0|,, . Moreover, if the flight has already 

departed, the announcement would be exact, e.g.,     ttt iiiiiiii   ˆ|)ˆ,ˆ(),(  where 

î  is the realized departure delay.   

 
Probability of Flight Departure 
Let cargo arrive at a node at time 0t . On arrival, the decision maker receives the possible 

departure time window as     00 , tt ii  . However, his interest is to estimate the likelihood of the 

flight being available and the cargo departing the airport at any given time in this window. In other 

words, the decision maker needs to estimate ),ˆPr( 0 iiii t   . On the other hand, relation (1) 

holds. 
 

)Pr()|ˆPr(),ˆPr( 000 iiiiiiiiii ttt    (1)

 

Relation (1) can be interpreted as the multiplication of the probability of departing with î  delay 

given that the departure time is after the arrival time at the node 0t  (the flight is still available) and 

the probability of the flight being available at the arrival time. 
 
Knowing that the flight will depart in     tt ii  ,  window and given the distribution of departure 

delay )( ii  , )Pr( 0 ii t    can be calculated as below 

))(())((

})),((max{))((
)Pr(

00

000
0 tt

ttt
t

ii

ii
ii 





  (2)

 
Clearly, if cargo arrives before )( 0ti , the flight is definitely still 

available, 1))(Pr( 00  iii tt   and if it arrives after )( 0ti , the flight  has definitely already 

left, 0))(Pr( 00  tt iii  . 

 
On the other hand, the probability of flight departure at a given time after the arrival time at the 

node, )|ˆPr( 0 iiii t   , is calculated by relation (3). 
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  })),((max{)(

)ˆ(
)|ˆPr(

000
0 ttt

t
ii

ii
iiii 





  (3)

 
Accordingly, the probability that the flight be available after arriving at the node and depart at a 

given time of ii  ˆ  is as (4). 

 

   )()(

)ˆ(
),ˆPr(

00
0 tt

t
ii

ii
iiii 





  (4)

 

From now on, this probability ),ˆPr( 0 iiii t    will be noted as ),( 00 tpi .  

 

3.2 Solution Algorithm 

If cargo left the airport an using flight i  at time ii   , it would be at the next airport at time 

iii   . Let the cost-to-go at each node at each time be the minimum expected cumulative 

cost from that node to the destination. If the cost to go to the airport bn at time t  noted as 

),( tnH b , then being at node an  and deciding to take flight i  to go to node bn , there is the 

probability of )ˆ,( 0 ii tp  to experience the cost of )ˆ,( iiibnH    at the next node. Let the cost 

of taking a flight i  be a fixed cost as iG . Consequently, the expected cost-to-go of committing to 

flight i at time 0t to go from an  to bn  is noted as ),( 0tnF ai and calculated through (5). 

i
i

iibi

ai G
tq

nHtp
tnF 






)(

),(),(
),(

0

0
0

0






 

(5)










0

),()( 00
t

ii tptq  (6)

 
In relation (5),  is the upper bound of departure. That is, it is assumed that the flight will depart 

at  in the latest departure case. As defined by (6), )( 0tqi  is the total probability of departing with 

flight i  after time 0t . It should be noted that 1)(:  tqt ii and 1)(:  tqt ii . 

 
Let set of ),( 0tn  be all the flights departing from airport n  after time t . Clearly, from all the 

flights in ),( 0tn  the decision maker would like to select the one with the lowest  

cost-to-go. Let flights in ),( 0tn  be re-indexed by ascending order of cost-to-go in a way that for 

jitnji  |),(, 0  we have ),(),( 0)(0)( tnFtnF ji  . As mentioned, the probability of 

experiencing ),( 0)( tnF i is )()( tq i . It should be noted that ),(),( 0)1(0)( tnFtnF ii   but there is no 
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predefined relation between )()( tq i  and )()1( tq i . Accordingly, the expected cost-to-go at airport 

n at time 0t  is calculated by (7). 
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    (7)

 
In (7), M is the ultimate cost that a freight forwarder will experience if he fails to deliver the cargo 
at all. The idea in this relation is that the decision maker will select the cheapest flight when it is 
available and all the cheaper flights have already left. However, if all the flights have left, cargo is 
stocked in the airport and the freight forwarder will experience a penalty of M . Clearly, this last 
scenario is not very likely to happen in the real world since there are always future flights 
available. 
 
Relation (7) is actually the recursive relation to calculate the minimum expected cost-to-go at each 
node for each decision time. Now, let cost at the final destination be )(tPen  which measure the 
difference between the time of delivering the cargo and the predefined due date noted as T. By 
assigning )()( tPennH dt  , it becomes possible to calculate 0,),(  tNnnHt . 

 
Accordingly, if )(nS  is all the potential nodes to visit after node n , by arriving at node n and 

after realizing the network state, the decision maker can calculated the 0),(),(  tnSnnHt . 

Removing the flights that already left from ),( 0 nt  , the remaining flights are those which will be 

available and eventually depart. Now, using )(nH t  , the decision maker can estimate the expected 

cumulative cost-to-go of each flight ),(),,( 00 ntkntFk   .  Clearly, the best action is to commit 

to a flight with the minimum expected cumulative cost-to-go. So, if ),( 0 nt  represents the best 

action from the possible set of actions of committing to a flight, it would be driven from relation 
(8). 
 

 ),(minarg),( 0
),(

0
0

tnFtn k
tnk







  (8)

 
The main difference between this approach and ordinary dynamic programming solutions is in the 
state space situation and consequently the policy calculation. The state space in this problem 
includes the location of the decision (airport), the time and all the flights’ departure delay. Since 
time and delay are continuous variables by nature, to be able to handle them in this framework 
they need to be discretized which also reduces the accuracy. It should be noted that even after 
sacrificing a great deal of accuracy to reduce the state space, the possible combinations of time 
and flight status for a medium size network is much  bigger than the ability of ordinary computers. 
Moreover, these states are stochastic and the probability of happening for some of them would be 
very low. Accordingly, as can be seen in the proposed approach, the calculation is postponed to 
the latest possible time and only done after the network state is revealed to the decision maker that 
clearly reduces the time and flight combination. In addition, by using the expected cost-to-go at 
each airport, the need to calculate the action (flight commitment) cost based on  future potential 
actions is replaced by calculating the cost of action based on the future airport to visit. It other 
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words, the decision maker, in practice, instead of deciding on the sequence of actions he wants to 
take in the future, at each step will choose between a group of potential actions by selecting the 
airports. 
 
As mentioned before, this option of postponing the action selection is an important outcome of 
having flexible contracts with air carriers. The assumption here is that contracts between the 
freight forwarder and air carrier, enable the freight forwarder to postpone the commitment to a 
flight up until the arriving time at the airport. Clearly, after committing to a flight, the decision 
maker cannot alter his choice no matter what he realized about the network state afterwards. 
 

3.3 Alternative Policy Types 

To be able to compare the performance of the proposed model, we first defined two additional 
alternative models and then compare the results of the dynamic approach against them. 

3.3.1 Static Policy vs. Dynamic Policy 
The purposed approach  relies on the flexibility of changing the path that  comes from the 
contracts between freight forwarders and air carriers. Having this flexibility, the performance can 
be improved by using real-time information to change the prior decision and select the better path; 
however, without this option freight forwarders would be forced to make a decision earlier and 
then commit to it for the rest of the shipment. Clearly, if the decision maker cannot change his 
decision, receiving and processing the new information would not have any value. The former 
case in this paper is noted as static policy versus the proposed approach that is noted as dynamic 
policy. 
 
By definition, in static policy the freight forwarder will buy the capacity for the cargo in advance. 
He could use all the historical information available, however, after the commitment to the air 
carrier has taken place, the selected path could not be changed in any circumstance.  

3.3.2 Benchmark  
Although in the proposed approach, the freight forwarder will receive some information about the 
actual departure delay, this information is not perfect and sometimes the announced boundary 
could be practically wide in a way that does not help the decision maker.  By having a base to 
compare the performance of the dynamic policy against the ideal situation,  all the actual departure 
delays are known in advance, and a new model is defined as the benchmark. This model will 
represent an imaginary situation that the freight forwarder is given representing the ultimate 
perfect information making it  possible to compare the performances. 
 

4 Experimental Study 
 
We have conducted a set of controlled experiments to investigate the effect of such problem 
parameters as the announced delay accuracy, the departure delay distribution, and the number of 
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connections on various performance criteria (e.g., expected cost and delivery reliability). A select 
subset of the results is presented and discussed in the remainder.  
 
The experimental study is based on three network configurations denoted as N1, N2, and N3 and 
illustrated in Figure 1 together with the problem parameters. In all three configurations, the origin 
airport is A (origin), the destination airport is D (destination), and there are two alternative 
intermediate airports (B and C) accessible from the origin. Furthermore, the expected travel time 
of going through B or C the is same for all three networks. The N1 configuration represents the 
base case configuration from which the other two network configurations are derived. The N2 

network configuration is identical to the base case except for airport C, where we vary the 
departure delay distribution shared by all outgoing flights. The expected delay at node C, however, 
is kept constant for all distributions. The N3 network differs from the base case, in that, direct 
flights from B to D are replaced with one-stop flights that connect at node E with different delay 
distributions. We assume that, at t0=95, the cargo is processed and ready for loading onto the next 
available flight. Further, the due date is set at T=100, e.g., the cargo requires expedited shipment. 
 
 

 

 
 

 

 
Figure 1. Network structure and parameters for the three network configurations (N1,N2,N3). 

 
In order to better understand the effect of experimentation parameters and without loss of any 
generality, we consider the travel time, rather than the cost (flight cost, delay penalty), as the 
performance measure.  Accordingly, our penalty function is delivery tardiness. We further assume 

N3 

N2 N1 
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that there are no flight cancellations and that all flights depart within 90 minutes of scheduled 
departure. It is also assumed that the cargo will be accepted so long as it arrives before the flight 
departure (e.g., no capacity constraints). In Figure 1, the flights with dashed lines (9,10,13) 
represent the bypass flights which guarantees the delivery of the cargo. The departure times of 
these bypass flights are separated in such a way that they are not selected unless the connection 
flight is missed. 
 
In all network configurations, we assume that the departure delay distributions are exponentially 
distributed. The probabilities of on-time departures and the exponential distribution parameters are 
provided in Figure 1. In the experimentation, we study the effect of announcement accuracy and 
departure delay distribution on various performance measures. These effects depend on both the 
delay distributions selected and the representation of the announced delay information. Figure 2, 
illustrates the delay bounds for various levels of announcement accuracy and the departure delay 
distributions at airport C in the network configuration N2. 
 
 

 
Figure 2. Announced delay bounds for airport C in (N1, N3) and various departure delay distributions for 
airport C in (N2). 

 
 
For each network configuration, we first solved for three routing policies (dynamic, static and 
dynamic with perfect information) and then simulated each policy for 20,000 samples. The 
solution quality of each policy depends on the problem parameters, e.g., flight durations, departure 
time separations, and delay distributions. To reduce the effect of problem specific parameters in 
quantifying the comparative performance, we define theequation 9.  

   
   0 0

(9)
,

s d

s d

k k

k

H H

H H n t
 

 


  


 

 

The measure (  ) is defined as the dynamic policy’s improvement over the static policy and 
expressed as a percentage of total savings possible under perfect information. Note that this is a 
conservative estimate, since the perfect departure delay information is not readily available in 
practice.  
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Figure 3 presents the distribution of flight paths for three different network configurations. 
Because the dynamic policy can choose any flight path combination, we present only the paths 
with more than 2.5 per cent occurrence and the rest are categorized as “Others”. In the case of N1 
with m=1, the dynamic policy is almost indifferent between the two intermediate airports (B and 
C) and tends to choose early flights going out of airport A. As the accuracy of the announced delay 
information increases from m=1 (no real-time information), the dynamic policy begins choosing 
secondary flights (e.g., flights 2 and 4). This is attributable to the instances, where the announced 
delay for the early flight makes the secondary flight desirable. However, at all accuracy levels, the 
two intermediate airports (B and C) are almost equally visited, albeit through various flight paths. 
Further, the dynamic policy chooses the secondary flights early in the trip rather than later, i.e., the 
flight path (2,5) is selected more frequently than (1,6). In contrast, the static policy commits to a 
specific flight path. However, whenever it misses a connecting flight, it chooses the next flight 
out.  
 
In the case of N3 with m=1, we observe that the flight path with the lowest number of connections 
(i.e., passing through C) is preferred the most. Note that the flight delay distribution at connecting 
airports (B and E) for N3 has a lower expected delay than that of N1. Subsequently, the likelihood 
of getting on the early flight in the connecting airport is lower, which results in longer expected 
travel time. As the announcement accuracy increases, the dynamic policy begins selecting 
secondary flights as they become desirable with the delay announcement for earlier flights. In 
addition, with sufficient announcement accuracy, the dynamic policy sometimes chooses the most 
preferable path through B, which is all the early flights departing from B and E.  
 

 

 

Figure 3. Flight path distributions of static and dynamic policies for different levels of announced delay 
accuracy (N1, N3) and different delay distributions (N2). 

N1 N3 

N2 
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In the case of N2, Figure 4 illustrates the effect of changing the delay distribution common to all 
flights departing from airport C with m=2. These distributions share the same expected delay. 
Note that the second distribution case (S2) is identical to the result in the N2 case with m=2. As the 
conditional expected value of delay distribution increases (or decreases) from that of S2, then the 
dynamic policy prefers the flight paths going through C. For instance, let us compare the case S2 
(high on-time departure probability) with the case S6 (high conditional expected delay). In the case 
S6, the dynamic policy chooses flights going to airport C more, since, in the less likely event that 
the connecting flight (such as 7) is delayed, then it can get on the next flight out which is the flight 
8. This alternative flight option, in essence, provides the dynamic policy a truncation on the delay 
distribution at airport C.  
 
In summary, the choice of flight paths depends on the policy used. The static policy trades off the 
tardiness of a fixed path with the risk of missing a connecting flight. In comparison, the dynamic 
policy exploits both the real-time departure delay information (whenever available) and the 
multiplicity of flights departing from connecting airports.   
 

 
Figure 4. Improvement (  ) of dynamic policy over static policy for N1, N2 and N3. 

 
In Figure 4, we present the impact of the announced delay accuracy and the delay distribution over 
the comparative performance of the dynamic policy against the static policy. The comparison for 
N1 and N3 (graph on the left), indicates that the rate of improvement with increased accuracy is 
diminishing. Hence, we conclude that the dynamic policy can achieve the majority of performance 
improvement over the static alternative even with some level of real-time delay information.  
 
The effect of different delay distributions on the comparative performance is illustrated in Figure 4 
(graph on the right).  This effect is most apparent when the accuracy is increased from m=1 to 
m=2. As mentioned before, with S5, the on-time departure probability is very high and there is 
some level of truncation of the experienced delay at the airport C. This is, indeed, the reason as to 
why case S5 is better performing than the case S1. In case S1, the delay is frequent but has a lower 
conditional expected duration. With m=2, the accuracy of the announced delay information is 
more effective as the dynamic policy can entertain multiple flights (see Figure 5) for the flight 
path distribution for m=2 and S1). Similarly, for case S5, the increased announcement accuracy 
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leads to a better performance, but the dynamic policy still prefers paths going through C due to the 
effect of truncation in the experienced delay.  
 
Another important performance measure for the shippers and freight forwarders is the delivery 
reliability, i.e., the percentage of shipments arriving on time. We use the conditional expected 
tardiness and the conditional standard deviation to illustrate the delivery reliability differences 
between static and dynamic policies. Figure 5 shows the conditional expected tardiness for all 
three networks for different levels of announced delay accuracy and delivery due dates. Note that 
the tardiness is based on static and dynamic policies obtained for due date T=100, i.e., they are the 
tail conditional expectations. For N1 and m=1, the static and dynamic policies share the same tail 
distribution and thus the tardiness overlap. With increased accuracy, the tardiness is much lower 
for dynamic policy. Moreover, as we increase the due date, we note that there are some significant 
late deliveries associated with static policy. The case for N3 is similar to N1, but the difference in 
static and dynamic policy tardiness is more remarkable. In the case of N2, the conditional expected 
tardiness of the two policies with no real-time information is similar and insensitive to the delay 
distribution. Further, with an increased level of announced delay accuracy, the effect of the delay 
distribution on the conditional expected tardiness diminishes. 

 

 
Figure 5. Conditional expected tardiness for different due date levels (N1,N2,N3). 

 
 

 
The tail conditional expectation is only an average measure of the delivery reliability and does not 
represent the degree of variation in the delivery tardiness. Instead, we use tail conditional standard 
deviation of the tardiness to compare the two policies (Figure 6). For N1 and N3, we note that static 
policy’s conditional tardiness variation is significantly higher than that of dynamic policy, except 
for N1 with m=1 where dynamic and static policies overlap. Furthermore, as the accuracy 
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increases, the dynamic policy’s conditional tardiness decreases with a diminishing rate. The effect 
of the delay distribution on the conditional variance of tardiness is insignificant compared to the 
announcement accuracy. 
 

 
Figure 6. Tail conditional standard deviation of tardiness (N1,N2,N3). 

 
 

5 Case Study 
 
In this section, we present a case study application of the proposed approach in a real world 
scenario.  The problem in this case study is to route air-cargo originating at Cleveland Hopkins 
International Airport (CLE) and destined to Seattle-Tacoma International Airport (SEA). We first 
describe how we estimate the delay distribution model parameters from the real-world data 
sources. Next, we describe the case study network and then discuss the analysis results. 

5.1 Estimation of the Departure Delay Model Parameters 

As described in the modeling section, we assume that the departure delay ( ) distribution of flight 
i has a cumulative density )(i . The parameters of this function are the on-time departure 

probability ( i ) and continuous cumulative density )(i , both of which are estimated using the 

historical data. The departure delay depends on a number of factors such as time of the day, day of 
the week, week of the month, month of the year, origin and destination airports, carrier, weather, 
special days and other non-recurring events.  
 
As mentioned in the literature review, there has been extensive research on how to forecast the 
departure delay for flights. While some of these existing forecasting models are accurate and 
based on extensive parametric estimation, they do not satisfy two major requirements of our 
dynamic routing with real-time information. First, these models are static estimation models, thus 
they do not allow distribution modification as per the real-time information (e.g., announced 
delay). Second, they allow early departures (i.e., negative delays) which is not practicable in 
routing applications since the early departures are only possible once all the cargo is loaded (or 
passengers have boarded). This can only happen if the capacity is full or if the routed cargo is 
already loaded on the plane. In the former case, the data is not relevant, since we are estimating 
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delay for flights with available capacity. The latter case, on the other hand, cannot be considered  
prior to determining the routing policy and its subsequent implementation.  
 
We used the database of the Bureau of Transportation Statistics (BTS) and FAA’s Operations 
Network (OPSNET) in estimating the parameters of the departure delay model. Both of these 
sources provide detailed on-time departure and departure delay information on all US domestic 
flights as well as major US airports. According to the FAA’s Air Traffic Organization Policy, all 
air traffic facilities, except flight service stations, must submit delay reports daily to the OPSNET7. 
However, we note that the data in both the BTS and OPSNET are either aggregated at the facility 
level or available only for the passenger flights. Since our routing model is applicable to both 
dedicated carriers as well as passenger carriers, we assume that the departure delay for cargo 
carrying flights can be approximated with delay data reported for the mix passenger/cargo flights. 
This assumption can be justified by considering the fact that in both cases the flights are affected 
by similar factors.  
 
These databases provide multi-year historical data on departure delays. These delay data can be 
extracted for each combination of the determining factors (i.e., origin–destination airports, time of 
the day, etc.) to estimate the most accurate non-parametric delay distribution for each flight. 
However, this results in sample size issues because of the numerosity of independent factors. 
Accordingly, we follow two strategies to overcome the sample size problems. First strategy relates 
to the on-time departure performance used to estimate the on-time departure probability  . The 
BTS reports on-time departure data in two categories: departures with zero delay and early 
departures. In our estimation, we assume that early departures are equivalent to on-time departures 
in that they contribute to the on-time departure probability  . Hence, we aggregate the early 
departure to on-time departure (zero delay). The second strategy relates to reducing the number of 
independent factors in estimating the delay distribution for a given flight. In our analysis, we have 
selected the origin airport, destination airport, month of the year and time of the day as the factors 
to be included as determinants of the departure delay distribution. Departures from the same origin 
airport are subject to the same structural and transient factors such as runway/gate capacity, air 
traffic flow, weather conditions, daily backups, etc. Similarly, departures to the same destination 
are subject to similar conditions at the destination airport. Due to yearly and daily seasonality, the 
departure in the same month and same times are affected by common factors. While the day of the 
week and carrier are also important factors, we have performed our estimation by aggregating the 
delay data across all days of the week and carriers due to the sample size concerns. As described 
below, this selection approach for delay distribution estimation proved to be acceptable. 
  
 
Departure Delay Data Processing 
As mentioned in section 3, the departure delay distribution is estimated based on the historical 
data. For this problem, the data is extracted from the BTS database. We limited our data to only 
one month to avoid seasonality and arbitrarily selected November 2007. 
 
To estimate the departure delay distribution, we needed to estimate the percentage of on-time 
departure )( i  and distribution of delayed flights )( ii  .  It is usually easy to estimate i based on 

                                                 
7 http://www.faa.gov/airports_airtraffic/air_traffic/publications/at_orders/media/ODR.pdf 
http://aspmhelp.faa.gov/index.php/Operations_Network_%28OPSNET%29  
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the ration of occurrence. However, when it comes to estimating )( ii  , since the number of 

delayed flights departing in a given time window might be limited, data points are often not 
adequate for sound estimation. One way to overcome this issue is to aggregate the data as 
mentioned in section 3. That is, we acknowledge the affecting factor on departure delay and 
aggregate the data under similar factors to establish estimations, and then extend it to all the 
contributing groups. 
 
Consequently, after aggregating data for statistically non-influential factors, hieratical clustering 
was used to cluster departure hours based on their average departure delay. The number of clusters 
is indicated by the data; however, it was realized that in most cases clustering the departure hours 
to just two clusters was enough. A sample of this procedure is presented in Figure 7. In this chart, 
the average departure delay for each hour for ORD-SEA flights in November 2007 is presented 
and the two clusters are distinguished by color. 

 
Figure 7. Departure hour clustering based on average departure delay for ORD to SEA 

 
As can be observed in Figure 7, there is a notable difference between the departure delay during 
the business (8 to 17) and non-business hours. This might rely  the fact that the main cause of 
delay could be because of the excessive demand from passengers to fly in early morning or late 
evening. 
 
As mentioned, exact forecasting of the departure delay is not in the interest of this paper. 
However, studying the processed data suggests that the distribution of departure delay for delayed 
flights is following the exponential distribution. This assumption for the data on hand was 
confirmed by goodness-of-fit test using the Kolmogorov-Smirnov method.   
 
After estimating the departure delay, we used simulation to generate the needed departure delays 
for this problem. Moreover, based on the historical data, the upper bound for departure delay ( ) 
is selected as 90 minutes. Briefly, departure delay for a given flight in this problem is zero with a 
probability of i  or a number between one and  based on the exponential distribution of )( ii   

with the probability of i1 . 

 
Delay Announcement Policy 
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The information about the expected delay of flights is usually distributed by airports and/or 
carriers. The policy of when and how to estimate and announce the expected departure delay, 
varies from carrier to carrier and from airport to airport. In this paper, one of the goals is to 
analyze the importance of the quality of the real-time information. Accordingly, the problem was 
solved for different announcement policies.  
 
Announcement of departure delayed is based on simulated delay as mentioned before.  In this 
problem setting, the delay distribution is divided into m  segments with equal probabilities. Then, 
the boundary of the segment that contains the simulated departure delay is announced as 

    tt ii  ,  in the beginning of the problem for all flights in all airports. The conducted case study 

includes different values of m . 
 

5.2 Case Study Flight Network  

To demonstrate the performance of the proposed approach in a real world scenario, a sample case 
study was established. In this case study, the goal was to pickup a load from Cleveland Hopkins 
International Airport (CLE) and deliver it to Seattle-Tacoma International Airport (SEA). To 
avoid affecting the result by flight cost, the performance criteria were limited to the delivery time, 
the sooner the better. Accordingly, a penalty function was developed to penalize late delivery. 
Although it is possible, early arrival was not penalized in this problem setting. 
 
To reach the destination from the origin, three different paths are possible: flying directly, having 
one stop at Chicago O’Hare International Airport (ORD), or having one stop at Denver 
International Airport (DEN). It is assumed that the freight forwarder has contracts with couple of 
airlines and accordingly there are multiple connecting flights with various departure schedules 
available between the mentioned airports. The flights and their schedules are presented in Figure 8 
and Table 1. The schedules and travel times were extracted from BTS database. 

 
Figure 8. Case Study Air-Cargo Network 

 
Table 1. Flights details 

Carrier Cont. United 
American 
Eagle 

United 
Express 

Jet 
United 

South 
West 

United United Alaska United AA United 

Label 1 2 3 4 5 6 7 8 9 10 11 12 13 
Origin CLE CLE CLE CLE CLE DEN DEN DEN DEN ORD ORD ORD ORD 
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Destination SEA ORD ORD ORD DEN SEA SEA SEA SEA SEA SEA SEA SEA 
Duration(min) 313 90 90 90 205 177 177 177 177 279 279 279 279 
Departure * 10:40 8:15 10:15 10:35 9:05 11:20 12:37 14:06 14:15 8:45 9:15 10:55 10:57 
On time(%) 43.5 68.8 68.8 68.8 79.6 51.3 51.3 51.3 51.3 46.8 57.6 57.6 57.6 
Delay(min) 16.69 18.14 18.14 18.14 11.0 16.19 16.19 32.29 32.29 26.2 10.01 10.01 10.01
* All time are US Easter time 

 
After setting the problem as mentioned, we used Matlab to code the proposed model. The problem 
then was solved for different departure delay announcement polices (various values of m) and 
simulation was used to generate 20,000 samples for each case.  Each of these problems was then 
solved with the three models (Dynamic, Static and Benchmark) and the results were recorded. In 
this section, we will first evaluate the performance of the proposed model against other mentioned 
models and discuss its merits and demerits. Next, we proceed with evaluating the effect of  the 
announcement policy on the performance of the model. 
 

5.3 Results 

Performance Comparison 

As expected, different approaches gave different performance and although the announcement 
policy affects the individual case results, we can recognize three general outstanding differences in 
the outcomes.  
 
First, on average the performance of the dynamic approach is better than static ones and closer to 
the benchmark as illustrated in Figure 9. This fact indicates that merely by following the dynamic 
approach when possible, we expected to make more profit (or avoid loss).  

 
Figure 9. Improvement of Dynamic Policy over Static Policy 

 
This fact can be further investigated by considering the comparative performance measure graph 
as presented in Figure 9. It can be observed that even without any real time information, the 
Dynamic approach shows over 47% improvement against the static approach. This improvement 
rate increased sharply under the availability of real time information. As presented, with m=2, we 
can experience more than 45% improvement.  Although the improvement continues after m=2, 
however, as shown in the experimental study, the improvement rate will decrease  with the 
increment of announced delay accuracy. 
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Although superior average performance is usually enough for justifying a method, the dynamic 
approach has other advantages too. Figure 10 presents the distribution of travel time of the 
samples in the simulation for 2m . It should be noted that although the distribution and values 
change for various m, the pattern is generally the same. As can be seen in the result, since it is 
possible to freely choose the flights, dynamic policy, unlike the static approach has the chance to 
be more aggressive when it comes to choosing more risky flights. In other words, the static policy 
usually goes for the flight  with a higher probability of availability when needed; on the other 
hand, the dynamic policy (when there is a chance) will aim for earlier flights. The latter approach 
will provide the opportunity for the dynamic method to enjoy the earlier flights when possible. 
This simply means faster delivery in a competitive way. As can be seen in Figure 10, unlike the 
static policy that started from 474 minutes, in some cases the dynamic policy enjoyed faster 
delivery ranging from 384 to 414 minutes.  

 
Figure 10. Distribution of travel times for dynamic  
model (in black) and static model (in gray) for m=2. 

 
The last but not the least merit of the dynamic approach over the static policy is the reliability of 
delivery. As mentioned, one of the key factors in the popularity of the air-cargo system is the 
increase in demand for the shipment of small, light and expensive cargos in a fast and reliable 
manner. As presented in Figure 11 and Figure 10, results suggest that the tail of the delivery time 
distribution is much shorter in the dynamic policy compared to the static one. This can be better 
realized by comparing the speed of reduction in conditional expected tardiness for m>1. In other 
words, following the dynamic model makes the delivery more reliable by reducing the probability 
of extreme delays. 
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Figure 11. Conditional Expected Tardiness (right) & Conditional Standard Deviation (left), 

 

Sensitivity Analysis on Real-Time Information Accuracy 

In this section, we want to evaluate the value of real-time information based on their accuracy. 
Clearly, when it comes to the announcements, the closer the lower and upper bounds of the 
announcement are the more accurate the announcement is. That is, bigger m will result in 
announcements that are more accurate. However, having information that is more accurate is 
usually costly and practically hard to achieve. Accordingly, it is necessary to be able to estimate 
the optimal accuracy level that not only provides the reasonable accuracy, but also is practical and 
economical. 
 
However, the amount of improvement in delivery performance is decreasing as m increased. As a 
case in point, there is hardly a notable difference between the performances for m=3 and m=30. 
This fact emphasizes the importance of establishing an optimal level of accuracy for delay 
announcements to fit the problem. 
 
However, inaccuracy and ambiguity of delay announcements comes with a price for the dynamic 
model. As mentioned, the dynamic model tries to select the flight more aggressively and this 
means it will accept more risk in counting on future flights that might not be available when 
needed. On the other hand, since the static policy does not have a chance of changing the chosen 
flight which is set, it will go for those that are more reliable. Although in general these facts bring 
superiority for the dynamic model, inaccurate data can make the dynamic model  end up missing 
the flights that were expected to be available based on the announcements. Since this problem is 
designed for fast shipment in general, missing a flight is interpreted as a failure of delivery and is 
thus assigned  a huge cost. As a case in point, with m=2 if the actual delay is 80 minutes, the 
announcement could be (15,90). Clearly, using the delay distribution, expected delay based on the 
announced boundary is much lower than the real value. This may cause the dynamic model to 
choose this flight and end up missing it.  
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Figure 12. Flight Path Distribution  
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B. Integrated Routing on Air-Truck Intermodal System 
 
In this section, we demonstrate the opportunities of the proposed model in an integrated air-truck 
multi-modal system. The purpose of integrating the air-road system is not just to find the optimum 
path from the cargo pickup point to the airport, but is also to bring new opportunities for selecting 
the airport. That is we not only rout the truck to the origin airport optimally but we actually chose 
the airport and avoid the congested one for less crowded airport. We focused on southeast 
Michigan and the north Ohio region as our test region. The problem here is to ship a cargo picked 
up from the aforementioned area, route it to the optimum airport through the road network and 
finally originating from the selected airport route the cargo through the air network and deliver it 
the destination airport. Clearly, the problem on hand can be defined as the combination of two 
dependent sub-problems. The first decision is to choose the best airport. This can only be done by 
closely investigating the road network and properly estimating the arrival time at each airport in 
the region. Knowing the arrival time at an airport, we can then realize the expected cost-to-go and 
policy at the airport calculated via proposed air-routing model. 
 
In the following sections, we first describe the case study configuration in detail and after stating 
our assumptions, we will explain the approach to solve the integrated air-road multi-model for the 
case study. Then, the result will be presented and discussed and finally we will finish with the 
conclusion. 

1 Case Study: Intermodal Cargo Routing on the Air-Road 
Network in OH-MI Region 

 
In the southeast Michigan and north Ohio region, three main commercial airports can be 
recognized: Detroit Metropolitan Wayne County Airport (DTW), Toledo Express Airport (TOL) 
and Cleveland-Hopkins International Airport (CLE). We are to select one of these airports to 
pursue the shipping through the air network after picking up the cargo and routing it to the 
selected airport. As far as the air network is concerned, we use BTS as our data source to 
configure the network links (flights) and their attributes. The base configuration is presented in 
Table 2. We used the actual flights for this case study, however we ignored those flights that fly 
less frequently than twice a week. 
 
Once again, since cargo carriers, in contrast with passenger carriers, are not obligated to report 
their performance to BTS, we had access only to mixed passenger-cargo air carriers. Accordingly, 
we assumed that  both cargo flights and mixed flights behave similarly when it comes to departure 
delay. Moreover, we assumed that the departure delay distribution is exponential. Distribution 
parameters were estimated from historical data. Departure hours were integrated based on their 
similarity of hourly average departure delay and then the distribution parameters were estimated 
from the processed data similar to the method explained in section A.3.  
 
Figure 13 shows the geographical region in which we conducted the case study. To analyze the 
affect of the decision time over the choice of the airport, we investigated the pickup time window 
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of 6:00 am until 10:30 am. To evaluate the case study based on travel time only, we defined the 
due date for shipment delivery at the destination airport (SEA) as 6:00 am and penalized  tardiness 
linearly. 
 

 
Figure 13. Case Study Geographical Region 

 
Table 2. Case Study Flight Configuration 

From To 
Flight 

Number 
Scheduled 

Departure* 
On-time 

Departure (%) 
Average 

Delay (min) 
Flight Time 

(min) 

CLE 

ORD UA675 6:00 AM 76.2 17.79 87 
ORD MQ4382 6:25 AM 76.2 17.79 87 
ORD UA226 8:15 AM 76.2 17.79 87 
ORD MQ4257 10:15 AM 76.2 17.79 87 
ORD UA477 10:35 AM 76.2 17.79 87 
DEN XE2467 9:05 AM 86.7 9.00 205 

DTW 

SEA NW211 9:30 AM 51.7 11.21 280 
SEA NW215 12:24 PM 51.7 11.21 280 
ORD UA199 6:51 AM 84.7 13.44 49 
ORD NW12357 7:00 AM 84.7 13.44 49 
ORD AA1615 7:05 AM 84.7 13.44 49 
ORD UA265 7:55 AM 84.7 13.44 49 
ORD AA1637 8:35 AM 84.7 13.44 49 
ORD NW1237 9:02 AM 84.7 13.44 49 
ORD AA765 10:20 AM 84.7 13.44 49 
ORD UA793 10:41 AM 84.7 13.44 49 
DEN F9-628 6:30 AM 88.2 14.00 170 
DEN F9-622 7:35 AM 88.2 14.00 170 
DEN UA579 9:06 AM 88.2 14.00 170 
DEN NW1223 9:13 AM 88.2 14.00 170 

TOL ORD MQ4312 6:20 AM 93.1 9.00 67 
ORD MQ4359 10:00 AM 93.1 9.00 67 

DEN 

SEA AS537 9:00 AM 51.0 14.76 157 
SEA WN1235 9:45 AM 51.0 14.76 157 
SEA F9-847 10:25 AM 51.0 14.76 157 

SEA UA875 10:27 AM 51.0 14.76 157 
SEA F9-835 11:55 AM 51.0 14.76 157 
SEA UA339 13:18 PM 51.0 14.76 157 

ORD 
SEA AA1611 8:40 AM 71.1 10.44 251 
SEA UA755 9:00 AM 71.1 10.44 251 
SEA AS21 9:05 AM 71.1 10.44 251 
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SEA UA331 10:45 AM 71.1 10.44 251 
SEA AA643 11:15 AM 71.1 10.44 251 
SEA UA331 10:57 AM 71.1 10.44 251 

*All times are US eastern time 

 
As for the road network, we used the Google Map API (GMA, 
http://code.google.com/apis/maps/). This platform provides driving directions and estimated travel 
times and distances for a giver pair of origin-destination. We used this simple system instead of 
the aforementioned vehicle road routing model we discussed earlier for two reasons. First, the 
dynamic routing system is based on real-time information that can potentially affect the airport 
choice because of incident or unusual congestion. Since  our goal is mainly to investigate the 
decision making process over airport selection, we tried to avoid uncontrolled temporary affects. 
In other words, we mainly desire to demonstrate the expected best airport for different pickup 
times/locations than the momentarily optimal one. Moreover, the GMA works based on static data 
and offline which is considered faster than online calculations for expected scenarios as 
mentioned.  
 
We define the geographical region between latitude [41.2 42.38] and longitude [-81.64 -83.98] 
degrees with a resolution of 0.02 degree for both latitude and longitude. Then we calculated the 
expected travel time for each point on the map to the three airports and estimated the arrival time. 
The expected cost-to-go at each airport can be estimated through the proposed model presented in 
section A.3. Comparing the expected cost at each airport, the optimum airport would be the one 
with the cheapest expected cost-to-go and in the case of tie, the closest one based on the estimated 
GMA distance. 

2 Case Study Results and Additional Experiments 
Solving the above mentioned problem, we identified the optimum airport choice based on time 
and location. Figure 14 presents the sample result for the optimum airport choice based on 
locations at 6:00 am. In this figure, the infeasible points are the regions where   no road network 
exists. As can be observed, Lake Erie and Lake Saint Clair fall in this category. In addition, it 
seems GMA does not care for boarder crossings. It is well known that travel time from the 
Canadian region to any of the potential airports includes crossing the boarder  and is potentially 
much longer than what GMA estimated.  Moreover, GMA also uses ferry routes over  Lake Erie 
that are impractical to include in our case study. As a result, for evaluating the figure, we shall 
ignore the Canadian areas and lake routes. 
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Figure 14. Regional Best Airport for Base Case 

 
It can be clearly perceived that at the investigated time, DTW almost dominates all the other 
airports and the remaining two can only compete in their closely surrounding areas. This can be 
better understood by considering Figure 15. In this figure, the expected cost-to-go at different 
airports for a range of pickup times is presented. As can be seen, DTW  provides significantly 
cheaper costs compared to others. Therefore, until the location in question is  far enough away 
from DTW so that the travel time counters the advantage of DTW over a closer airport, DTW will 
be the best choice. Consequently, as expected, through the test time window DTW will be the 
optimum choice for most of the regions. This can be observed in Figure 16. This figure presents 
the percentage of locations that chose a specific airport. It shows that except for the small 
timeframe in the early morning in the case of TOL, and some locations between 7 to 9 AM in case 
of CLE, DTW is the better decision. 
 

 
Figure 15. Comparative Expected Cost at Different Airports 
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Figure 16. Percentage of Airport Selection 

 
It should be noted that this result is affected by our assumption of merely considering mixed 
passenger/cargo flights. As a matter of fact, this assumption is highly in favor of DTW and CLE 
and unfair toward TOL since the first two have a wide variety of flight options where TOL 
passenger flight data is limited. Actually, to our best knowledge, most of the TOL airport flights 
are cargo flights. Accordingly, to overcome this issue and do more evaluation, we launched a 
series of experiments to investigate the effect of potential flight additions on the TOL optimality 
territory.  
 
For these experiments, we added an extra direct flight to TOL’s choice of flights to go directly to 
SEA. We assumed that the delay distribution of the newly added flight is the same as the 
passenger flights from TOL to ORD. Moreover, since there was no record of direct flight statistics 
from TOL to SEA, we estimated the flight time based on the air distance between the two airports 
compared to the distance and travel time of the direct flights from DTW to SEA. We evaluated the 
effect of the scheduled departure time on the optimality region. Results of this analysis can be 
observed in Figure 17 to Figure 20.  
 

 
Figure 17. Experiment Result for Departure at 6:40AM 



 35

 
Figure 18. Experiment Result for Departure at 8:20AM 

 
 

 
Figure 19. Experiment Result for Departure at 10:00AM 

 
 

 
Figure 20. Experiment Result for Departure at 11:40AM 

 
As can be perceived from the results, just adding a single flight can change the situation 
dramatically in favor of TOL. Figure 17 presents the effect of adding a flight that was scheduled to 
depart at 6:40 AM. Although the TOL share increased to some extent, it seems the departure time 
is so early that the effect of the flight addition will not be beneficial since there is not enough time  
to drive there and catch this flight from many locations.  
 
In Figure 18, the flight in question was scheduled to depart at 8:20 AM. It is obvious that the 
effect of having this flight is much stronger and long lasting than the previous experiment. This 
can be explained by considering the time needed to drive to TOL and catch the flight. Clearly, this 
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latter departure time provided a better opportunity for further to benefit from it. It should be 
considered that the potential delay even make the expected departure time latter. 
 
Figure 19 shows the lesser advantage for the departure time of 10:00 AM compared to the latter 
case. Moreover, it seems this flight is more likely to attract the CLE customers than the last 
scenario. Considering the expected cost graph, it seems TOL’s cost is very close to the two other 
airports and a minor adjustment in scheduled departure time or congestion in road networks can 
change the situation in one way or another. 
 
Figure 20 suggests that scheduling the flight at 11:40 AM has a significant effect in changing the 
TOL optimality territory. The effect of this addition can be realized as early as 7:00 AM. The peak  
effect occurs around 9:00 AM. It can be stated that compared to the previous charts, most of the 
gain in new optimal territories for TOL are actually coming from DTW. 
 
The above-mentioned interpretations can be better studied by analyzing the geographical 
optimality map. The series of these maps are provided for 7:30 AM in Figure 21. As can be 
observed, in the first experiment, TOL does not play a notable role at 7:30AM. In this experiment, 
the added flight to TOL is scheduled to depart at 6:40AM and  considering the road trip time, the 
effect of the new flight vanishes almost by 6:30 AM (Figure 17). Having the flight at 8:20 AM 
clearly affects the situation at 7:30 AM since close locations to TOL have the chance to catch the 
flight, and from the expected cost-to-go at Figure 18 it is known that the TOL cost is less than 
DTW and CLE even without considering the road trip time. As the flight departure time is 
postponed to 10:00 AM, a new pattern appears. As shown in Figure 21, the added flight does not 
affect the airport’s surrounding region but attracts the locations that are rather far away from TOL 
and closer to CLE. This can be attributed to the expected cost-to-go at the airports.  That is, 
because of the comparative expected cost, it is better to drive all the way to TOL and catch the 
direct flight that eventually has a cheaper cost than go to CLE and catch the 8:15 to ORD or 9:05 
to DEN. This clearly highlights the advantage of decision support tools and making a proper 
decision versus the common sense of going to the closer airport. 
 
Similar phenomenon can be observed when it comes to the 11:40 AM departure time for the added 
flight at TOL. However, since the departure time is rather late, TOL can attract shipments from 
locations quite far away. Actually, evaluating the expected cost charts in Figure 20 reveals that in 
this scenario we will face the situation that other airports flight options are almost exhausted and 
TOL remains the cheaper option.  
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Figure 21. Geographical Airport Choice for Different Experiment 6:40AM (top-left), 8:20AM (top-right),  

10:00AM (down-left) and 11:40AM (down-right) 
 
In a nut shell, based on the case study and experiments we can conclude that a freight forwarder 
can really benefit from a decision support tool that provides him with not only routing on the 
network but also help him select the network he wants to ship the cargo through. As demonstrated, 
it is possible to attribute an optimum airport choice to each time-location. By wisely selecting the 
origin airport, freight forwarders can select the range of options (connecting flights/intermediate 
airports) that are expected to work more to his favor.  
 
We demonstrated the dynamic nature of airport selection and cargo routing as a result of the 
airport congestion status. In this study, we only considered the static factors and historical trends. 
However, as mentioned the proposed model is designed to reroute the cargo based on real time 
information that includes incidents on the road, severe departure delays, adverse weather 
conditions and the like. In such situations, dynamic rerouting can dramatically reduce the cost and 
help the freight forwarder to avoid tardiness penalties. 
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C. Operational Response Model  
 

1 Introduction 
Over the past two decades, supply chains have become more global and competitive in an effort to 
accommodate dynamically changing consumer preferences and the business environment. The 
proliferation of product variety, reduced product life-cycles and aggressive outsourcing practices 
are attributable to these trends in globalization and competition. The effective management of 
supply chains in such conditions is becoming more and more challenging, primarily, because of 
the increased supply and demand uncertainty. Furthermore, these conditions lead to supply chain 
disruptions which differ from regular fluctuations in supply and demand in that they are low-
probability and high-impact events (Christopher et al. 2002). Regular fluctuations in supply and 
demand, such as quality defects, seasonality, and variability in lead-times, are usually well 
managed by effective inventory management practices. However, these coping mechanisms, such 
as buffers, are not adequate for effectively managing supply chain disruptions caused by excessive 
transportation delays and intermodal facility disruptions.  
 
Following the events on September 11, the risk assessment and management of supply chain 
disruptions has become an important consideration for supply chain planners and managers. 
Supply chain disruptions can be categorized based on their outcomes (e.g., processes affected) as 
well as on their sources.  Disruptions can affect one or more of the three main supply chain 
processes, namely supply-side, manufacturing, and demand-side processes. According to their 
sources, supply chain disruptions can be classified as either man-made or natural disasters. Man-
made disruptions are caused by the actions of people. These actions are either intentional such as 
strikes and terrorist attacks or unintentional such as quality problems. A recent example for 
intentional man-made actions is the three-month strike at the American Axle plants which slowed 
or idled as many as 30 General Motors assembly and parts plants with an estimated loss of $2.82 
billion in revenue (Automotive news, 27 May 2008). In March 2000, Nokia and Ericsson both 
faced a shortage of components for a period of six months because of the chip contamination 
caused by a fire in the Philips plant, in Albuquerque, New Mexico (Tomlin, 2006). In the 
aftermath of September 11, many international borders were closed forcing production plants to 
shut-down. For instance, Ford Motor Company had to shut down five of its plants due to parts 
shortages from its Canadian suppliers. A recent example for the unintentional man-made causes is 
the leakage problem in the hybrid battery packs for General Motors’ three product lines Saturn 
Vue, Aura and Chevrolet Malibu. This quality problem in the batteries supplied by Cobasys led 
GM to alter its production plans and recall many vehicles. Examples for natural sources of 
disruptions are earthquakes, floods and hurricanes. In 2005, two major hurricanes, Katrina and 
Rita, hit the U.S. Gulf Coast and damaged the oil refining capacity, inventories of lumber and 
coffee and other fresh produce (Snyder, 2006b). The Taiwan earthquake in September 1999 had 
caused world-wide supply shortages in the semiconductor market (Kleindorfer, 2005). On 16 July 
2007, an earthquake in Japan halted the production at Riken, Japan’s largest maker of piston rings 
and seals, and disrupted  Honda’s North American manufacturing operations.  
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The impacts of these supply chain disruptions on the company’s performance change according to 
the vulnerability of the disruptions. Christopher and Peck (2004) and Sheffi and Rice (2005) 
specified that vulnerability  depends on the probability of the occurrence and the severity of the 
disruptions. Less vulnerability is more likely not to have catastrophic results. Sheffi and Rice 
(2005) suggested that reducing vulnerability can be achieved by increasing resiliency. Christopher 
and Peck (2004) define the resilience as ”the ability of a system to return to its original state or 
move to a new, more desirable state after being disturbed.” According to Sheffi and Rice (2005), 
supply chain resiliency is strategic in nature and contributes to a company’s competitiveness. They 
offer two mechanisms to achieve resiliency: increasing flexibility and judiciously installing 
redundancy. Traditionally redundancy can be achieved by safety stock or working with multiple 
suppliers. Sheffi and Rice (2005) pointed out that while redundancy is a part of a resilient supply 
chain, both stocking up and working with multiple suppliers are more costly than establishing a 
resilient supply chain by installing flexibility. 
 
Flexibility, as a  mechanism to cope with disruptions can be in five elements of the supply chain: 
supply and procurement by working with multiple suppliers or having deep relationships with 
suppliers, conversion flexibility by having the ability to deal with disruptions in the manufacturing 
system, distribution and customer-facing by making decisions  to respond to customers efficiently 
right after disruptions, control systems by having the ability to realize the disruptions quickly 
before they have  affected the supply chain, and the right culture by generating a culture that is 
aware of the disruptions, Sheffi and Rice (2005). Conversion flexibility- manufacturing flexibility, 
is defined as the ability to cope with changes and uncertainties without anguishing over the loss of 
performance in the system,  Gupta (1996). The most well known manufacturing flexibilities that 
are studied are machine, process, product, routing, volume, expansion, operation, and production 
flexibilities. So far the literature has focused on the flexibilities but paid little attention to the 
product design (e.g., commonality) or the flexibility decision (e.g., manufacturing flexibility). 
Besides the process  and product design flexibility has a huge impact on coping with the 
uncertainties (disruptions) in supply chains, considering the component is an element needed for 
assembling end-products. One of the important features of product design flexibility is the 
substitution in components among end-products. There is no doubt  that  commonality is an 
extreme case of substituting components among end-products if there is no cost in substituting. As 
Balaskrishnan and Geunes (2000) said, substituting gives advantages of cost savings as component 
commonality does. Also Balakrishnan and Geunes (2000) defined the ability of using the same 
components among different end-products  as an opportunity of bill-of-materials (BOM).  
 
In this paper, we propose an operational response model to cope with the disruptions in the supply 
side of supply chains. In particular, this operational response model leverages the bill-of-materials 
flexibility, subject to volume and mix flexibility to find the optimum level of substitution in 
components during the decision making process in product design to cope with supply-side 
disruptions. Our work is motivated by a series of shortages experienced by a big automotive 
company (Ford Motor Company) since they have begun sourcing from far east countries such as 
China. We consider the application-specific integrated circuits (ASIC) which are increasingly 
being used as the automobile electronic content proliferates. These chips (ASIC) are being used in 
many of the vehicle subsystems and have different functionalities. For higher end vehicles, these 
components are more expensive but they could be substituted for lower end components.  
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In section 2, we do literature review on disruptions and related types of flexibilities. In section 3 
we introduce the algorithm and mathematical model we proposed. In section 4, we illustrate the 
application of the operational response model through a stylized example.  
 

2 Literature Review 
 
In this section, we first review the earlier studies on supply chain disruption coping mechanisms. 
Next, we review the key studies on manufacturing flexibility as an important feature of disruption 
coping mechanisms. 
 
In the literature, supply chain disruptions are mostly classified according to their causes.  
Kleindorfer and Saad (2005) categorized the risks into two that can affect supply chain 
management. One is risks that come from normal coordination of supply and demand, regular 
fluctuations that can happen. Another type of risk comes from natural disasters, terrorist attacks, 
and strikes etc. Hammant and Braithwaite (2007) categorized risks as external risks and internal 
risks, then they categorized external risks as supply side risks, demand side risks and environment 
risks. A similar categorizing has been done by Wagner and Bode (2006); they categorized risks as 
supply side risks, demand side risks and catastrophic risks. Gaonkar and Viswanadham (2004) 
separated risks as deviations, disruptions and disasters. Sheffi and Rice (2005) categorized risks as 
random events, accidents and intentional events. Bringing together all categorizing types supply 
chain disruptions can be categorized based on their outcomes and on their sources. According to 
their outcomes, disruptions can be classified by their affects on one or more of the three main 
supply chain processes, such as supply-side, manufacturing system, and demand-side processes, 
and according to their sources. Supply chain disruptions can be classified as either man-made or 
natural disasters. In this paper we focused on the supply-side disruptions and these disruptions can 
be caused both from man-made or natural disasters. 
  
Many papers have studied coping mechanisms with supply chain disruptions, and not surprisingly 
the number of these papers increased exponentially after September 11. Pochard (2003) stated 
there is not just one way to cope with disruptions. The best strategy for companies is should be 
analyzing different solutions and find the best one for their companies’ characteristics. Kleindorfer 
and Saad, (2005), Chopra and Sodhi (2004), Christopher and Lee (2004) all focused on the 
importance of the assessing and mitigating the level of risk in a supply chain. Kleindorfer and 
Saad (2005) graph a conceptual framework on potential loses causes by supply chain disruptions 
and risk mitigating investments. They studied the ways to mitigate supply chain disruptions and 
proposed that each supply chain system should have its own strategy because they said each 
environment has a different culture and management methods. Another proposal to mitigate 
supply chain disruptions are information sharing, trust and a good coordination among supply 
chain members. According to Christopher and Lee (2004) the lack of confidence and panic force 
the stakeholders to make unreasonable supply chain decisions. Chapman et al (2002) counted 
sources of the disruptions and studied on the impacts of the disruptions on the vulnerability of the 
supply chain, also Wagner and Bode (2006) did their study on supply chain vulnerability. Their 
aim was to investigate the relationship of supply chain vulnerability and supply chain risks. 
According to their survey, which they applied to 760 executives in Germany, companies should be 
careful of their dependency on customer and suppliers. Bundschuh, Klabjan and Thurston (2003), 



 41

focused on reliability and robustness in supply chain systems. Reliability and robustness is defined 
by them as having a low probability that any supplier fails and that the supplier has the ability to 
maintain their activity even after disruption. They stated that increasing the number of suppliers 
makes the system more robust. Sheffi (2001), Kleindorfer and Saad (2005) and Pochard (2003) 
suggested working with multiple suppliers to cope with supply chain risks. Snyder and Daskin 
(2005) specified that considering risk diversification, if companies face disruptions the number of 
suppliers increases. Gaonkar and Viswanadham (2004) established an empirical framework which 
includes questions on selecting suppliers to decrease loses that can be caused by disruptions. 
Tomlin (2004) studied the supplier selection under the case of the reliability of suppliers are 
unknown.  Snyder et al. (2006) studied both the cost of constructing a network and the costs that 
results from disruptions. Two other important techniques that have been used in the literature to 
cope with disruptions are holding inventory or excess capacity (Chopra and Sodhi 2004). 
Christopher and Peck (2004) and Sheffi and Rice (2005) suggest resiliency as a coping mechanism 
to supply chain disruptions and they commented that resiliency can be achieved by redundancy 
and increasing flexibility. According the expensiveness of the holding extra inventory, augmented 
capacity and redundancy in supplier, Sheffi and Rice (2005) study another strong technique which 
is flexibility. Flexibility increases the resiliency of supply chain systems against  potential 
disruptions (Sheffi and Rice, 2005), as well as against the regular variability which occurs now 
and again. In this paper we study related flexibilities, both at the process development stage and 
product design stage, to develop more resilient supply chain systems against supply disruptions.   
 
As an important feature of coping mechanisms to disruptions and regular variability, Bertrand 
(2003) defined flexibility as “the ability to change or react with little penalty in time, effort, cost or 
performance”. Boyer (1996) stated manufacturing flexibility is a very important item which 
responds to the changes in demand and can be used as a solution to cope with problems that are 
caused from uncertainties. Also Beamon (1999) expressed flexibility is used to measure the ability 
of a supply chain system’s adaptability to the uncertain environment and he stated that flexibility 
is a critical item for supply chain systems to be successful in an uncertain environment. Vokurka 
(2000) specified manufacturing flexibility functions as a critical competition component in 
providing an advantage in the marketplace to manufacturers. Unfortunately, Slack (1995) stated 
that in their survey, managers do not understand the real meaning of flexibility, and manufacturers 
are confused among various flexibilities. One of the important points is to understand which 
flexibility in a manufacturing system is needed because each plant has a different environment, 
culture and manufacturing process so each system needs different types of flexibility . Another 
problem for manufacturers is the measurement of flexibility. Koste and Malhotra (1999) indicated 
that the ability to measure flexibility is one of the first steps in understanding and improving  
manufacturing capability. They suggested three dimensions to measure  flexibility: Range, 
Uniformity and Mobility. Bertrand (2003) also stated that the different ways of being flexible are 
range, uniformity and mobility. The most known types of manufacturing flexibilities suggested to 
the manufacturers are expansion flexibility, modification flexibility, new product flexibility, 
volume flexibility, and product mix flexibility (Koste and Malhotra, 1999, Chandra et al., 2005). 
Also many kinds of flexibilities and definitions and classification have been studied in literature. 
These can be found in literature review articles such as in Sethi and Sethi (1990), Toni and 
Tonchia (1998), Beach et al. (2000), Vokurka R.J., and O’Leary-Kelly (2000), Bengtsson (2001). 
Bertrand (2003) indicated three dimensions in flexibility: volume, mix and new product flexibility. 
The flexibilities that we study in this paper are mix flexibility that provides a system ability of 
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producing multiple products and volume flexibility that provides a system to vary its capacity with 
less cost. Mix flexibility and volume has been famously studied in the literature, Fine and Freund 
(1990) study the trade-off between flexibility and the acquirement cost of different types of 
capacity. In detail, they study a firm that has n-products and has to decide on the optimal mix of 
flexible and dedicated capacities under uncertain demand environments. Jordan and Graves (1995) 
determine that   designing partially flexibility well provides similar benefits to total flexibility. 
Van Mieghem (1998) studies the trade-off between flexible and dedicated resources while firms 
have two-products under continuous demand. In each case  he finds that flexibility is more 
beneficial than dedicated resources, Tomlin (2006) suggests product mix flexibility as an alternate 
coping mechanism to the supply uncertainty. Tomlin and Wang (2005) analyze the profits of mix 
flexibility and also supply diversification in the case of multi-product circumstance. Kurtoglu 
(2004) studies the flexibility of two assembly lines by changing the system to produce new 
products. Suarez, et. al. (1995) examine the relationships between market uncertainties and 
manufacturing flexibility.  Chandra, et. al. (2005) study the relationships between flexibilities such 
as volume, mix flexibility and new product flexibility. 
 
One other important feature that provides a different form of flexibility and has an impact on 
coping with disruptions is the product design decisions that are made during the product design 
process. Hence, to cope with disruptions, companies have to consider their product design system. 
One of the product design decisions  related to the flexibility to cope with disruptions is the level 
of commonality among components used in the products. In the commonality concepts, firms can 
use the same component in more than one product without paying more costs. Gerchak (1986), 
Baker (1986), Gerchak (1988) and Tsubone (1994) study the impact of the commonality on 
demand uncertainty. Gerchak (1988) stated that using common parts provides less inventory stock 
than by not using common parts among products. However firms should be more careful when 
deciding on the number of common parts in products, because commonality decreases the 
variability of products. Chandra, et. al. (2005) has studied a multi-product manufacturing system 
to which they applied different levels of flexibility and part commonality in the system to find the 
effects of the flexibility to the manufacturing performance. They find that increasing product-mix 
flexibility and component commonality increases the profitability of the system. In general, we 
can impart that commonality is the specific case of substitutability. Component commonality or 
compatibility of the substitutions between products and flexibilities in manufacturing and 
substitution save companies from having to  respond to demand in the case of disruptions. 
Balakrishnan and Geunes (2000) defined the ability of using the same components among 
different end-products opportunistically as bill-of-materials (BOM) flexibility and they propose a 
single-level lot-sizing model when considering BOM flexibility. They give examples of their 
practice from the computer industry where modular architecture is the standard, the continuous 
processing industry (aluminum tubes) or any product where downgrading is possible (high-
strength alloy for low-strength, or high-grade integrated circuit for low-grade).  
 
In this paper, we find the strategic level of substitution among components used in products during 
the product design process through mix flexibility, volume flexibility and bill-of-material 
flexibility in order to increase resiliency of the supply chain system against supply disruptions. 
This paper differentiates form Chandra et al (2005) by considering the commonality of 
components as parts used in products, not as using the same resources, considering bill-of-material 
flexibility and generalizing models when considering supply disruptions. This  differentiates from 
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Balakrishnan and Geunes (2000) by including process flexibilities (mix flexibility and volume 
flexibility), considering supply disruptions and studying substitution between components under 
stochastic supply conditions. 
 

3 Operational Response Model 
 
We first provide the notation used in the model. 
Notation: 

jr                            : revenue from product j   
t
i ic ,                          : cost of substitution component i  instead of i in period t  

ijq           : usage of component i in product j  
t
id          : number of allocated component i in period t  

1
tC          : capacity of one shift plant in period 1

tC  
t
is          : supply of component i in period t  

j          : product mix flexibility coefficient of product j  

j          : product j s   fractional production mix 

M          : a large number 

j          : capacity usage rate of product j   

e          : multiplicative coefficient for overtime/undertime capacity  

 
Sets: 
T          : number of periods 
n          : number of products 
m          : number of components 
 
Indices: 
j          : product 
i          : component 
t          : period 
  
Decision Variables: 

t
jx          : number of product j produced in period t  
t
i iz ,          : number of component i substituted with i  in period t  
t
iy          : number component i delivered from period t to period 1t   
tu          : binary variable indicating whether plant is operational in period t  
tv          : binary variable indicating whether producing one shift or two shift in period t  

Assumptions: 
 all production is sold at every period;  
 zero vehicle inventories,  
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 no penalty associated with failing to meet the demand,  
 components are relatively inexpensive thus their inventory costs are ignored, 
 Supplying chips is uncertain  
  for each period supply is changes according to the discrete probability estimates.  

 
The deterministic model formulation is as follows: 

Maximize ∑
t1

T

∑
j1

n

rjxj,t − ∑
t1

T

∑
i1

m

∑
i ′1
i ′≠i

m

ci,i ′,tzi,i ′,t

subject to

∑
j1

n

aijxj,t ≤ di,t ∀i, t

yi,t  yi,t−1  si,t − di,t − ∑
i ′≠i

n

zi,i ′ ,t ∑
i ′≠i

n

zi ′ ,i,t ∀i, t

Dj,t ≤ xj, t ≤ Cj,t ∀i, t

xj,t ∈ 0  Z ∀i, t

di,t, yi,t, zi,i ′,t ≥ 0 ∀i, i ′, t
 

 
where, 
 Dj,t :   Demand for model  j   in period  t   
 Cj,t :   Production capacity for model  j   in period  t   
 
Note that we are assuming that there is no demand and production capacity interaction between 
models, i.e. they are produced at dedicated facilities and demand for one model is not substitutable 
with the other one. Thus, resulting constraints are merely simple upper and lower bounds. It is also 
possible to model the demand substitutability as well as shared production capacity.  
 

3.1 Stochastic Formulation 

 
Stochastic formulation is obtained with two-stage stochastic programming formulation. First stage 
is the set of time periods where the supply is known with certainty, i.e.  t  1, . . . ,Ts.   Second 
stage is the set of periods where supply is uncertain, i.e.  1,..., .st T T   Let's assume that we 

could estimate supply amount in each period with a discrete probability distribution for each chip 
type in the second stage. For this let's define the following set of definitions 
 
Define: 
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si,t
k : supply alternative k for chip i in period t for t  Ts  1. . . T

A i,t : set of supply alternatives for chip i in period t for t  Ts  1. . . T.

pi,t
k : probability of supply alternative k for chip i in period t  Ts  1. . .T

∑
∀k∈A i,t

pi,t
k  1

A t : set of all possible supply scenarios in period t (A t  A1,t  A2,t. . .Am,t)

A : set of all possible supply scenarios in the second stage (A t  ATs1  ATs2. . .AT)

pa : probability of supply scenario a

pa  
tTs1

T


i1

m

pi,t
k

 
 
Using above definitions we could formulate deterministic equivalent of the two-stage stochastic 
program. Let's define the stochastic variables as follows: 
 

 xj
a, t :   production level of model  j   in period  t   under supply scenario  a   

 di,t
a :   availability of chip type  i   in period  t   under supply scenario  a   8 

 yi,t
a :   inventory of chip type  i   in period  t   under supply scenario  a   

 zi,i ′,t
a :   quantity of chip type  i   used to substitute  i ′   in period  t   under supply scenario  a   

 

                                                 
8Previous definition of  di,t   ( di,t

a
 ) regard it as the usage level in model production. However this 

is only true if the corresponding resource constraint is binding, which is often not the case due to 

the discrete nature of production variables  xj,t   ( xj,t
a

 ) .   
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Maximize

∑
t1

Ts

∑
j1

n

rjxj,t − ∑
t1

Ts

∑
i1

m

∑
i ′1
i ′≠i

m

ci,i ′,tzi,i ′,t  ∑
∀a∈A

pa ∑
tTs1

T

∑
j1

n

rjxj,t
a − ∑

tTs1

T

∑
i1

m

∑
i ′1
i ′≠i

m

ci,i ′ ,tzi,i ′,t
a

subject to

∑
j1

n

aijxj,t ≤ di,t ∀i, t  1, . . . ,Ts

yi,t  yi,t−1  si,t − di,t − ∑
i ′≠i

n

zi,i ′,t ∑
i ′≠i

n

zi ′,i,t ∀i, t  1, . . . ,Ts

Dj,t ≤ xj, t ≤ Cj,t ∀i, t  1, . . . ,Ts

∑
j1

n

aijxj,t
a ≤ di,t

a ∀i,a ∈ A, t  Ts  1, . . .T

yi,Ts1
a  yi,Ts  si,Ts1

a − di,Ts1
a − ∑

i ′≠i

n

zi,i ′,Ts1
a ∑

i ′≠i

n

zi ′,i,Ts1
a ∀a ∈ A, i

yi,t
a  yi,t−1

a  si,t
a − di,t

a − ∑
i ′≠i

n

zi,i ′,t
a ∑

i ′≠i

n

zi ′,i,t
a ∀a ∈ A, i, t  Ts  2, . . . ,T

Dj,t ≤ xj
a, t ≤ Cj,t ∀a ∈ A, i, t  Ts  2, . . . ,T

xj,t,xj
a, t ∈ 0  Z ∀a ∈ A, i, t

di,t,yi,t, zi,i ′,t,di,t
a ,yi,t

a , zi,i ′,t
a ≥ 0 ∀a ∈ A, i, i ′, t

 

 

 

 

 
Constraints (1),(2),(3) and (4) represent the deterministic equivalent of the supply scenarios. 
Constraint (2) is expressed with deterministic previous period inventory ( yi,Ts  ) since we enter the 
second-stage at  Ts  1  . To exemplify an instance of the problem, consider the case where we 
have five deterministic periods in the first stage ( Ts  5   and a single stochastic period in the 
second-stage ( T  6.   In addition consider, we have  n   4 type of chips and  m  2   models. If 
each chip has  3   supply alternatives ( |A i,t |  3   for  ∀i, t  6  ), then in total we will have  34   
scenarios in the second-stage ( |A|  81  ). Thus the problem size increases exponentially, with the 
number of chips and time periods in second-stage. However, it increases polynomially with the 
number of supply alternatives in period. 

 

3.2 Additional Constraints: 

 
Plant-Model Mixture 

Plants are set up to run certain fixed mixtures ( j
p

 ) of models and options. Assume that there is a 
certain flexibility associated with these mixtures, i.e., product mix is allowed to vary within  
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1 −  j
p j

p, 1   j
p j

p    for model  j   at plant  p  . Whenever the mix falls outside these limits, 
plant is shutdown and production is deferred for one week. Let's define the parameters as follows: 

 j
p :   Model  j ′s   fractional production mix(default) at plant  

p. ∑
j1

n

j
p  1

  
 p :   product mix flexibility coefficient of plant  p  . 

  j
p :   product mix flexibility coefficient of model  j   at plant  p   ( 

1

n
p p
j

j

 


   ) 

To give an example, let's say that an ideal product mix for a plant  p   is  1
p,2

p   0. 40, 0.60  . 
It is also estimated that the plant's efficiency and resource constraints will not be affected if there 

is  p  0.2   variability in these mixes. in addition, let's assume that   j1
p   j2

p  0. 1.   
Therefore allowable mixes lie within  0.36,0.64   for Model  1   and  0.44,0.56   Model  2   
respectively. In order to model the plant shutdown decisions and relations with the product mix, 
we need the following additional decision variables and parameters: 
 M :   A large number for constraint enforcement 

 xj,t
p :   Production level of model  j   in period  t   at plant  p   

 ut
p :   Binary variable indicating whether plant  p   is operational in period  t  , i.e.,  ut

p  1   plant 
is in production and  ut

p  0   plant is shut down in period  t  . 
 
We first express the product mix constraints using the above definitions. The upper limit for each 
model mix is given in constraint (product mix upper bound-1). Similarly lower limit for each 
model mix is given in constraint set (product mix lower bound-1). Note that when  ut

p  1  , both 
of the constraints (product mix lower bound-1) and (product mix upper bound-1) are in effect. 
Accordingly, they are redundant whenever  ut

p  0  . Constraint (product mix plant shutdown 
constraint-1) ensures that there is no production whenever the plant is shut down. 
 

xj,t
p ≤ 1   j

p j
p∑

l1

n

xl,t
p  M1 − ut

p  ∀j, t,p

 
 

xj,t
p ≤ 1   j

p j
p∑

l1

n

xl,t
p  M1 − ut

p  ∀j, t,p

 
 

xj,t
p ≤ Mut

p ∀j, t,p  
 

 
These constraints will affect chip substitution decisions such that whenever the substitution 
decision leads to a plant shutdown, additional profit from substitution could be forgone to prevent 
loss of revenue as a result of this shutdown. 
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Discrete-Capacity 
 
Plants are allowed to operate only at certain discrete capacity levels. On a given week plants are 
set up for either one, two or three shifts of production. Also, it is not possible to change this 
arrangement on a daily basis as the production is planned on a weekly schedule. In other words, 
the supply chain is set up in such a way that decisions regarding production must be made at least 
one week ahead. Assembly lines only run at certain fixed speeds thus throughput can only be 
adjusted with production time. If a plant is running on a two shifts schedule, one can choose the 
length of the shifts (eight, nine, ten hours) without significant disruption of the operating pattern. 
 
We ignore the additional cost of overtime and formulate the constraints of discrete capacity. Let's 
define the following parameters. 
 
 ep :   multiplicative coefficient for overtime/undertime capacity at plant  p  . 

 Ct,1
p , Ct,2

p :   Production capacity for plant  p   in period  t   using  1   and  2   shifts, respectively. 

  j
p :   Capacity usage rate of model  j   at plant  p   

 
Let's define the binary decision variable for choosing number of production shifts at each plant 
and time period (assuming only existence of 1 and 2 shift options, 3 shift option can  be modeled 
with an additional binary variable). 
 
 vt

p :   Binary variable indicating whether plant  p   is running on a single shift in period  t  , i.e.,  
vt

p  1   plant is producing for a single shift and  vt
p  0   production is running in two shifts. 

 
In a single shift option we have the upper and lower bounding constraints (1 shift upper bound-1) 
and (1 shift lower bound-1). Observe that when  ut

p  0,   plant is shut down in period  t  , then 
both of these constraints become redundant and the production for all models at plant  p   is forced 
to be null due to constraint (product mix plant shutdown constraint-1). 
 

∑
l1

n

 l
pxl,t

p ≤ 1  ep Ct,1
p  M1 − vt

p   M1 − ut
p  ∀t, p

 
 

∑
l1

n

 l
pxl,t

p ≥ 1 − ep Ct,1
p − M1 − vt

p  − M1 − ut
p  ∀t, p

 
 
In double shift option we have the upper and lower bounding constraints (2 shift upper bound-1) 
and (2 shift lower bound-1). 
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∑
l1

n

 l
pxl,t

p ≤ 1  ep Ct,2
p  Mvt

p  M1 − ut
p  ∀t,p

 
 

∑
l1

n

 l
pxl,t

p ≤ 1  ep Ct,2
p  Mvt

p  M1 − ut
p  ∀t,p

 
With the additional constraints, the revised deterministic formulation would be as follows 
 

Maximize ∑
p1

P

∑
t1

T

∑
j1

n

rjxj,t
p − ∑

t1

T

∑
i1

m

∑
i ′1
i ′≠i

m

ci,i ′,tzi,i ′,t

subject to

∑
p1

P

∑
j1

n

aijxj,t
p ≤ di,t ∀i, t

yi,t  yi,t−1  si,t − di,t − ∑
i ′≠i

n

zi,i ′,t ∑
i ′≠i

n

zi ′,i,t ∀i, t

xj,t
p ≤ 1   j

p j
p∑

l1

n

xl,t
p  M1 − ut

p  ∀j, t, p

xj,t
p ≥ 1 −  j

p j
p∑

l1

n

xl,t
p − M1 − ut

p  ∀j, t, p

xj,t
p ≤ Mut

p ∀j, t, p

∑
l1

n

 l
pxl,t

p ≤ 1  ep Ct,1
p  M1 − vt

p   M1 − ut
p  ∀t, p

∑
l1

n

 l
pxl,t

p ≥ 1 − ep Ct,1
p − M1 − vt

p  − M1 − ut
p  ∀t, p

∑
l1

n

 l
pxl,t

p ≤ 1  ep Ct,2
p  Mvt

p  M1 − ut
p  ∀t,p

∑
l1

n

 l
pxl,t

p ≥ 1 − ep Ct,2
p − Mvt

p − M1 − ut
p  ∀t,p

ut
p, vt

p ∈ 0, 1 ∀i, t, p

xj,t
p ∈ 0  Z ∀i, t, p

di,t, yi,t, zi,i ′ ,t ≥ 0 ∀i, i ′, t
 

 



 50

4 Solution Approach - Progressive Hedging Algorithm 
 
The stochastic formulation is a multi-stage stochastic program with recourse. In each stage, we 
first make such decisions as production, allocation/substitution, shut-down, shifts. In the next 
stage, we observe the realization of stochastic chip supply and make further decisions. Therefore 
the decisions in the next stage depend upon realization of chip supply. Associated with the 
stochastic formulation is the non-anticipativity constraints which states that we cannot anticipate 
the future and, equivalently,  chip supply scenarios with a common history must have the same set 
of decisions. 
 
The stochastic formulation presented in the previous section is the stochastic programming model 
formulation obtained by first developing deterministic equivalent via split variables. In this 
process, the extended form of deterministic models takes into account the probability distributions. 
The split variables are merely copies of each variable for each scenario and enforce non-
anticipativity. We define the scenario as an instance of realization of stochastic chip supply over 
the planning horizon. Note that, with the split variable technique, the size of the DE model grows 
exponentially. For example, assuming a constant number of realizations in each stage/period, the 
scenario tree grows exponentially. If we consider 2 realizations for each of 6 chip family over 8 
weeks then the total number of scenarios is 248≈3x1014. 
 
To cope with the size of this problem, we propose following the Progressive Hedging Method 
(PHA). This method is in fact a scenario-based (dual) decomposition where the problem is 
decomposed into deterministic sub-problems for each scenario. The objective of the sub-problem 
is an augmented Lagrangian objective for penalizing any lack in the ability to implement -----. The 
PHA method enforces the implementation feasibility (non-anticipativity) constraints 
algorithmically and each sub-problem is nonlinear in the sense that there are linear and quadratic 
terms in the objective. As a result these problems are Quadratic Mixed Integer Programming 
(QMIP) sub-problems. PHA has the advantage of global convergence in convex problems,  and 
scenario sub-problems are easier to solve. On the other hand, PHA has linear convergence and is 
locally convergent for non-convex problems thus obtaining an implementable solution requires 
convergence or a heuristic step.  
 
The PHA algorithmic implementation framework is illustrated in the following Figure. 
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Initialize:
• Determine the problem parameters
• Construct the scenario tree
• Calculate the scenario probabilities

Yes

Multiplier Update:
Update Lagrange Multipliers using Subgradient
Update Scheme

Solve deterministic scenario subproblems:
• Update the augmented Lagrangean Objective
• Solve using CPLEX or Excel Solver Engine as QPMIP

Relaxation and Decomposition:
• Formulate deterministic equivalent model
• Relax non-anticipativity constraints via augmented Lagrangean
relaxation
• Decompose the model into deterministic scenario subproblems
with augmented objective function

Check for convergence:
• Are scenario subproblem solutions feasible for non-
anticipativity constraints?

Solution Reporting:
• Display results
• Objective function
• Production and substitution levels for deterministic periods

No

 
 
 
We have implemented the PHA in two platforms. The Excel VBA based implementation is 
efficient for small problem instances (e.g., <100 scenarios).  
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Decision 

Vars
r/2_adjus

ted
Model: (r 1 50 Scenarios x_(1,1) 0.21

2 60 Sce 1 Sce 2 Sce 3 Sce 4 Scenario 1 x_(2,1) 0.29
Chips (C1_2 6 su_(1,1) 750 750 750 750 Period 2 Per iod 3 x_(1,2) 0.21

2_1 5 su_(2,1) 1350 1350 1350 1350 Outcome 1 1 1 x_(2,2) 0.29
a_1_1 (chip, mode 2 su_(1,2) 750 750 700 700 Outcome 2 0 0
a_1_2 3 su_(2,2) 1300 1300 1250 1250
a_2_1 4 su_(1,3) 750 650 750 650 Scenario 2
a_2_2 5 su_(2,3) 1250 1400 1250 1400 Period 2 Per iod 3
Alternativ 1 0.6 Probability 0.36 0.24 0.24 0.16 Outcome 1 1 0 z_(1,2,1) 0.25

2 0.4 Outcome 2 0 1 z_(2,1,1) 0.25
D   (mod 1_1 100 Probability z_(1,2,2) 0.25

2_1 120 Period 2 Period 3 Scenario 3 z_(2,1,2) 0.25
1_2 140 Outcome 1 0.6 0.6 Period 2 Per iod 3
2_2 150 Outcome 2 0.4 0.4 Outcome 1 0 1
1_3 150 Outcome 2 1 0
2_3 140 Supply Alternatives Det Stoc Stoc

C  (mode1_1 150 Alterv Period 1 Period 2 Period 3 Scenario 4
2_1 150 Chip1 1 750 750 750 Period 2 Per iod 3

2 750 700 650 Outcome 1 0 0 y_(1,1) 0.25
Chip2 1 1350 1300 1250 Outcome 2 1 1 y_(2,1) 0.25

2 1350 1250 1400 y_(1,2) 0.25
y_(2,2) 0.25

Algorithm Parameters r/2 r
8 Number of iterations 0.25 0.5

d_(1,1) 0.05
d_(2,1) 0.03
d_(1,2) 0.05
d_(2,2) 0.03

C U R R E N T  IT ER A TIO N  D E C IS IO N  V A R IA B LE S C U R R E N T  IT E R A T IO N  D U A L  V A R
S c en ar ios S ce na r io s

N o de M ea n for  e ach  no de S ce na r io  L ist 1 2 3 4 Me an s D ual Va r ia b les 1 2
x_(m o de l,  t im e)
A1 x_ (1 , 1) ( A1 ) s1 ,s2 , s3 ,s4 15 0 15 0 1 50 1 50 #R EF ! w( k) _ ( x_( 1 , 1 ) # RE F ! # R EF !
A1 x_ (2 , 1) ( A1 ) s1 ,s2 , s3 ,s4 13 4 13 4 1 34 1 34 #R EF ! w( k) _ ( x_( 2 , 1 ) # RE F ! # R EF !
A2 x_ (1 , 2) ( A2 ) s1 ,s2 15 0 15 0 #R EF ! w( k) _ ( x_( 1 , 2 ) # RE F ! # R EF !
A2 x_ (2 , 2) ( A2 ) s1 ,s2 15 0 15 0 #R EF ! w( k) _ ( x_( 2 , 2 ) # RE F ! # R EF !
A3 x_ (1 , 2) ( A3 ) s3 ,s4 1 43 1 43 #R EF ! w( k) _ ( x_( 1 , 2 )
A3 x_ (2 , 2) ( A3 ) s3 ,s4 1 50 1 50 #R EF ! w( k) _ ( x_( 2 , 2 )

z _(c h ip  su bs t it u t in g ,ch ip  su bs t it u t ed ,  t im e )
A1 z_ ( 1 , 2 ,1 ) ( A 1) s1 ,s2 , s3 ,s4 5 5 5 5 #R EF ! w( k) _ z_(1 ,2 , 1 ) # RE F ! # R EF !
A1 z_ ( 2 , 1 ,1 ) ( A 1) s1 ,s2 , s3 ,s4 0 0 0 0 #R EF ! w( k) _ z_(2 ,1 , 1 ) # RE F ! # R EF !
A2 z_ ( 1 , 2 ,2 ) ( A 2) s1 ,s2 0 0 #R EF ! w( k) _ z_(1 ,2 , 2 ) # RE F ! # R EF !
A2 z_ ( 2 , 1 ,2 ) ( A 2) s1 ,s2 0 0 #R EF ! w( k) _ z_(2 ,1 , 2 ) # RE F ! # R EF !
A3 z_ ( 1 , 2 ,2 ) ( A 3) s3 ,s4 0 0 #R EF ! w( k) _ z_(1 ,2 , 2 )
A3 z_ ( 2 , 1 ,2 ) ( A 3) s3 ,s4 0 0 #R EF ! w( k) _ z_(2 ,1 , 2 )

y_(c h ip , t im e)
A1 y _ (1 , 1) (A 1) s1 ,s2 , s3 ,s4 4 3 4 3 44 44 #R EF ! w( k) _ y _( 1 ,1) # RE F ! # R EF !
A1 y _ (2 , 1) (A 1) s1 ,s2 , s3 ,s4 8 6 8 6 86 86 #R EF ! w( k) _ y _( 2 ,1) # RE F ! # R EF !
A2 y _ (1 , 2) (A 2) s1 ,s2 4 3 4 3 #R EF ! w( k) _ y _( 1 ,2) # RE F ! # R EF !
A2 y _ (2 , 2) (A 2) s1 ,s2 3 6 3 6 #R EF ! w( k) _ y _( 2 ,2) # RE F ! # R EF !
A3 y _ (1 , 2) (A 3) s3 ,s4 8 8 #R EF ! w( k) _ y _( 1 ,2)
A3 y _ (2 , 2) (A 3) s3 ,s4 16 16 #R EF ! w( k) _ y _( 2 ,2)

d_(c h ip ,  t im e)
A1 d_ (1 , 1) (A 1) s1 ,s2 , s3 ,s4 70 2 70 2 7 01 7 01 #R EF ! w( k) _ d_( 1 ,1) # RE F ! # R EF !
A1 d_ (2 , 1) (A 1) s1 ,s2 , s3 ,s4 127 0 127 0 12 69 12 69 #R EF ! w( k) _ d_( 2 ,1) # RE F ! # R EF !
A2 d_ (1 , 2) (A 2) s1 ,s2 75 0 75 0 #R EF ! w( k) _ d_( 1 ,2) # RE F ! # R EF !
A2 d_ (2 , 2) (A 2) s1 ,s2 135 0 135 0 #R EF ! w( k) _ d_( 2 ,2) # RE F ! # R EF !

Scenario Subproblems 
M o d e l :  ( r e v e n u e ) 1 5 0 D e c is i o n  V a r ia b l e s : w  d u a l

2 6 0 x ( s 1 ) _ ( 1 , 1 ) 0 0
C h i p s  ( C o s t s ) 1 _ 2 6 x ( s 1 ) _ ( 2 , 1 ) 0 0

2 _ 1 5 x ( s 1 ) _ ( 1 , 2 ) 0 0
a _ 1 _ 1  ( c h i p ,  m o d e l ) 2 x ( s 1 ) _ ( 2 , 2 ) 0 0
a _ 1 _ 2 3 x ( s 1 ) _ ( 1 , 3 ) 0
a _ 2 _ 1 4 x ( s 1 ) _ ( 2 , 3 ) 0
a _ 2 _ 2 5 0
A l t e r n a t i v e s 1 0 . 6 0

2 0 . 4 z ( s 1 ) _ ( 1 , 2 , 1 ) 0 0
D    ( m o d e l ,  t i m e ) 1 _ 1 1 0 0 z ( s 1 ) _ ( 2 , 1 , 1 ) 0 0

2 _ 1 1 2 0 z ( s 1 ) _ ( 1 , 2 , 2 ) 0 0
1 _ 2 1 4 0 z ( s 1 ) _ ( 2 , 1 , 2 ) 0 0
2 _ 2 1 5 0 z ( s 1 ) _ ( 1 , 2 , 3 ) 0
1 _ 3 1 5 0 z ( s 1 ) _ ( 2 , 1 , 3 ) 0
2 _ 3 1 4 0 0

C   ( m o d e l ,  t im e ) 1 _ 1 1 5 0 0
2 _ 1 1 5 0 y ( s 1 ) _ ( 1 , 0 ) 0

T im e y ( s 1 ) _ ( 2 , 0 ) 0
S c e n a r io s ( P r ) s _ 1 0 . 3 6 y ( s 1 ) _ ( 1 , 1 ) 0 0

y ( s 1 ) _ ( 2 , 1 ) 0 0
y ( s 1 ) _ ( 1 , 2 ) 0 0

x _ ( m o d e l ,  t i m e ) p r o d u c t i o n y ( s 1 ) _ ( 2 , 2 ) 0 0
z _ ( c h ip  s u b s t i t u t i n g , c h i p  s u b s t i t u t e d ,  t i m e  ) s u b s t i t u t i o n y ( s 1 ) _ ( 1 , 3 ) 0
y _ ( c h ip , t im e ) in v e n t o r y  l e v e l  a t  p e r i o d  e n d y ( s 1 ) _ ( 2 , 3 ) 0
d _ ( c h i p ,  t i m e ) c h ip  u s e d  o n  p r o d u c t i o n 0

0
s ( c h i p ,  t i m e ) c h ip  s u p p l y  a v a i l a b le  i n  p e r i o d d ( s 1 ) _ ( 1 , 1 ) 0 0

d ( s 1 ) _ ( 2 , 1 ) 0 0
d ( s 1 ) _ ( 1 , 2 ) 0 0
d ( s 1 ) _ ( 2 , 2 ) 0 0
d ( s 1 ) _ ( 1 , 3 ) 0
d ( s 1 ) _ ( 2 , 3 ) 0

s u ( s 1 ) _ ( 1 , 1 ) 7 5 0
s u ( s 1 ) _ ( 2 , 1 ) 1 3 5 0
s u ( s 1 ) _ ( 1 , 2 ) 7 5 0
s u ( s 1 ) _ ( 2 , 2 ) 1 3 0 0
s u ( s 1 ) _ ( 1 , 3 ) 7 5 0
s u ( s 1 ) _ ( 2 , 3 ) 1 2 5 0

M o d e l :  ( r e v e n u e ) 1 5 0 D e c is i o n  V a r i a b l e s : w  d u a l
2 6 0 x ( s 1 ) _ ( 1 , 1 ) 0 0

C h i p s  ( C o s t s ) 1 _ 2 6 x ( s 1 ) _ ( 2 , 1 ) 0 0
2 _ 1 5 x ( s 1 ) _ ( 1 , 2 ) 0 0

a _ 1 _ 1  ( c h i p ,  m o d e l ) 2 x ( s 1 ) _ ( 2 , 2 ) 0 0
a _ 1 _ 2 3 x ( s 1 ) _ ( 1 , 3 ) 0
a _ 2 _ 1 4 x ( s 1 ) _ ( 2 , 3 ) 0
a _ 2 _ 2 5 0
A l t e r n a t i v e s 1 0 . 6 0

2 0 . 4 z ( s 1 ) _ ( 1 , 2 , 1 ) 0 0
D    ( m o d e l ,  t i m e ) 1 _ 1 1 0 0 z ( s 1 ) _ ( 2 , 1 , 1 ) 0 0

2 _ 1 1 2 0 z ( s 1 ) _ ( 1 , 2 , 2 ) 0 0
1 _ 2 1 4 0 z ( s 1 ) _ ( 2 , 1 , 2 ) 0 0
2 _ 2 1 5 0 z ( s 1 ) _ ( 1 , 2 , 3 ) 0
1 _ 3 1 5 0 z ( s 1 ) _ ( 2 , 1 , 3 ) 0
2 _ 3 1 4 0 0

C   ( m o d e l ,  t im e ) 1 _ 1 1 5 0 0
2 _ 1 1 5 0 y ( s 1 ) _ ( 1 , 0 ) 0

T im e y ( s 1 ) _ ( 2 , 0 ) 0
S c e n a r io s ( P r ) s _ 1 0 . 3 6 y ( s 1 ) _ ( 1 , 1 ) 0 0

y ( s 1 ) _ ( 2 , 1 ) 0 0
y ( s 1 ) _ ( 1 , 2 ) 0 0

x _ ( m o d e l ,  t i m e ) p r o d u c t i o n y ( s 1 ) _ ( 2 , 2 ) 0 0
z _ ( c h ip  s u b s t i t u t i n g , c h i p  s u b s t i t u t e d ,  t i m e  ) s u b s t i t u t i o n y ( s 1 ) _ ( 1 , 3 ) 0
y _ ( c h ip , t im e ) in v e n t o r y  l e v e l  a t  p e r i o d  e n d y ( s 1 ) _ ( 2 , 3 ) 0
d _ ( c h i p ,  t i m e ) c h ip  u s e d  o n  p r o d u c t i o n 0

0
s ( c h i p ,  t i m e ) c h ip  s u p p l y  a v a i l a b le  i n  p e r i o d d ( s 1 ) _ ( 1 , 1 ) 0 0

d ( s 1 ) _ ( 2 , 1 ) 0 0
d ( s 1 ) _ ( 1 , 2 ) 0 0
d ( s 1 ) _ ( 2 , 2 ) 0 0
d ( s 1 ) _ ( 1 , 3 ) 0
d ( s 1 ) _ ( 2 , 3 ) 0

s u ( s 1 ) _ ( 1 , 1 ) 7 5 0
s u ( s 1 ) _ ( 2 , 1 ) 1 3 5 0
s u ( s 1 ) _ ( 1 , 2 ) 7 5 0
s u ( s 1 ) _ ( 2 , 2 ) 1 3 0 0
s u ( s 1 ) _ ( 1 , 3 ) 7 5 0
s u ( s 1 ) _ ( 2 , 3 ) 1 2 5 0

M o d e l :  ( r e v e n u e ) 1 5 0 D e c is i o n  V a r ia b l e s : w  d u a l
2 6 0 x ( s 1 ) _ ( 1 , 1 ) 0 0

C h i p s  ( C o s t s ) 1 _ 2 6 x ( s 1 ) _ ( 2 , 1 ) 0 0
2 _ 1 5 x ( s 1 ) _ ( 1 , 2 ) 0 0

a _ 1 _ 1  ( c h i p ,  m o d e l ) 2 x ( s 1 ) _ ( 2 , 2 ) 0 0
a _ 1 _ 2 3 x ( s 1 ) _ ( 1 , 3 ) 0
a _ 2 _ 1 4 x ( s 1 ) _ ( 2 , 3 ) 0
a _ 2 _ 2 5 0
A l t e r n a t i v e s 1 0 . 6 0

2 0 . 4 z ( s 1 ) _ ( 1 , 2 , 1 ) 0 0
D    ( m o d e l ,  t i m e ) 1 _ 1 1 0 0 z ( s 1 ) _ ( 2 , 1 , 1 ) 0 0

2 _ 1 1 2 0 z ( s 1 ) _ ( 1 , 2 , 2 ) 0 0
1 _ 2 1 4 0 z ( s 1 ) _ ( 2 , 1 , 2 ) 0 0
2 _ 2 1 5 0 z ( s 1 ) _ ( 1 , 2 , 3 ) 0
1 _ 3 1 5 0 z ( s 1 ) _ ( 2 , 1 , 3 ) 0
2 _ 3 1 4 0 0

C   ( m o d e l ,  t im e ) 1 _ 1 1 5 0 0
2 _ 1 1 5 0 y ( s 1 ) _ ( 1 , 0 ) 0

T i m e y ( s 1 ) _ ( 2 , 0 ) 0
S c e n a r i o s ( P r ) s _ 1 0 . 3 6 y ( s 1 ) _ ( 1 , 1 ) 0 0

y ( s 1 ) _ ( 2 , 1 ) 0 0
y ( s 1 ) _ ( 1 , 2 ) 0 0

x _ ( m o d e l ,  t i m e ) p r o d u c t i o n y ( s 1 ) _ ( 2 , 2 ) 0 0
z _ ( c h ip  s u b s t i t u t i n g , c h i p  s u b s t i t u t e d ,  t im e  ) s u b s t i t u t i o n y ( s 1 ) _ ( 1 , 3 ) 0
y _ ( c h ip , t i m e ) in v e n t o r y  l e v e l  a t  p e r i o d  e n d y ( s 1 ) _ ( 2 , 3 ) 0
d _ ( c h i p ,  t im e ) c h i p  u s e d  o n  p r o d u c t i o n 0

0
s ( c h i p ,  t i m e ) c h i p  s u p p l y  a v a i la b le  in  p e r io d d ( s 1 ) _ ( 1 , 1 ) 0 0

d ( s 1 ) _ ( 2 , 1 ) 0 0
d ( s 1 ) _ ( 1 , 2 ) 0 0
d ( s 1 ) _ ( 2 , 2 ) 0 0
d ( s 1 ) _ ( 1 , 3 ) 0
d ( s 1 ) _ ( 2 , 3 ) 0

s u ( s 1 ) _ ( 1 , 1 ) 7 5 0
s u ( s 1 ) _ ( 2 , 1 ) 1 3 5 0
s u ( s 1 ) _ ( 1 , 2 ) 7 5 0
s u ( s 1 ) _ ( 2 , 2 ) 1 3 0 0
s u ( s 1 ) _ ( 1 , 3 ) 7 5 0
s u ( s 1 ) _ ( 2 , 3 ) 1 2 5 0

Lagrangean Multiplier 
Update 

Problem Parameters VB / Excel Solver Engine 

 
 
 
The second implementation platform is the ILOG OPL where we use Cplex 11’s Barrier Method 
for solving QMIP scenario sub-problems. This implementation has proved to be efficient for 
medium problem instances (e.g., <100,000 scenarios) 
 

S cen a r io  T ree  G en e ra tio n  

M o d e l 

P ro b le m  P a ra m ete rs  

S cen a r io  S o lu tio n s  
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Stylized Example 
 
To illustrate the application of the operational response model, we have developed a stylized 
example. In this example we have 2 plants, 4 vehicles with 2 vehicles assignment for each plant, 3 
chips subject to disruption. This example is illustrated in the Figure below. 
 
The green and orange chips are regular chips going into two middle-class vehicles and the blue 
chip is the premium chips going into two higher end vehicles. 
 

 
 
 
 
In our disruption scenario, the planning time horizon is 6 weeks long and has 3 periods. The first 
period is the deterministic periods where we know the supply quantities deterministically. The 
remaining two periods have stochastic supply. The supplier estimates that the chip supply of these 
2 periods (4 weeks) will be affected such that the worst case has 60% and the best case has 40% 
chance.  The outcomes of all three chips are listed in the following table. 
 

Worst Best Worst Best
Chip 1 0 500 0 400
Chip 2 0 500 100 200
Chip 3 100 300 0 500

Period #2 Period #3

 
 
 
We are interested in the decision we have to make for the current period (for 2 weeks from now). 
Future decisions will also be identified in the form of a policy which tells us exactly what to do as 
a result of realized supply scenarios. We do not need to update the policy unless the realized 
scenario differs from what we knew in the preceding period for the future. Let's assume chips 
arrive in the beginning of period 2 and we received a supply of chip 1 =200. Since this is not one 
of our outcomes for chip #1, we then have to resolve our problem for period 2 as well as period 3. 
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The margins for the products are listed in the following table: 

2,500$      2,000$      1,000$      1,500$      

6 10 - -

8 - 6 -

- 2 - 6

VEHICLES

C
H

IP
S

 
 
 
The substitution costs and constraints are presented in the following table. 

- $30 $30

n/a - $25

n/a $25 -

CHIPS

C
H

IP
S

 
 
 
The solution for this problem instance is obtained from the PHA algorithm as such that, in the first 
period (weeks 1 and 2), we operate Plant #1 at 85 per cent utilization and idle the Plant #2 and use 
about 45% of the available supply of chip #2 inventory to substitute for chip #3. In terms of 
vehicle production, we allocate 25 per cent of capacity of Plant #1 to produce the silver vehicle 
(Ford Five Hundred) and 75 per cent of capacity of Plant #1 to produce the red vehicle (Ford 
Fusion). 
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D. Results Dissemination 

1. Conference Activity 

 

Conference Presentations: 
 

1. Murat, A., Chinnam, R.B., and Azadian, F., “Dynamic Routing under ATIS for Congestion 
Avoidance,” Research Issues in Freight Transportation -- Congestion and System 
Performance Conference, Seattle (Oct 22-23, 2007). 

 
2. Azadian, F., Murat, A., and Chinnam, R.B., “Enabling Congestion Avoidance in Stochastic 

Transportation Networks under ATIS,” 2nd Annual National Urban Freight Conference, 
Long Beach, CA (December 5-7, 2007). 

 
3. Murat, A. , “Managing Supply Disruptions,” OEM Global Supply Chain, SAE World 

Congress in Detroit (April 14-17, 2008). 
 
4. Azadian, F., Murat, A., and Chinnam, R.B., “Dynamic Freight Routing on Air- Network 

Using Real-Time Congestion Information,” INFORMS Annual Meeting, Washington, D.C. 
(October 12-15, 2008). 

 
Conference Sessions Organized: 
 

1. We have organized a special session titled “Urban Transportation Planning Models: 
Dynamic Routing with Real-time ITS Information” at the INFORMS 2007 Annual Meeting 
in Seattle (Nov 3-7, 2007) under the Cluster: Transportation Science & Logistics. The 
session is Chaired by our PI – Dr. Alper Murat. 

 
2. We have organized a special session titled “Dynamic Routing and Logistics under Real-

Time ITS Information” at the INFORMS 2008 Annual Meeting in Washington DC (Oct 12-
15, 2008) under the Cluster: Real-Time Systems. The session is Chaired by our PI – Dr. 
Alper Murat. 

 
Conferences Planning to Attend: 
 

1. Murat, A., Azadian, F., and Chinnam, R.B., “Dynamic Freight Routing on Air-Road 
Intermodal Network using Real-Time Congestion Information” - POMS Annual 
Conference 2009 - Global Challenges and Opportunities, Orlando, 1-4 May 2009. 

2.  Journal Publications 

A journal manuscript is being dispatched this week to the Transportation Research Part B: 
Methodological journal that reports our dynamic routing of air cargo models, algorithms and their 
performance (Section A of this report). A second manuscript based on dynamic routing on the Air-
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Road  network is currently under preparation (Section B of this report) and will be submitted for 
review in this semester. Similarly, a third manuscript based on the operational response model and 
algorithm (Section C of this report) will be submitted within this semester. 


