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Pending: 

1. Formulas for repeated measures/paired samples. (d = r / sqrt(1-r^2) 

2. Explanation of 'set aside' lambda weights of 0 when computing focused contrasts. 

3. Applications to multifactor designs. 

 

SECTION I: COMPUTING EFFECT SIZES FROM RAW DATA. 

 

I-A. The Pearson Correlation as the Effect Size 

I-A-1: Calculating Pearson's r From a Design With a Dimensional Variable and a Dichotomous 

Variable (i.e., a t-Test Design). 

I-A-2: Calculating Pearson's r From a Design With Two Dichotomous Variables (i.e., a 2 x 2 

Chi-Square Design). 

I-A-3: Calculating Pearson's r From a Design With a Dimensional Variable and an Ordered, 

Multi-Category Variable (i.e., a Oneway ANOVA Design).  

I-A-4: Calculating Pearson's r From a Design With One Variable That Has 3 or More Ordered 

Categories and One Variable That Has 2 or More Ordered Categories (i.e., an Omnibus 

Chi-Square Design with df > 1). 

 

I-B. Cohen's d as the Effect Size 

I-B-1: Calculating Cohen's d From a Design With a Dimensional Variable and a Dichotomous 

Variable (i.e., a t-Test Design). 

 

SECTION II: COMPUTING EFFECT SIZES FROM THE OUTPUT OF STATISTICAL 

TESTS AND TRANSLATING ONE EFFECT SIZE TO ANOTHER. 

 

II-A. The Pearson Correlation as the Effect Size 

II-A-1: Pearson's r From t-Test Output Comparing Means Across Two Groups. 

II-A-2: Pearson's r From 2 x 2 Chi-Square Output. 

II-A-3. Pearson's r From F Test Output When Just Two Groups Have Been Compared. 

II-A-4: Pearson's r From F Test Output When More Than Two Groups Have Been Compared. 

 II-A-4-a: Scenario 1 - When given group Ms and F or t from a focused contrast 

 II-A-4-b: Scenario 2 - When given group Ms, SDs, and ns 

 II-A-4-c: Scenario 3 - When given group Ms and results from an omnibus F test 

II-A-5: Pearson's r From the Output of an Omnibus Chi-Square Test (i.e., df > 1). 

 II-A-5-a: The Rosnow and Rosenthal (1996) approach 

 II-A-5-b: Reconstructing the database 

II-A-6. Pearson's r from Cohen's d. 

 II-A-6-a: The exact formula. 

 II-A-6-b: The approximate formula.  

 

II-B. Cohen's d as the Effect Size 

II-B-1: Cohen's d from t-Test Output. 

 II-B-1-a: When the size of each group is known. 

 II-B-1-b: When the size of each group is unknown but df is available. 
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II-B-2: Cohen's d From F Test Output When Just Two Groups Have Been Compared. 

II-B-3: Cohen's d from Pearson's r. 

 

General Note: When computing r and d according to the procedures in this guide, r and d are 

effect size measures like those used in a meta-analysis. As such, r and d should be given a 

positive sign when the result is consistent with the a priori hypothesis and a negative sign when 

the result is in the direction opposite of that specified by the hypothesis. This point is emphasized 

throughout the guide and should be stated in the text of any manuscript reporting these results. 
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****************************************************************************** 

SECTION I: COMPUTING EFFECT SIZES FROM RAW DATA. 

****************************************************************************** 

 

I-A. The Pearson Correlation as the Effect Size 

 

I-A-1: Calculating Pearson's r From a Design With a Dimensional Variable and a Dichotomous 

Variable (i.e., a t-Test Design). 

 

In a t-test design there is one dichotomous variable and one variable that is dimensional. To 

compute r in this situation we code (or recode) the dichotomous variable so it takes on the values 

-1 and 1 (although any two values could be used). After this is done we simply correlate the 

dichotomous variable with the dimensional variable. This type of correlation is often referred to 

as a point-biserial correlation but it is simply Pearson's r with one variable continuous and one 

variable dichotomous. In other words, a point-biserial correlation is not different from a Pearson 

correlation.  

 

To compute r from this kind of design using SPSS or SAS syntax, we open the dataset 

containing raw scores on our dichotomous and dimensional variables. For the sake of simplicity, 

the following commands assume that these two variables have been labeled "dichot_v" and 

"dimen_v", respectively. The syntax below will have to be modified so that the correct variable 

names from your dataset replace "dichot_v" and "dimen_v". Note that the variable "dichot_v" 

has to be coded so that it has two numerical values (e.g., -1 and 1). 

 

In SPSS syntax the command would be as follows. 
CORRELATIONS /VARIABLES= dimen_v dichot_v  

  /PRINT=TWOTAIL SIG 

  /MISSING=PAIRWISE . 

 

In SAS syntax the commands would be as follows. 
PROC CORR; 

  VAR dimen_v dichot_v; 

RUN; 
 

Note. When variances are not equal (e.g., by Levene's test for the equality of variances), the p 

value associated with this correlation may be incorrect. A more accurate estimate of p can be 

obtained by running a t-test (using "dichot_v" as the grouping variable) in SPSS or SAS and 

obtaining p from the t-test output that corrects for unequal variances. Although it is appropriate 

to use the unequal variance t-test output to obtain p, it is not appropriate to use this output to 

convert t to r via the formula given elsewhere in this document.  

Note. The sign of this correlation is arbitrary. When the direction of the result is consistent with 

the a priori hypothesis, it should be reported with a positive sign. When the result is in the 

direction opposite of that specified by the hypothesis, it should be given a negative sign. This is 

easily accomplished by giving the group expected to have the higher mean the larger value on 

dichot_v. 
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I-A-2: Calculating Pearson's r From a Design With Two Dichotomous Variables (i.e., a 2 x 2 

Chi-Square Design). 

 

In a 2x2 chi-square design there are two dichotomous variables. To compute r, each of the 

dichotomous variables should be coded so scores take on the values -1 and 1 (although any two 

values could be used). Next, we correlate the first dichotomous variable with the second 

dichotomous variable. This type of correlation is often referred to as a phi coefficient but it is 

simply Pearson's r with both variables dichotomous. In other words, a phi coefficient is not 

different from a Pearson correlation.  

 

To compute r from this kind of design using SPSS or SAS syntax, we open the dataset 

containing raw scores on our two dichotomous variables. For the sake of simplicity, the 

following syntax commands assume that these two variables have been labeled "dichot_a" and 

"dichot_b" and the syntax will have to be modified so it uses the correct variable names for your 

dataset. 

 

The SPSS syntax is as follows.  
CORRELATIONS /VARIABLES= dichot_a dichot_b  

  /PRINT=TWOTAIL SIG 

  /MISSING=PAIRWISE . 

 

The SAS syntax is as follows. 
PROC CORR; 

  VAR dichot_a dichot_b; 

RUN; 

 

Note. The sign of the correlations produced by any of the above commands is arbitrary. When 

the direction of the result is consistent with the a priori hypothesis, it should be reported with a 

positive sign. When the result turns out to be in the direction opposite of that specified by the 

hypothesis, it should be given a negative sign. This is easily accomplished by assigning the 

larger values on dichot_a and dichot_b in such a way that the hypothesized association leads to a 

positive correlation. For instance, if patients with T-Scores > 65 on MMPI-2 Scale 2 are 

expected to receive a depressive diagnosis more often than patients with T-Scores < 66, the 

MMPI variable could be coded as T > 65 = 1 and T < 66 = -1, while the diagnosis variable would 

then be coded as not-depressed = -1 and depressed = 1. 

 

Note. When N is very small (e.g., below 20) and any expected cell frequencies are less than 5, a 

more accurate way to obtain r is through a several step process based on Fisher's Exact Test. 

Specifically, we a) compute Fisher's Exact Test, b) obtain the one-tailed p value associated with 

this test, c) convert the p value to a t value, and then d) compute r from that t and the 

corresponding degrees of freedom (df = N – 2). These steps are explained and illustrated below. 

 

a) Fisher's Exact Test is produced by the chi-square facility in SPSS or SAS (which can also be 

used to compute phi directly). Using the initial data set described above (i.e., with the raw data 

for our two variables, "dichot_a" and "dichot_b") we run the following syntax commands. 

 

In SPSS, the syntax is as follows. 
CROSSTABS 

  /TABLES= dichot_a BY dichot_b 
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  /FORMAT= AVALUE TABLES 

  /STATISTIC= CHISQ PHI CORR 

  /CELLS= COUNT . 

 

In SAS, the syntax would be as follows. 
PROC FREQ; 

  TABLES dichot_a*dichot_b / CHISQ; 

RUN; 

 

b) To obtain the one-tailed p from the Fisher's Exact Test output, it may be necessary to change 

the default output settings in SPSS or SAS so that p is reported to at least 2 non-zero digits. In 

other words, r cannot be obtained if the output reports "p < .000". Instead, we must obtain the 

actual p value to at least two meaningful digits (e.g., p = .000054 or p = .000000013). 

 

c) Once the correct p value is obtained, we convert this value to t. (Note that in this instance, it is 

more accurate to convert p to t than it is to convert p to Z, the standard normal deviate.) To do so 

in SPSS or SAS, we use the inverse distribution function for t. Several steps are required. First in 

a new dataset create a variable labeled "p_by_FET" (to indicate it is for the p obtained from 

Fisher's Exact Test) and a second variable labeled "df" (to indicate degrees of freedom). Next, 

enter the observed p value from the Fisher's Exact Test in the p_by_FET column and enter N - 2 

in the df column. Finally, run the following syntax. 

 

In SPSS: 
COMPUTE t_by_p = IDF.T((1 - p_by_fet),df) . 

EXECUTE . 

 

In SAS: 
DATA newdata; 

  SET olddata; 

  t_by_p = TINV((1 - p_by_fet,df); 

RUN; 

 

d) Next, we compute r from the t value just obtained. For this step, we use the same data set and 

just run one additional command. The command takes the t value from Step "c" and transforms it 

to r. The following syntax commands are used. 

 

In SPSS:  
COMPUTE r_by_t = sqrt((t_by_p**2) / ((t_by_p**2) + df)). 

EXECUTE . 

 

In SAS:  
DATA newdata; 

   SET olddata; 

   r_by_t = sqrt((t_by_p**2) / ((t_by_p**2) + df)); 

RUN; 
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I-A-3: Calculating Pearson's r From a Design With a Dimensional Variable and an Ordered, 

Multi-Category Variable (i.e., an ANOVA Design).  

 

An ANOVA design contains one variable with multiple discrete categories and one variable that 

is dimensional. In a true or quasi-experiment, the multi-category variable is the independent 

variable (IV) and the dimensional variable is the dependent variable (DV). However, when 

computing an effect size, the multi-category variable does not need to be a manipulated 

independent variable. The multi-category variable may be a predictor variable but this also is not 

a requirement. It may be the criterion variable when the predictor variable is dimensional. In 

other words, when computing an effect size, the traditional IV and DV classifications are not 

important.  

 

When the multi-category variable can be ordered on a hypothesized continuum, the hypothesized 

order forms what is called a focused contrast. The focused contrast specifies how the means on 

the dimensional variable should be arrayed across the discrete categories (i.e., it says which 

categories should have high, low, and midrange values). To compute r from an ANOVA design 

with a hypothesized focused contrast, two steps may be required.  

 

First, if the multi-category variable has not already been coded on an ordered continuum that 

corresponds to the hypothesis, this must be done. For instance, assume the multi-category 

variable is treatment outcome that is classified into three groups: unchanged, improved, and 

worse. In addition, assume that the dimensional variable is a test scale of psychological resilience 

that was obtained before treatment began. The hypothesis for this study is that higher levels of 

psychological resilience at baseline will predict better outcome.  

 

Given this hypothesis, the multi-category variable should be coded so that worse outcome = -1, 

unchanged outcome = 0, and improved outcome = 1. [See Table 4 in Rosnow, Rosenthal, and 

Rubin's (2000) Psychological Science article for contrast weights that are appropriate to use 

when the multi-category variable has 2 to 10 categories.] When the multi-category variable in a 

data set is recoded so that the categories correspond to the hypothesized ordered continuum, the 

variable should be given a new name to reflect this change. In this example, the recoded outcome 

variable is given the name "cntrst_v" to indicate that it is now a variable coded in accordance 

with the hypothesized focused contrast; i.e., a higher score indicates greater improvement. 

 

Once the multi-category variable is coded so that each category has been assigned a contrast 

weight consistent with the hypothesis, the second and final step is to correlate the recoded multi-

category variable (cntrst_v) with the dimensional variable (labeled dimen_v in the syntax 

below). In the running example, test scores of resilience (i.e., dimen_v) would be correlated with 

the multi-category variable (i.e., cntrst_v) that has been coded to indicate treatment outcome 

consistent with our hypothesis (worse = -1, unchanged = 0, improved = 1).  

 

In SPSS syntax:  
CORRELATIONS /VARIABLES= cntrst_v dimen_v 

  /PRINT=TWOTAIL SIG 

  /MISSING=PAIRWISE . 

 

In SAS syntax:  
SAS: 
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PROC CORR; 

  VAR cntrst_v dimen_v; 

RUN;  
 

Note. The sign of this correlation should be checked to ensure that the direction of the contrast 

weights is consistent with the direction of the dimensional variable. In the example given above, 

higher scores on resilience and better outcome (i.e., higher scores on the outcome contrast 

weights) would lead to a positive correlation, which in turn would indicate the findings were 

consistent with the initial hypothesis. Had the dimensional variable been a measure of ego 

deficiency, for example, the contrast weights should have been assigned in the opposite 

direction, with higher values indicating worse outcome.  

 

It also should be noted that each group that forms the multi-category variable does not need to be 

assigned a unique contrast weight. For instance, in the running example, if the researcher's 

original hypothesis was that psychological resilience would only predict who improved in 

treatment but not who stayed the same or got worse, then the contrast weights would have been 

different. Under this hypothesis, the correct contrast weights would be worse outcome = -1, 

unchanged outcome = -1, and improved outcome = 2. Thus, when creating the recoded 

"cntrst_v" variable, the subjects who improved would be assigned a score of 2 and all the other 

subjects would be assigned a score of -1. Note that in each instance the contrast weights sum to 

0.  

 

Finally, note that when three or more categories are employed for one of our variables several 

Pearson's rs can be computed, including reffect size, rcontrast, rBESD, and ralerting (see Rosenthal, 

Rosnow, & Rubin, 2000). The r computed in this section, and throughout this document, is reffect 

size, a conservative r that does not partial out noncontrast between group variation. The 

coefficient reffect size is defined as the correlation between each individual's membership in a group 

or class on the multi-category variable and his or her score on the dimensional variable. 

 

 

 I-A-4: Calculating Pearson's r From a Design With One Variable That Has 2 or More Ordered 

Categories and One Variable That Has 3 or More Ordered Categories (i.e., an Omnibus 

Chi-Square Design with df > 1). 

 

An omnibus chi-square design is one in which the chi-square table is larger than 2 x 2 (i.e., it has 

more than four cells). For instance, one variable could be dichotomous while the other variable 

has three categories (i.e., a 2 x 3 design with 6 cells), or one variable may have four categories 

and the other variable has three categories (i.e., a 4 x 3 design with 12 cells).  

 

To compute a meaningful effect size from this kind of design, it must be possible to place the 

grouping categories for BOTH variables on a hypothesized continuum. If this can be done, then 

the process of computing r is straightforward. Specifically, the procedures described in the 

previous section (i.e., I-A-3) for a single multi-category variable are generalized and applied to 

both of the multi-category variables. Thus, all subjects would have to be assigned appropriate 

contrast weights for the first variable (e.g., labeled "cntrst_a") and also for the second variable 

(e.g., labeled "cntrst_b"). If the variables were not initially scored this way, they would have to 

be recoded so that each category was assigned its proper contrast weight. Once this has been 

done, the two variables are correlated.  
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In SPSS syntax:  
CORRELATIONS /VARIABLES= cntrst_a cntrst_b 

  /PRINT=TWOTAIL SIG 

  /MISSING=PAIRWISE . 

 

In SAS syntax: 
PROC CORR; 

  VAR cntrst_a cntrst_b; 

RUN; 

 

Note. The sign of this correlation should be checked to ensure that the correlation is positive 

when the direction of the result is consistent with the a priori hypothesis. This is easily 

accomplished by assigning the contrast weights for both variables in such a way that the 

hypothesized association leads to a positive correlation.  
 

 

 

 

I-B. Cohen's d as the Effect Size 

 

I-B-1: Calculating Cohen's d From a Design With a Dimensional Variable and a Dichotomous 

Variable (i.e., a t-Test Design). 

 

To compute Cohen's d from a t-test design, in which there is one dichotomous variable and one 

dimensional variable, the first step is to compute descriptive statistics for the dimensional 

variable (dimen_v) within each category of the dichotomous variable (dichot_v).  

 

This can be accomplished in a variety of ways. In SPSS one way is to use the "Split File" 

function to identify the two groups formed by dichot_v and then request means and standard 

deviations (or variances) for each group through the "Frequencies" command. SAS achieves the 

same purpose using the “By” command within “Proc Means.” 

 

The SPSS syntax is as follows.  
SORT CASES BY dichot_v . 

SPLIT FILE  

  SEPARATE BY dichot_v . 

FREQUENCIES  

   VARIABLES= dimen_v 

  /FORMAT=NOTABLE 

  /STATISTICS=MEAN STDDEV VARIANCE 

  /ORDER= VARIABLE . 

 

The SAS syntax is as follows. 
PROC MEANS MEAN STD CSS; 

  BY dichot_v; 

  VAR dimen_v; 

RUN; 

 

For the second step, the descriptive statistics given in the computer output would be placed into a 

new data file. The two categories for the dichotomous variable should be given meaningful 
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names, and in this example they will be referred to as grp1 and grp2 to designate group 1 and 

group 2, respectively. Six pieces of information from the output file must be entered into the new 

dataset.  

 

If you are using SPSS, this information consists of the mean, SD, and valid N for the dimensional 

variable in each group. Thus, for this example, six variable columns would be created in the new 

data file and they would be labeled grp1Mean, grp1SD, grp1N, grp2Mean, grp2SD, and grp2N.  

 

If you are using SAS, the six pieces of information consist of the mean, CSS, and valid N for the 

dimensional variable in each group. The CSS, or corrected sum of squares, is the numerator of 

the variance and dividing it by N produces the variance. Thus, for this example in SAS, the six 

variable columns to create would be labeled grp1Mean, grp1CSS, grp1N, grp2Mean, grp2CSS, 

and grp2N.  

 

By default SPSS and SAS compute the SD as an inferential statistic (i.e., S) rather than as the 

population parameter (i.e., ) by using N-1 in the denominator of the SD equation rather than N. 

In order to obtain Cohen's d rather than Hedge's g, the inferential statistic S will be transformed 

to  through syntax. 

 

After the relevant results have been entered into the new data file, syntax will be used to compute 

the pooled variance (pool_Var), the pooled standard deviation (pool_SD), and then Cohen's d. 

The syntax is as follows (where sqrt = square root, and **2 = squared). 

 

SPSS: 
COMPUTE pool_var = (((grp1n - 1) * grp1sd**2) + ((grp2n - 1) * grp2sd**2)) / 

(grp1n + grp2n) . 

COMPUTE pool_sd = sqrt(pool_var). 

COMPUTE Cohens_d = (grp1mean - grp2mean) / pool_sd . 

EXECUTE . 

 

SAS: 
DATA newdata; 

   SET olddata; 

   pool_var = (grp1css + grp2css) / (grp1n + grp2n); 

   pool_sd = sqrt(pool_var); 

   Cohens_d = (grp1mean - grp2mean) / pool_sd; 

RUN; 

 

Note. As a technical point, it may look like the SAS and SPSS syntax commands use different 

procedures to compute the pooled variance. However, they do not. In both instances, the 

descriptive variance (i.e., 2) for each group is weighted by sample size (i.e., n). In the case of 

the SPSS syntax, two operations are being completed in a single step. The unbiased variance 

estimate (i.e., S2) is being converted to the descriptive variance (i.e., 2) and also weighted by 

sample size. The full formula to achieve this would be [n * (n-1)/n * S2] but it has been reduced 

to its simplified form of [(n-1) * S2]. Similarly, in the case of the SAS syntax, because the CSS is 

a raw sum of squares rather than a variance or SD the descriptive variance (i.e., 2) is computed 

directly from CSS and weighted by sample size. The full formula would be [n * (CSS/n)] but this 

was reduced to its simplified form, which is just CSS. In both the SPSS and SAS computations, 



Basic ES Computations, p. 10 

 

the final pooled 2 is obtained by dividing the sum of the weighted variances by the sum of the 

weights. 

 

Note. The sign of d is arbitrary. When the direction of the result is consistent with the a priori 

hypothesis, it should be reported with a positive sign. When a result is in the direction opposite 

of that specified by the hypothesis, it should be given a negative sign. This is easily 

accomplished by designating the group that is expected to have the higher mean as group 1. 

 

The steps listed above are somewhat complicated. Thus, until SPSS and SAS introduce a 

command for generating Cohen's d, it is actually easier to compute Cohen's d after running a t-

test to compare mean differences across groups. The computations using this method are 

described below in Section II-B-1.  
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****************************************************************************** 

SECTION II: COMPUTING EFFECT SIZES FROM THE OUTPUT OF STATISTICAL 

TESTS AND TRANSLATING ONE EFFECT SIZE TO ANOTHER. 

****************************************************************************** 

 

[Note. Many of the following computations can be done using a hand calculator and are even 

easier to accomplish that way. However, syntax commands are still used to illustrate the 

computations.] 

 

II-A. The Pearson Correlation as the Effect Size 

 

II-A-1: Pearson's r From t-Test Output Comparing Means Across Two Groups. 

 

To compute r from the output of a t-test, first create a data file that contains two variables, one 

labeled "t_value" and the other labeled "df". Next, enter the observed value for the t statistic in 

the "t_value" column and enter the degrees of freedom for the t-test in the "df" column. Finally, 

run the following formula (where sqrt = square root, and **2 = squared). 

 

SPSS: 
COMPUTE r_by_t = sqrt((t_value**2) / ((t_value**2) + df)). 

EXECUTE . 

 

SAS: 
DATA newdata; 

   SET olddata; 

   r_by_t = sqrt((t_value**2) / ((t_value**2) + df)); 

RUN; 

 

Note. When converting t to r, it is important to use the standard pooled variances t-test results, 

not the results that correct for unequal variances. If an original research article only reported the 

t-value and df from the unequal variances formula, a reasonable estimate of r can be obtained by 

using the reported t-value in conjunction with the correct df, namely df = N - 2. If we instead 

used the adjusted df from the unequal variances formula it would produce an artificially inflated 

estimate of r.  

 

Note. The r produced by this formula is reffect size when the t-test is derived from the traditional 2-

group independent samples t-test or paired samples t-test. However, as discussed in Section II-A-

4, a t-test can also be used to examine the statistical significance of a focused contrast computed 

across three or more groups. In the latter instance, the r obtained by this formula is called rcontrast 

and it must be transformed further to produce reffect size. See Section II-A-4 for a more complete 

explanation. 

 

Note. The sign of this correlation is arbitrary. When the direction of the result is consistent with 

the a priori hypothesis, it should be reported with a positive sign. When a result is in the direction 

opposite of that specified by the hypothesis, it should be given a negative sign. 
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II-A-2: Pearson's r From 2 x 2 Chi-Square Output. 

 

To compute r from a chi-square test with 1 degree of freedom (df) (i.e., from a 2 x 2 table), first 

create a data file that contains two variables, one labeled "chisquar" and the other labeled "N". 

Next, enter the observed value for the chi-square statistic in the "chisquar" column and enter the 

total number of subjects for the analysis in the "N" column. Finally, run the following syntax 

(where sqrt = square root). 

 

SPSS:  
COMPUTE r_by_2x2 = sqrt(chisquar / N). 

EXECUTE . 

 

SAS: 
DATA newdata; 

   SET olddata; 

   r_by_2x2 = sqrt(chisquar / N); 

RUN; 

 

Note. The sign of this correlation is arbitrary. When the direction of the result is consistent with 

the a priori hypothesis, it should be reported with a positive sign. When a result is in the direction 

opposite of that specified by the hypothesis, it should be given a negative sign. 

 

 

 II-A-3. Pearson's r From F Test Output When Just Two Groups Have Been Compared. 

 

To compute r from an F test with numerator df = 1, in which a dimensional variable has been 

compared across just two groups (i.e., from a traditional t-test type of design), first create a data 

file that contains two variables, one labeled "F_value" and the other labeled "df_wthin". Next, 

enter the observed value for the F statistic in the "F_value" column and enter the within subjects 

degrees of freedom for the F test in the "df_wthin" column (i.e., the denominator df). Finally, run 

the following syntax (where sqrt = square root). 

 

SPSS:  
COMPUTE r_by_f = sqrt(F_value / (F_value + df_wthin)). 

EXECUTE . 

 

SAS: 
DATA newdata; 

   SET olddata; 

   r_by_f = sqrt(F_value / (F_value + df_wthin)); 

RUN; 

 

Note. The r produced by this formula is reffect size when the F test is derived from the comparison 

of two independent samples. However, as discussed in Section II-A-4, an F test can also be used 

to examine the statistical significance of a focused contrast computed across three or more 

groups. In the latter instance, the resulting F is not conceptually equivalent to an F derived from 

a 2-group comparison even though both F tests have 1 degree of freedom in the numerator. As 

explained more completely in Section II-A-4, when more than two groups have been compared 

via a focused contrast, the formula in this section produces rcontrast, which must be transformed 

further to produce reffect size. 



Basic ES Computations, p. 13 

 

 

Note. The sign of this correlation is arbitrary. When the direction of the result is consistent with 

the a priori hypothesis, it should be reported with a positive sign. When a result is in the direction 

opposite of that specified by the hypothesis, it should be given a negative sign. 

 

 

 II-A-4: Pearson's r From F Test Output When More Than Two Groups Have Been Compared. 

 

It is more complicated to compute r from the output of an F test in a traditional ANOVA design, 

in which a dimensional variable has been compared across more than two groups (and it is not 

possible to compute Cohen's d from data of this type). Because of the increased complexity, 

example syntax for SPSS and SAS is not provided below. However, the procedures are described 

in the following sources and they are summarized and illustrated here. The material that follows 

presumes that readers are already familiar with previous sections in this document, particularly 

the discussion of contrast weights in Sections I-A-3 and I-A-4.  

 

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and effect sizes in behavioral 

research: A correlational approach. New York: Cambridge University Press. 

Rosnow, R. L., & Rosenthal, R. (1996). Computing contrasts, effect sizes, and counternulls on 

other people's published data: General procedures for research consumers. Psychological 

Methods, 1, 331-340.  

Rosnow, R. L., Rosenthal, R., & Rubin, D. B. (2000). Contrasts and correlations in effect-size 

estimation. Psychological Science, 11, 446-453. 

 

The complexity of computing reffect size from the output of a traditional ANOVA arises from two 

main factors. First, obtaining the final coefficient requires multiple computational steps. Second, 

complexity arises from the fact that r can be computed from different kinds of incompletely 

reported initial information. Because ANOVA results in the published literature may report 

different types of incomplete information, the latter provides secondary researchers with some 

flexibility when they wish to compute reffect size from studies conducted by other people.  

 

Several approaches to computing r will be explained and illustrated here. Each scenario makes 

uses of slightly different pieces of initial information. However, for simplicity, the same example 

data set is used throughout. The data set is described in Rosnow and Rosenthal (1996).  

 

 II-A-4-a: Scenario 1 - When given group Ms and F or t from a focused contrast 

 

Scenario 1 is applicable when the original output provides  

a) the mean for the dimensional variable in each of the multi-category groups and  

b) the t-value or F-value that comes from testing a focused contrast across the multi-

category variable.  

 

This is a basic scenario, although it is not likely to be encountered often because authors 

typically have computed omnibus F tests rather than focused contrasts.  An omnibus F test 

determines whether there is any pattern in the means that is unlikely to be due to chance, while a 

focused contrast determines whether there is a specified and expected pattern in the means that is 
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unlikely to be due to chance. A meaningful effect size can be obtained from the latter but not the 

former.   

 

Note. Either a t-test or an F test can be used to evaluate a multi-group focused contrast. These 

statistics are psychometrically equivalent because F = t2. For instance, a researcher wishing to 

produce a focused contrast in SPSS would use the One-way ANOVA procedure and would 

specify contrast weight coefficients on the "/CONTRAST" subcommand. The statistical output 

from this set of commands would be in the form of a t-test rather than an F test. 

 

Assuming an existing study provides mean scores across all groups and t or F from a focused 

contrast we can compute reffect size in three steps. First, the t or F is converted to rcontrast. Second, 

the coefficient called ralerting is computed. Third, rcontrast and ralerting are used to produce reffect size. 

 

For the first step, use the formulas from Sections II-A-1 (for t-test output) or II-A-3 (for F test 

output) to translate the results of the statistical test into an initial r. Previously, the formulas in 

Sections II-A-1 and II-A-3 were used to compute reffect size directly from the t or F output. This 

was possible because the statistical results had been obtained by comparing means across just 

two groups. However, when t or F are obtained from a focused contrast that compares means 

across three or more groups, the r produced by these formulas is no longer equivalent to reffect size. 

Instead, the r is known as rcontrast to indicate that it is derived from a multi-group contrast.  

 

The definition of rcontrast is somewhat difficult to grasp. Fortunately, a complete understanding is 

not essential to follow the procedures outlined here. Nonetheless, rcontrast is defined as the 

correlation between each individual's classification on the multi-category variable and his or her 

score on the dimensional variable AFTER partialing out between group variability that is not due 

to the focused contrast. 

 

For the second step in our efforts to produce reffect size we need to compute ralerting, which is the 

correlation between each group's mean score on the dimensional variable and the contrast weight 

assigned to that group. Thus, if there are three groups with means of 2.0, 3.5, and 5.0 and the 

groups have been assigned contrast weights of -1, 0, and 1, then these three pairs of values (i.e., 

2.0 and -1; 3.5 and 0; and 5.0 and 1) are correlated to produce ralerting = 1.0. 

 

For the third and final step, the results from the first two steps are entered into the following 

formula to compute reffect size. (Note that both rcontrast and ralerting are squared in the denominator of 

the equation.) 

 

reffect size = rcontrast / square root[(1 - r2
contrast) + (r2

contrast / r
2

alerting)] 

 

To illustrate these procedures, suppose a researcher hypothesizes higher doses of anti-anxiety 

medication will lead to increased functioning in patients with anxiety disorders. The researcher 

randomly assigns 20 patients to four groups that differ in medication dose, including no 

medication, 100 milligrams, 200 mg, and 300 mg. Given these four conditions and the stated 

hypothesis that mean scores of functioning should increase in tandem with increasing medication 

dosage, appropriate contrast weights are assigned to the four groups to test a focused hypothesis. 

In this instance, appropriate contrast weights would be -3, -1, +1, and +3, respectively. These 

weights sum to zero and they indicate that the group means should be ordered as follows: no 
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medication < 100 mg < 200 mg < 300 mg. Let's assume that besides this information (i.e., that 

there are four groups and a logical hypothesis that dictates appropriate contrast weights) the only 

data available from the researcher's original report are the results of an F test examining the 

contrast hypothesis and the mean score on the functioning variable in each group after treatment. 

Specifically, we know: 

 

Fcontrast(1,16) = 100.0, and  

 

Condition 
Mean Post- 

Treatment 

Contrast 

Weight 

No medication 3.0 -3 

100 mg 1.0 -1 

200 mg 9.0 +1 

300 mg 7.0 +3 

 

Note that by definition, F = t2. Thus, when Fcontrast(1,16) = 100.0, tcontrast(16) = 10.0. Given this, 

we can use either the formula in Section II-A-1 (for t) or in Section II-A-3 (for F) to translate the 

results into rcontrast. For simplicity, we will use the equation from Section II-A-3: 

 

rcontrast = square root(F / (F + dfwithin)) 

 = square root(100 / (100 + 16)) 

 = square root(.86) 

 = .928 

 

Next, we compute ralerting by correlating the values in the Post Treatment Mean column of the 

table above with the values in the Contrast Weights column. Doing so we find ralerting = .707.  

 

Finally, we use rcontrast and ralerting to obtain reffect size. Using the example data, the equation would 

be: 

 

reffect size = rcontrast / square root[(1 - r2
contrast) + (r2

contrast / r
2

alerting)] 

  = .928 / square root[(1 - .861) + (.861 / .500)]  

  = .928 / square root(1.861)  

  = .928 / 1.364  

  = .680 

 

Thus, the researcher's focused hypothesis was supported. The impact of increasing dosages of 

anti-anxiety medication on improved functioning in patients with anxiety disorders is reffect size = 

.68, which is a substantial effect. 

 

 

 II-A-4-b: Scenario 2 - When given group Ms, SDs, and ns 

 

Scenario 2 is applicable when the original output provides  

a) the mean for the dimensional variable in each of the multi-category groups,  

b) the SD for the dimensional variable in each group, and  

c) the n in each group.  
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Most often, findings in the published literature do not report F-tests derived from a focused 

contrast. A more common scenario occurs when the original report provides the mean, the SD, 

and the n for the dimensional variable in each of the multi-category groups. Using this 

information, we can compute reffect size in a 4-step process. First, we compute a t test that evaluates 

the relevant focused contrast, known as tcontrast. This is the hard part. With this value in hand, we 

simply follow the remaining steps that had been outlined under Scenario 1. Thus, step two 

converts tcontrast to rcontrast, step three computes ralerting, and step four uses rcontrast and ralerting to 

obtain reffect size.  

 

As mentioned, the hard part is computing a t-value that corresponds to the focused contrast. This 

is accomplished through a formula provided in Rosnow and Rosenthal (1996; Equation 1) or 

Rosenthal et al. (2000; Equation 3.10). This formula is somewhat difficult to reproduce in a text 

file that will be converted by various word processing programs. However, it is provided below 

in a somewhat longhand form. 

 

tcontrast = Summation(Mi * CWi) / square root[MSwithin * (Summation(CW2
i / ni))] 

 

where Mi is the mean for each group, CWi is the contrast weight assigned to each group, ni is the 

number of subjects in each group, and MSwithin is the error variance from a between subjects 

ANOVA. The MSwithin can also be estimated by computing the pooled variance across groups, 

with each variance weighted by sample size; i.e., [Summation(SD2
i * ni) / N]. 

 

To illustrate this formula, we again use the example begun in Scenario 1. As before, the 

hypothesis is that functioning should increase as medication dosage increases. Although the 

original research report may not have specified appropriate contrast weights, the hypothesis 

dictates the appropriate contrast weights that we should assign to the four medication groups. 

Let's assume that this time the research report provided group Ms, SDs and ns, but did not 

provide the results from an F test examining a focused hypothesis. Consequently, the available 

information consists of group data and a logical hypothesis that we use to produce contrast 

weights. The information is as follows: 

 

Condition 
Post Treatment Contrast 

Weight Mean SD n 

No medication 3.0 1.0 5 -3 

100 mg 1.0 1.0 5 -1 

200 mg 9.0 1.0 5 +1 

300 mg 7.0 1.0 5 +3 

 

 

With these pieces of data, the first step is to compute tcontrast. However, to do so we also need the 

MSwithin. Because the research report did not provide this information, we will estimate it using 

the pooled variance across groups. Because each group has SD = 1 and n = 5, some readers may 

realize immediately that the pooled variance will be 1.0. However, for the sake of clarity, the 

computations will be illustrated across the four groups using the equation Summation(SD2
i * ni) / 

N, where i = groups 1 to 4. 
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MSwithin = Summation(SD2
i * ni) / N 

   = [(12 * 5) + (12 * 5) + (12 * 5) + (12 * 5)] / 20 

   = (5 + 5 + 5 + 5) / 20 

   = 20 / 20 

   = 1.0 

 

Given that we now know MSwithin, the tcontrast computations can continue:  

 

tcontrast  = Summation(Mi * CWi) / square root[MSwithin * (Summation(CW2
i / ni))] 

 = [(3*-3)+(1*-1)+(9*1)+(7*3)] / square root[1.0*((-32/5)+(-12/5)+(12/5)+(32/5))] 

 = [-9 + -1 + 9 + 21] / square root[1.0 * (1.8 + 0.2 + 0.2 + 1.8)] 

 = 20 / square root(4) 

 = 20 / 2 

 = 10.0 

 

(This t result is the same as that obtained in Scenario 1 when we computed t by taking the square 

root of the F value that the researcher had reported for testing the focused contrast.)  

 

For step two, we use the formula from Section II-A-1 to translate this tcontrast into rcontrast. Because 

the tcontrast in this instance is computed from a study with 20 subjects in a 4-group design, dfwithin 

= 20 - 4 = 16. 

 

rcontrast = square root(t2 / (t2 + dfwithin)) 

 = square root(10.02 / (10.02 + 16)) 

 = square root(100 / 116) 

 = square root(.862) 

 = .928 

 

Thus, as in Scenario 1, the result is rcontrast = .928.  

 

For step three, we compute ralerting by correlating the four group means (3.0, 1.0, 9.0, and 7.0) 

with their assigned contrast weights (-3, -1, 1, and 3, respectively). Doing so we obtain ralerting = 

.707.  

 

For the fourth and final step, we plug the values for rcontrast and ralerting into the reffect size formula.  

 

reffect size = rcontrast / square root[(1 - r2
contrast) + (r2

contrast / r
2

alerting)] 

  = .928 / square root[(1 - .861) + (.861 / .500)]  

  = .680 

 

Thus, using slightly different initial information, we once again see that the researcher's focused 

hypothesis was supported and increasing dosages of anti-anxiety medication are associated with 

improved functioning at a magnitude of reffect size = .68. 
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 II-A-4-c: Scenario 3 - When given group Ms and results from an omnibus F test 

 

Scenario 3 is applicable when the original output provides  

a) the mean for the dimensional variable in each of the multi-category groups and  

b) the results of an omnibus F test. 

 

This is the scenario that will probably be encountered most often. The original output consists of 

the mean for the dimensional variable in each of the multi-category groups and the generic 

omnibus F-value that comes from testing the null hypothesis that all the group means are equal. 

In other words, the output consists of a default F test that does not evaluate a focused or 

hypothesized contrast across the multi-category variable.  

 

With this kind of information, five steps are required to obtain reffect size. First, we determine what 

would be the maximum possible size of an F test examining a focused contrast. Second, we 

compute ralerting. Third, we use information from the first two steps to compute Fcontrast, which is 

the F that tests the relevant focused contrast. Fourth, we convert Fcontrast to rcontrast. Finally, we 

use rcontrast and ralerting to obtain reffect size.  

 

To illustrate these steps the example from Scenario 1 and 2 will be used again. The focused 

hypothesis was that functioning should increase as medication dosage increased, which readily 

allowed us to specify contrast weights for each group to directly test this hypothesis. In addition, 

let's assume that now the researcher only provided two pieces of information. We have post-

treatment mean scores on the functioning variable in each of the four groups and the results of an 

omnibus F test (i.e., with numerator df = 3). We don't have any other data. Thus, when combined 

with the hypothesis dictated contrast weights, the available information is: 

 

F(3,16) = 66.667, and  

 

Condition 
Mean Post- 

Treatment 

Contrast 

Weight 

No medication 3.0 -3 

100 mg 1.0 -1 

200 mg 9.0 +1 

300 mg 7.0 +3 

 

 

Given this information, for the first step we determine the maximum possible F-value for any 

focused contrast. This quantity is denoted FMPC to indicate it is the F corresponding to the 

maximum possible contrast. It indicates what the results of a focused contrast would be if the 

contrast explained all the variation among the group means. FMPC is computed by multiplying the 

omnibus F by its numerator degrees of freedom.  

 

FMPC  = FOmnibus * dfbetween 

 

For the current example, to solve this equation we simply plug in the information provided by 

the researcher as given above.  
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FMPC  = FOmnibus * dfbetween 

 = 66.667 * 3  

 = 200.00 

 

For the second step, we compute the alerting correlation, ralerting, which is the correlation between 

the four group means (3, 1, 9, and 7) and their contrast weights (-3, -1, 1, and 3, respectively). As 

before, we obtain ralerting = .707. 

 

Third, we compute the F-value that corresponds to our hypothesized contrast, which is 

designated Fcontrast. This is computed according to the following formula, which is then 

illustrated using the example data. 

 

Fcontrast = FMPC * r2
alerting 

 = 200.00 * (.7072) 

 = 200.00 * .50 

 = 100.00 

 

Fourth, we translate the Fcontrast into rcontrast by using the formula in Section II-A-3 of this 

document. Doing so for the example data produces rcontrast = .928, as illustrated below. 

 

rcontrast = square root(F / (F + dfwithin)) 

 = square root(100 / (100 + 16)) 

 = square root(.86) 

 = .928 

 

Fifth, and finally, we insert the rcontrast and ralerting values into the formula for reffect size. 

 

reffect size = rcontrast / square root[(1 - r2
contrast) + (r2

contrast / r
2

alerting)] 

  = .928 / square root[(1 - .861) + (.861 / .500)]  

  = .680 

 

Thus, once again, when using slightly different initial information, we see that increasing 

dosages of anti-anxiety medication are associated with improved functioning because reffect size = 

.68. 

 

 

 II-A-5: Pearson's r From the Output of an Omnibus Chi-Square Test (i.e., df > 1). 

 

It is also more complicated to compute r from the output of an omnibus chi-square analysis, in 

which one variable has 2 or more categories and the other variable has 3 or more categories. 

Because of the increased complexity, example SPSS and SAS syntax is not provided below. 

However, basic procedures are described most explicitly in Rosnow and Rosenthal (1996) and 

they are summarized here. After summarizing Rosnow and Rosenthal's procedures, a 

computationally simple alternative procedure is also described. 
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Rosnow, R. L., & Rosenthal, R. (1996). Computing contrasts, effect sizes, and counternulls on 

other people's published data: General procedures for research consumers. Psychological 

Methods, 1, 331-340.  

 

 II-A-5-a: The Rosnow and Rosenthal (1996) Approach 
 

The procedures outlined in Rosnow and Rosenthal (1996) apply to a chi-square in which one 

variable has just two categories and the other has three or more categories (i.e., a 2 x k table, 

where k = columns > 2). In what follows, the data will be organized so the two-category variable 

constitutes the rows and the variable with three or more categories constitutes the columns. The 

procedures require that the existing output contain frequencies for each cell in the chi-square 

table or proportions that can be converted to frequencies. Based on this information, to compute 

reffect size we follow a seven-step process.  

1) Using theory or prior research, we determine appropriate contrast weights (CWi) for each 

column (i.e., for each category in the variable that has 3 or more categories).  

2) We then select one of the two rows to be a reference row and compute pi, which is the 

proportion of observations that fall in the cells formed by the intersection of that row and 

each column. Specifically, pi is computed as the cell frequency (fi) divided by its column 

total (ni). 

 pi = fi / ni 

3) Next, we compute the variance for each column proportion, pi, using the following 

formula. 

 S2
i =  pi * (1 - pi) / ni  

4) We then compute Zcontrast according to the following formula, with notation as defined in 

the previous steps. 

  Zcontrast = Summation(pi * CWi) / square root[(Summation(S2
i * CWi))] 

5) Next, we translate the Zcontrast to rcontrast using the following formula, where N = total 

sample size.  

 rcontrast = Zcontrast / square root(N) 

6) Next, we compute ralerting, which is now the correlation between each column proportion 

(pi) and its corresponding contrast weight (CWi).  

7) Finally, we use ralerting and rcontrast to compute reffect size via the formula provided earlier. 

  reffect size = rcontrast / square root[(1 - r2
contrast) + (r2

contrast / r
2

alerting)] 

 

Because Rosnow and Rosenthal's (1996) emphasis was on explaining how to compute focused 

contrasts, rather than effect sizes, steps 6 and 7 are not detailed in their article. They are also not 

described in the other sources we have been referencing (i.e., Rosenthal et al., 2000; Rosnow et 

al., 2000). Nonetheless, to compute ralerting from a chi-square table having 2 rows and k columns, 

one selects the cell proportions in one of the rows to serve as reference values, which makes 

them analogous to the condition means that we have used previously when computing ralerting. (In 

fact, if entries in the first row of the table are coded as 0 and entries in the second row are coded 

as 1, the proportions for each cell in the second row are the means for each column.)  

 

As can be seen, there are many steps and formulas that must be used to compute reffect size from a 2 

x k table according to these procedures. In addition, the procedures are limited to instances when 

the original data relied on one variable that was dichotomous.  
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To contend with these limitations, there is an alternative set of procedures that can be employed. 

These procedures also require frequency information for each cell in a chi-square table (or the 

ability to compute frequency information from proportions or other data). However, one benefit 

of the alternative procedures is that they are not limited to a 2 x k design and instead can be 

employed with tables of any size. In addition, the procedures do not require the use of any 

formulas, though they do require some data entry.  

 

 II-A-5-b: Reconstructing the database 

 

For the alternative procedures, the goal is to reconstruct a version of the original database. To do 

so, we need cell frequencies for the table (or some means of computing the frequencies) and we 

need to be able to specify an appropriate hypothesized contrast for both variables in the chi-

square analysis.  

 

With this information, the only remaining step is to re-create a version of the original database. 

When doing this, each subject in the data set is assigned two values, one corresponding to their 

row contrast weight and the other corresponding to their column contrast weight. In other words, 

we create a new data set that assigns appropriate contrast weights for both variables to each 

"subject" in the original study.  

 

For instance, let's assume the design is a 3 x 3 table in which 3 categories of MMPI-2 T-scores 

on Scale 2 are examined in relation to a 3-category classification of depressive disorders. (Note 

that MMPI-2 scores would most appropriately be analyzed as dimensional variables rather than 

being split into three categories. The latter is done here simply to illustrate the procedures.) 

MMPI-2 T-Scores are classified as below average (i.e., T < 50), average to mildly elevated (i.e., 

T = 50 to 65), and moderately to severely elevated (i.e., T > 65). The three categories of 

depressive disorder diagnoses are classified as No Depressive Diagnosis, Dysthymia, and Major 

Depression. The research hypothesis is that higher elevations on Scale 2 are positively associated 

with more severe depressive diagnoses.  

 

In this instance, appropriate MMPI-2 Scale 2 contrast weights would be formed by assigning a 

value of -1 to subjects with T-Scores < 50, a value of 0 to subjects with T-Scores in the range 

between 50 and 65, and a value of 1 to subjects with T-Scores > 65. For the diagnosis variable, 

the appropriate contrast weights would be: no depressive diagnosis = -1, dysthymia = 0, and 

major depression = 1.  

 

Next, we create a new data set in SPSS or SAS. The data set will consist of two variable columns 

(a third optional column can also be used to indicate subject ID numbers). The first variable 

column will be used to record the contrast weights for the MMPI-2 Scale 2 classifications and 

the other variable column will be used to record the contrast weights for the depressive disorder 

classifications. 

 

After the dataset structure is created the next step is to systematically translate the chi-square 

table of cell frequencies into the new data set. Let's assume that the existing table is set up as a 3 

x 3 matrix of cell frequencies, as depicted below. (If the table of frequencies does not exist in this 

form but can be produced from other information, our initial effort would be to create the 3 x 3 

matrix of frequencies.) Our first step is to add notations to the table that designate the appropriate 
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contrast weights (CW) that should be assigned to each category on both variables. In the 

following table, these weights are indicated in parentheses for each column heading and each 

row heading.  

     

 

Depressive Diagnosis 

No Dep Dx  

(CW = -1) 

Dysthymia 

(CW = 0) 

Major Dep. 

(CW = +1) 

MMPI-2 Scale 2 

T-Score Ranges 

T < 50 (CW = -1) 5 1 2 

T = 50-65 (CW = 0) 2 3 3 

T > 65 (CW = +1) 1 3 5 

 

Based on this information, we see there are 5 patients in the upper left cell formed by the 

intersection of the "T-scores < 50" row and the "no depressive diagnosis" column. To reconstruct 

this finding in the newly created data set, we insert 5 rows, one for each subject represented in 

this cell. Each of these 5 "subjects" will be assigned scores of -1 in the column created for the 

MMPI-2 Scale 2 contrast weights and also scores of -1 in the column created for the Diagnosis 

contrast weights. Once this has been done, data entry for that cell of the table is complete. Next, 

we move to the cell directly below. Here we see there are 2 patients who have T-scores between 

50-65 and no depressive diagnosis. Thus, we reconstruct this finding in the new data set by 

inserting 2 more rows. Both of these "subjects" will be assigned scores of 0 in the MMPI-2 

contrast weight column and scores of -1 in the Diagnosis contrast weight column. Once 

accomplished, data entry for that cell is complete so we again move down to the cell directly 

below. Because there is one subject in this cell, we enter one new row into the data set and assign 

this "subject" a value of 1 for the MMPI-2 contrast weight and a value of -1 for the Diagnosis 

contrast weight. Data entry would continue until the subjects in every cell are accounted for (i.e., 

because N = 25, we would continue until 25 rows of data have been entered in each of the 

contrast weight columns).  

 

As the final step in the analysis, we simply correlate the assigned scores in the MMPI contrast 

weight column with the assigned scores in the Diagnosis contrast weight column. Doing so 

produces reffect size. Based on the data for this example, the result should be reffect size = .398. 

 

 

 

II-A-6. Pearson's r from Cohen's d. 

 

To compute r from Cohen's d, use one of the following formulas. 

 

 II-A-6-a: The exact formula. 

 

This formula is appropriately sensitive to the number of subjects in each of the two groups. First 

create a data file that contains three variables, one labeled "Cohens_d", another labeled "grp1n", 

and the third labeled "grp2n". Next, enter the observed value for Cohen's d in the "Cohens_d" 

column, enter the number of subjects in one group in the "grp1n" column, and enter the number 

of subjects in the other group in the "grp2n" column. Finally, run the following syntax 

commands (where sqrt = square root, and **2 = squared). 

 



Basic ES Computations, p. 23 

 

SPSS:  
COMPUTE N = grp1n + grp2n. 

COMPUTE r_Exact = Cohens_d / sqrt(Cohens_d**2 + (1 / ((grp1n / N) * (grp2n / 

N)))). 

EXECUTE . 

 

SAS: 
DATA newdata; 

   SET olddata; 

   N = grp1n + grp2n; 

   r_Exact = Cohens_d / sqrt(Cohens_d**2 + (1 / ((grp1n / N) * (grp2n / 

N)))); 

RUN; 

 

Note. The sign of this correlation is arbitrary. When the direction of the result is consistent with 

the a priori hypothesis, it should be reported with a positive sign. When a result is in the direction 

opposite of that specified by the hypothesis, it should be given a negative sign. 

 

 II-A-6-b: The approximate formula. 

 

This formula is not sensitive to the number of subjects in each of the two groups. Therefore, it 

should only be used when one can legitimately assume that the group ns are equal in the 

population of interest or equal in principle. First create a data file that contains just one variable 

labeled "Cohens_d". Next, enter the observed value for Cohen's d in this column. Finally, run the 

following syntax command (where sqrt = square root, and **2 = squared). 

 

SPSS: 
COMPUTE r_EqualN = Cohens_d / sqrt(Cohens_d**2 + 4) . 

EXECUTE . 

 

SAS: 
DATA newdata; 

   SET olddata; 

   r_EqualN = Cohens_d / sqrt(Cohens_d**2 + 4); 

RUN; 
 

Note. The sign of this correlation is arbitrary. When the direction of the result is consistent with 

the a priori hypothesis, it should be reported with a positive sign. When a result is in the direction 

opposite of that specified by the hypothesis, it should be given a negative sign. 

 

 

 

 

II-B.  Cohen's d as the Effect Size 

 

II-B-1: Cohen's d from t-Test Output. 

 

To compute Cohen's d from t-test output, use one of the following formulas. 
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 II-B-1-a: When the size of each group is known. 

 

First create a data file that contains four variables. The first should be labeled "t_value", the 

second labeled "df", the third labeled "grp1n", and the fourth labeled "grp2n". Next, enter the 

observed value for the t statistic in the "t_value" column, enter the degrees of freedom for the t-

test in the "df" column, enter the number of subjects in one group in the "grp1n" column, and 

enter the number of subjects in the other group in the "grp2n" column. Finally, run the following 

syntax commands (where sqrt = square root). 

 

SPSS:  
COMPUTE N = grp1n + grp2n. 

COMPUTE d_by_t = (t_value * N) / (sqrt(df) * sqrt(grp1n * grp2n)) . 

EXECUTE . 

 

SAS: 
DATA newdata; 

   SET olddata; 

   N = grp1n + grp2n; 

   d_by_t = (t_value * N) / (sqrt(df) * sqrt(grp1n * grp2n)); 

RUN; 
 

Note. The sign of d is arbitrary. When the direction of the result is consistent with the a priori 

hypothesis, it should be reported with a positive sign. When a result is in the direction opposite 

of that specified by the hypothesis, it should be given a negative sign. 

 

 

 II-B-1-b: When the size of each group is unknown but df is available. 

 

The following provides an estimate of d, but the results will only be exact if the group sizes are 

equal. First create a data file that contains two variables, one labeled "t_value" and the other 

labeled "df". Next, enter the observed value for the t statistic in the "t_value" column and enter 

the degrees of freedom for the t-test in the "df" column. Finally, run the following syntax 

command (where sqrt = square root). 

 

SPSS: 
COMPUTE est_dbyt = (2 * t_value) / sqrt(df) . 

EXECUTE . 

 

SAS: 
DATA newdata; 

   SET olddata; 

   est_dbyt = (2 * t_value) / sqrt(df); 

RUN; 

 

Note. The formulas in this subsection are reasonably accurate when the group ns are of a similar 

size. The disparity in group ns should be no more extreme than 70:30. When the group ns 

become more unequal, d is increasingly underestimated. 
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Note. The sign of d is arbitrary. When the direction of the result is consistent with the a priori 

hypothesis, it should be reported with a positive sign. When a result is in the direction opposite 

of that specified by the hypothesis, it should be given a negative sign. 

 

 

II-B-2: Cohen's d From F Test Output When Just Two Groups Have Been Compared. 

 

To compute Cohen's d from an F test that has numerator df = 1 (i.e., when just two groups have 

been compared) and group ns are known, first create a data file that contains four variables. The 

first should be labeled "F_value", the second labeled "df_wthin", the third labeled "grp1n", and 

the fourth labeled "grp2n". Next, enter the observed value for the F statistic in the "F_value" 

column, enter the within subjects degrees of freedom for the F test in the "df_wthin" column, 

enter the number of subjects in one group in the "grp1n" column, and enter the number of 

subjects in the other group in the "grp2n" column. Finally, run the following syntax commands 

(where sqrt = square root). 

 

SPSS:  
COMPUTE N = grp1n + grp2n. 

COMPUTE d_by_f = sqrt(F_value) * N / (sqrt(df_wthin) * sqrt(grp1n * grp2n)) . 

EXECUTE . 

 

SAS: 
DATA newdata; 

   SET olddata; 

   N = grp1n + grp2n; 

   d_by_f = sqrt(F_value) * N  / (sqrt(df_wthin) * sqrt(grp1n * grp2n)); 

RUN; 

 

Note. The sign of d is arbitrary. When the direction of the result is consistent with the a priori 

hypothesis, it should be reported with a positive sign. When a result is in the direction opposite 

of that specified by the hypothesis, it should be given a negative sign. 

 

 

II-B-3: Cohen's d from Pearson's r. 

 

To compute d from r, create a data file with just one variable labeled "r" and enter the observed 

correlation in this column. Next, run the following syntax command (where sqrt = square root, 

and **2 = squared). 

 

SPSS:  
COMPUTE d_by_r = (2 * r) / sqrt(1 - r**2) . 

EXECUTE . 

 

SAS: 
DATA newdata; 

   SET olddata; 

   d_by_r = (2 * r) / sqrt(1 - r**2); 

RUN; 
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Note. Transformations from r to d and vice versa are imprecise because r is sensitive to marginal 

distributions (i.e., the number of subjects in each category of a dichotomous variable) but 

generally speaking Cohen's d is not. 

 

Note. The sign of d is arbitrary. When the direction of the result is consistent with the a priori 

hypothesis, it should be reported with a positive sign. When a result is in the direction opposite 

of that specified by the hypothesis, it should be given a negative sign. 
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