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Exner, 1993) in 8 relatively large samples, including (a) students, (b) experienced re-
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searchers, (c) clinicians, (d) clinicians and then researchers, (e) a composite clinical
sample (i.e., a to d), and 3 samples in which randomly generated erroneous scores
were substituted for (f) 10%, (g) 20%, or (h) 30% of the original responses. Across
samples, 133 to 143 statistically stable CS scores had excellent reliability, with me-
dian intraclass correlations of .85, .96, .97, .95, .93, .95, .89, and .82, respectively. We
also demonstrate reliability findings from this study closely match the results derived
from a synthesis of prior research, CS summary scores are more reliable than scores
assigned to individual responses, small samples are more likely to generate unstable
and lower reliability estimates, and Meyer’s (1997a) procedures for estimating re-
sponse segment reliability were accurate. The CS can be scored reliably, but because
scoring is the result of coder skills clinicians must conscientiously monitor their
accuracy.

Scoring a Rorschach according to the Comprehensive System (CS; Exner, 1993) is
a two-step process. First, a sequence of scores is produced for each patient. This
grid of data has rows that designate each response given to the 10 inkblots and col-
umns that contain the specific scores that quantify salient response features. Next, a
structural summary is generated. As its name implies, the structural summary pro-
vides sums that correspond to each of the scores (columns) aggregated across all re-
sponses (rows). In addition, the structural summary contains numerous ratios and
indexes derived from the combination of these summary scores.

Given the preceding, CS scoring reliability can be evaluated in one of three
primary ways. First, one can examine the patient-level reliability of summary
scores. Here, consistency is evaluated by comparing independently generated
summary scores across all patients in a sample. Attention is not given to the
scores assigned to each and every response. Second, one can examine the re-
sponse-level reliability of specific score options. Here, each unique score option
(e.g., W, D, Dd, S, DQ+, DQo, etc.) is considered separately and consistency is
evaluated across all responses in a sample, regardless of which patient provided
the responses. Attention is not given to the manner in which scores aggregate to
characterize individual patients. A third approach examines the response-level
reliability of multiscore response segments. Like the second approach, consis-
tency is evaluated across each response in a sample, regardless of which patient
produced the response. However, instead of considering each specific score, this
approach organizes scores into meaningful segments such that unanimous agree-
ment is evaluated across all location scores, all developmental quality scores, all
determinant scores, and so on. This is a more general type of analysis that does
not give attention to the distinct score options within a segment.

Meyer (1997a, 1997c) organized interrater reliability information pertaining to
the third approach in a meta-analytic review that examined 10 commonly used re-
sponse segments. Data were obtained from 16 studies published in the Journal of
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Personality Assessment between 1992 and 1995. For the response segments, reli-
ability coefficients were based on Ns that ranged from 1,400 to 9,919 responses (M =
5,448). Results indicated the CS had excellent chance-corrected reliability, with
percentage agreement values that ranged from .87 to .96 (M = .92) and estimated
kappa values that ranged from .72 to .96 (M = .86) across response segments.

Although these results were quite strong, Meyer’s (1997a) study had several
potential limitations. First, it relied on a formula to estimate kappa from the
percentage agreement values available in the published literature. In a comment
that accompanied the meta-analysis, Wood, Nezworski, and Stejskal (1997)
referred to Meyer’s (1997a) statistical procedures as “flawed,” “shaky,”
“dubious,” “unsound,” and “fatally deficient” (pp. 493–494). Although Meyer
(1997c) pointed out how Wood et al. (1997) failed to recognize the mathematics
needed to generate correct kappa estimates, it would be useful to directly evaluate
his procedures with several independent samples of data.

The meta-analysis also was potentially limited because it focused on
multiscore response segments. Although this approach reflects a stringent test of
reliability because it requires unanimous agreement for all scores in a segment,
it does not explore the reliability for every specific CS score. For instance, the
various scores for Color (none, FC, CF, C, Cn), diffuse Shading (none, FY, YF,
Y), Human Movement (none, Ma, Mp, Ma–p), and so on, are not considered
separately from the broader determinant segment that subsumes all these scores.
Meyer (1997a) thus noted how his analysis would not pinpoint potentially prob-
lematic scoring rules should they exist for specific scores. Because it is impor-
tant to evaluate the reliability of all specific CS scores, we report that
information in this article.

Meyer’s (1997a) meta-analysis also focused on response-level reliability rather
than patient-level reliability. Because scores are only assigned to responses, this
level of analysis was viewed as appropriate for evaluating the clarity of CS scoring
rules. It is also the most stringent means for evaluating coder agreement because it
does not permit disagreements to “cancel out” when responses are summarized for
patients. For instance, a patient’s 20-response Rorschach protocol may have 6 re-
sponses in which one of the color determinants (i.e., FC, CF, C, Cn) are assigned.
When summed across all responses, Rater A and Rater B may both produce equiv-
alent total scores for the patient, say three FC scores and three CF scores. How-
ever, it is possible for the raters to never assign the same score to the same
responses. Each time Rater A assigns a CF, Rater B may assign a FC, and vice
versa. Reliability coefficients calculated at the level of individual responses would
detect this type of disagreement, whereas summary score coefficients calculated at
the patient level would not.

Although summary scores present a somewhat more liberal criterion, they are
given the greatest emphasis in research and clinical practice because they gener-
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ally form the foundation for interpretation and statistical analyses. As a result,
summary scores address the applied reliability of CS scoring, and it is essential to
understand the precision that accompanies these scores.

As a final issue, Meyer’s (1997a) meta-analysis was derived from the published
literature. Because researchers may be more conscientious scorers than clinicians
working in their day-to-day practice, the meta-analytic results may not character-
ize CS reliability in an applied setting. Thus, it would be optimal to evaluate reli-
ability using samples that include working clinicians.

In this study, we address each of the preceding issues. First, we report the
chance-corrected reliability of CS summary scores in eight diverse samples. In
five of the samples, we examined traditional interrater reliability coefficients. In
two of these five samples, we examined the scoring of researchers, with one sam-
ple comprised of students in training and the other comprised of more experienced
researchers. In the third sample, we examined the scoring of a large number of cli-
nicians trained by Rorschach Workshops, the fourth contrasted the scoring com-
pleted by clinicians as part of their day-to-day practice to the subsequent scoring of
researchers, and the fifth is a composite data set formed by combining the previous
four samples. In the remaining three samples, we examined different degrees of
experimentally manipulated random scoring error.

Second, we explore the difference between the patient-level reliability of sum-
mary scores and the response-level reliability of raw scores. Because aggregated
scores should contain less random measurement error (Lord & Novick, 1968;
Traub, 1994), we expected summary scores to show consistently larger reliability
values.

Third, we explore the impact of sampling error on CS reliability estimates to
understand the confounding effects of small samples (Carroll & Faden, 1978).
This is accomplished by repeatedly selecting small (n = 20) random subsamples
from our larger composite population (N = 219) and contrasting the reliabilities
found in the subsamples to the reliability observed in the population.

Fourth, we compare exact kappa values for CS response segments to the statis-
tical estimates generated by Meyer’s (1997a) formula to evaluate the generality of
his meta-analytic results. Finally, we compare the reliability coefficients derived
from our samples to other results obtained from the published literature.

The analyses reported here address numerous issues in a very detailed manner.
One could reasonably wonder if such an extensive effort is necessary. We believe
it is. Despite the prior meta-analysis, Wood and his colleagues (e.g., Wood &
Lilienfeld, 1999; Wood, Nezworski, & Stejskal, 1997; also see Garb, Wood,
Nezworski, Grove, & Stejskal, 2001; Lilienfeld, Wood, & Garb, 2000) have con-
tinued to claim that CS scoring reliability may be poor or inadequate. Viglione and
Hilsenroth (2001) pointed out important problems and inconsistencies in their ar-
guments and reviewed evidence indicating scoring reliability is sound. The de-
tailed findings we present from our data sets should serve to further solidify the
evidentiary foundation.
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METHOD

Samples

To answer questions about CS reliability with some degree of confidence, we gath-
ered samples that varied along a number of parameters. Our goal was to obtain rela-
tively large samples so there would be a sufficient degree of between-subject
variance for each Rorschach score. Ultimately, we collected eight data sets to ex-
amine 165 summary scores. The scores we examined are all those that are found on
the newest revision of the CS structural summary (Exner, 2001) and those that were
on the previous version of the structural summary (Exner, 1995). The eight data sets
described here were the only samples we examined for this study and the results
were not culled from a larger set of findings. Additionally, within each sample, our
analyses employed all usable information from every rater and target protocol. At
no time were any data points excluded because of the results they produced.

Sample 1—Student coders. This sample of 66 outpatient protocols was
derived from two sources. The first consisted of 23 protocols that had been scored
by Gregory Meyer and a bachelor’s level research assistant who had no prior as-
sessment experience and was being trained to administer and score the CS. Al-
though Meyer (e.g., 1997b) reported on the reliability for 63 protocols in this data
set, most of his archival records only contain summary information about the per-
centage of agreement observed across response segments. The 23 protocols used
here are all those in which two complete sets of independently derived scores were
available.

These protocols were obtained when the research assistant was beginning to
learn the CS scoring rules. Unlike scoring accuracy, scoring reliability is an index
of agreement among fallible coders. As such, the least proficient or least experi-
enced scorer in a sample largely determines reliability values.1 Consequently,
even though Gregory Meyer is an experienced rater, because his scoring partner
was a student in training it is most appropriate to consider the resulting coefficients
as indicating the reliability of a student rater.

The second source of data consisted of 43 outpatient protocols that were re-
cently used as part of another research project (see Meyer, Riethmiller, Brooks,
Benoit, & Handler, 2000). Each protocol was independently scored by three grad-
uate students who had completed a semester-long Rorschach course. More than
half of these protocols (i.e., 24 of 43) had been used for training purposes to ensure
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that the raters were scoring properly. Given that these were training protocols, we
expected a relatively large frequency of disagreements (particularly because one
of the coders had been initially trained in a scoring system other than the CS). One
could argue that reliability coefficients should only be derived from coders who
are believed to be relatively proficient, and therefore the 24 training protocols
should be dropped from this subsample. However, because the first source of stu-
dent protocols (i.e., the 23 described previously) had been obtained for training
purposes, we decided to include all 43 protocols from this second source in our re-
liability analyses.

Because we were interested in generalizing to student raters across different
settings, we wished to combine the second group of 43 protocols with the first
group of 23 protocols. To achieve this, we randomly selected two of the three rat-
ers for each of the 43 protocols in the second group. Specifically, we placed the 43
protocols in sequential order by code number. For the first 14 protocols, we se-
lected the scoring that was completed by Rater A and by Rater B. For the next 14
protocols, we selected the scoring completed by Rater B and by Rater C. For the fi-
nal 15 protocols, we selected the coding completed by Rater A and by Rater C.

Sample 2—Experienced coders. This sample consisted of protocols
scored by more experienced raters. Four of the authors of this article collected 65
protocols from studies they had conducted. Twenty were scored by Fowler and
Piers (see Fowler, Piers, Hilsenroth, Holdwick, & Padawer, 2001), 12 by Fowler
and Hilsenroth, 23 by Hilsenroth and an experienced psychometrician with exten-
sive CS administration and scoring experience, and 10 by Meyer and Holaday (see
Holaday, 1998). The majority of these protocols were collected from psychiatric
inpatients and outpatients, although the last 10 were obtained from children who
had experienced severe burns.

Sample 3—Clinician raters. Next, we considered using one of the two reli-
ability samples reported in Exner’s (1993) CS text. However, these samples were
obtained prior to 1986 and did not incorporate the most up-to-date CS scoring cate-
gories. Consequently, we examined data from a study that had been conducted in
1994 with clinicians who had attended training sponsored by Rorschach Work-
shops. This study was initiated by Rorschach Workshops but never completed be-
cause of an error in the data collection procedures. Initially, 300 clinicians were
supposed to have been mailed 1 of 10 protocols. Instead, 250 clinicians received 1
of 25 protocols and 50 received 2 of the 25 protocols. Although these data were
never analyzed because the design did not proceed as intended, technicians at Ror-
schach Workshops entered scores for any protocol that had been coded by at least 5
different clinicians. A total of 19 protocols met this criterion: 1 was scored by 7 cli-
nicians, 2 by 6 clinicians, and the remaining 16 were scored by 5 clinicians. For our
analysis, in the few instances when 6 or 7 clinicians had scored a protocol, the
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scores from 5 were randomly selected. Thus, the final sample consisted of 19 proto-
cols, each of which had been scored independently five times by one of 95 different
clinicians. Out of these 95 clinicians, 21 had only attended Rorschach Workshops’
basic tutorial, which is designed for clinicians with no prior exposure to the CS. The
remaining clinicians had some familiarity with the CS prior to taking a workshop.

The 19 reliability protocols were culled from a sample of outpatients who had
been tested at the Payne Whitney Clinic between 1984 and 1988. All patients had
been assigned a personality disorder diagnosis, although this was not necessarily the
primary diagnosis. Records were selected from the larger pool of patients to ensure
nonewereoverlyshort, long,orconstricted.Furthermore, the researchassistantwho
gathered the protocols was instructed to select records only if they were “reasonably
complex and difficult to score.” In combination, these selection procedures produce
more disturbed records than are typically found in an outpatient sample. The selec-
tion criteria were designed to serve two goals. First, by excluding short and con-
stricted protocols, the goal was to eliminate those that would be very easy to score
and therebyobtainmoremeaningful reliabilitydata.Second,byexcludingvery long
protocols, it was hoped that raters would not view the task as overly taxing, thereby
ensuring a maximal return rate from the volunteer clinicians.

Sample 4—Applied reliability. For this sample, we obtained 69 protocols
that were first administered, scored, and used by clinicians as part of their day-to-
day work at the Austin Riggs Center, Stockbridge, MA. Later, these protocols were
independently scored by Fowler or Piers for research purposes. Because the proto-
cols from this sample were initially used for clinical purposes, this sample allowed
us to determine the reliability of CS scoring in a nonresearch, applied setting. The
patients in this sample were predominantly young females who were receiving
long-term inpatient care for significant psychopathology (most had multiple Axis I
and Axis II disorders).

Sample 5—Composite clinical sample. Reliability coefficients are con-
strained by the degree of variability in the characteristic being rated (see follow-
ing). For our analysis of summary scores, we examined 165 distinct scores that are
part of a CS structural summary. To ensure that each score had roughly the degree
of variability that would be encountered by clinicians working in psychiatric set-
tings, the four samples of clinical data (i.e., Samples 1 to 4) were combined to form
a single composite sample. For Sample 3, in which five raters scored 19 protocols,
we simply selected protocols from two raters chosen at random. The composite
sample thus contained 219 protocols that were independently rated by two
individuals.

To determine whether these 219 protocols would generalize to a realistic psy-
chiatric setting, they were compared to a sequential series of 440 inpatients and
outpatients seen at the University of Chicago Medical Center (UCMC)who had an

CS INTERRATER RELIABILITY 225



electronically stored file of CS scores. Meyer (1997b, 2002) described this sample
more fully. Briefly, about half of the patients were inpatients (56%), female (55%),
of European American heritage (56%), never married (56%), and diagnosed with a
depressive spectrum disorder (52%). The patients had an average age of about 34
and an average of about 13 years of education.

To evaluate whether there were meaningful differences between the UCMC
sample and the 219 reliability protocols, we used a fixed standard of effect size
magnitude. In a number of investigations with the Minnesota Multiphasic Person-
ality Inventory (Hathaway & McKinley, 1943), researchers have suggested that a
clinically salient difference is one that exceeds 5 T-score points (Greene, 2000;
McNulty, Graham, Ben-Porath, & Stein, 1997; Timbrook & Graham, 1994), so we
used this as our benchmark. When translated into alternative measures of effect
size, this standard produces a Cohen’s d value of .50 and an r value of roughly .25.
Thus, our interest was in determining whether any of the 165 CS scores in the com-
posite sample differed from the sequentially collected clinical sample by a d value
greater than or equal to .50 or an r value greater than or equal to .25.

Four analyses were conducted. First, we examined the variance of all 165 scores
in the reliability sample relative to the sequential UCMC patients. These analyses
were run separately for both raters in the reliability sample. Next, we examined the
mean of all 165 scores in the reliability sample relative to the UCMC patient sample.
The analyses again were run separately for both sets of reliability scores.

Across 165 variance comparisons with Rater 1, the UCMC sample was less
variable than the composite reliability sample on Form Dominated Diffuse Shad-
ing (i.e., FY; effect size as r = .254, T-score equivalent = 5.24). Conversely, the
UCMC sample was more variable than the composite reliability sample on the Art
content code (r = .256, T score = 5.29), the Explosion content code (r = .263, T
score = 5.46), and the ALOG Special Score (r = .254, T score = 5.25). Across 165
variance comparisons with Rater 2, the UCMC sample was more variable than the
composite reliability sample on synthesized vague perceptions (i.e., DQv/+; r =
.254, T score = 5.26), the Art content code (r = .272, T score = 5.64), the Explosion
content code (r = .254, T score = 5.26), and the DV–Level 2 Special Score (r =
.297, T score = 6.22).

Thus, only two of 165 variance differences replicated across both Rater 1 and
Rater 2. The Composite reliability sample was too restricted on Art and Explosion
content. Theoretically, because variance was restricted in the reliability sample,
one could increase the observed reliability values for these scores to more appro-
priately estimate their true reliability. However, we made no attempt to increase
the reliability coefficients for these variables. Importantly, across the 330 analy-
ses, there were no replicated instances when the composite reliability sample had
scores with excessively large variance. Consequently, there are no instances in
which the composite sample would produce artificially large reliability
coefficients.
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Across the 165 mean comparisons with Rater 1, the UCMC sample had lower
scores than the composite reliability sample on Form Dominated Diffuse Shad-
ing(i.e., FY; r = –.251, T score = 5.19) and higher scores than the composite on un-
usual Form Quality (i.e., Xu%; r = .263; T score = 5.45). Across 165 mean
comparisons with Rater 2, the UCMC sample had a higher mean than the compos-
ite sample on just the Art content code (r = .252; T score = 5.20). Thus, there were
no mean differences that replicated across both raters.

Overall, the results from these analyses clearly suggest that the composite reli-
ability sample approximates the kinds of cases and data one would encounter in
applied practice with inpatients and outpatients. Out of 660 tests of variance or
mean differences, there were only two replicated differences, both of which sug-
gested the composite sample may artificially produce somewhat lower reliability
coefficients. Thus, even though the composite sample combined four diverse pri-
mary samples, it accurately represents the type of patients that would be encoun-
tered in a medical center and it accurately represents the type of raters that would
be encountered in a training environment (i.e., students and more experienced cli-
nicians and researchers).

Samples 6, 7, and 8—Random error samples. These samples used 57
protocols that were drawn from the UCMC patient sample described previously.
For each protocol, scoring error was experimentally manipulated by replacing a
fixed percent of the original responses with computer-generated erroneous scores.
In one sample, 10% of the original responses were replaced with erroneous scores;
in another, 20% of the original responses were replaced; and in the final sample,
30% of the original responses were replaced with wrong scores.

We examined these samples for several reasons. First, to our knowledge, no one
has experimentally manipulated Rorschach scoring accuracy before. Thus, these
analyses provide an initial benchmark for understanding the impact of randomly
generated scoring error. Second, raters regularly encounter responses that are diffi-
cult to code (e.g., FQu vs. FQo; Form Dominated vs. Form Secondary Color; Shad-
ing vs. Achromatic Color). To the extent that certain responses are truly ambiguous,
randomly generated scoring decisions mimic the judgment processes that emerge
when classifying such responses. Third, a reliability coefficient is designed to indi-
cate the percentage of observed variance in a score that is due to random error (e.g.,
Allen & Yen, 1979; Nunnally & Bernstein, 1994). However, coding reliability can
be lowered both by random error and by systematic error that is not consistent or
matched across rater pairs. Random error can emerge from temporary cognitive
lapses on the part of one or both raters, transient inattention to the coding task, or
from the tentative classifications that are assigned to truly ambiguous responses.
Systematic error is quite different. Systematic error can occur when one of the raters
misunderstands a coding rule, employs improper benchmarks when applying a cod-
ing rule, consistently assigns scores in a liberal or conservative fashion, consistently
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neglects certain coding decisions, or all of these. When these types of systematic er-
ror affect one coder but not the other, reliability is reduced. Even though both sys-
tematic and random error lower CS coding reliability, we believe it is useful to
understand the impact of purely random error on the coding process.

To insert randomly generated error into the initial responses, we used the fol-
lowing procedures. First, to determine which responses in a protocol should be al-
tered, a uniform distribution of 10,000 random numbers between 1 and 10 was
generated. This distribution was used in a sequential fashion. The first number in-
dicated which Rorschach card should have a response altered. If this card only had
one response, that response was changed. If the designated card had more than one
response, the list of random numbers was scanned for the next number that fell
within the range of responses to that card. This number then indicated which re-
sponse should be altered. To determine the next response to modify, the table was
entered at the point where it had been left and the next number determined the card
that should have a response changed. If there was more than one response on this
card, the table was consulted again until a number was found that fell within the
range of responses to that card. For each protocol, these steps proceeded until 10%,
20%, or 30% of the existing responses had been changed. All altered responses
were tracked to ensure they were not modified a second time (i.e., only original re-
sponses were changed).

To change each score within a response, a computer program was developed to
randomly generate scores in line with their base rates in the full sample.2 Spe-
cifically, a pool of 3,500 score options was generated for each independent score
category (i.e., 3,500 options for Location [W, D, Dd], 3,500 options for Space [S,
no-S], 3,500 options for Human Movement [Ma, Mp, no-M], etc.). These score
options were randomly arranged in a list and used sequentially. Although it would
have been easiest to replace an existing response with a complete set of randomly
generated scores, we did not replace an original score with an identical random
score. Instead, we ensured every score in the altered response had not been as-
signed in the original and vice versa. To accomplish this we used the following
steps. Within a response, the original score option assigned in every category was
changed to the next available option in the random pool, as long as the next avail-
able score was not the same as the original (e.g., a W would be changed to the next
available D or Dd but could not be changed to a W). However, when the original
response contained the “no-score” option for a category (e.g., no Color, no Tex-
ture, no FABCOM), we did not simply invert the score and assign that which had
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not been present. To do so would have produced very pathological looking re-
sponses. Instead, we allowed base rates to determine whether the “score-present”
option should be assigned. For instance, the response “Wv CF.YFo Art” has the
score-present option for six categories (i.e., Location, Developmental Quality,
Color, Diffuse Shading, Form Quality, and Art content) and the no-score option
for the remaining 52 categories (i.e., Human Movement, Texture, Pairs, Animal
content, Household content, Z Scores, Fabulized Combinations, Aggressive
Movement, etc.). To alter the assigned W score, the first non-W location from the
random list (i.e., either D or Dd) was inserted. To alter the remaining score-present
options, a randomly generated alternative was inserted from the list (i.e., either +,
o, or v/+ for Developmental Quality; FC, C, or no-C, for the Color category; FY,
Y, or no-Y from the diffuse Shading category; +, u, or – from the Form Quality cat-
egory; and no-Art from the Art Content category). For the categories with an initial
no-score option, simple base rates (i.e., the randomly generated list) determined
whether a score-present or no-score option was assigned to the new response. For
instance, base rates determined whether Ma, Mp, or no-M would be the appropri-
ate score for the Human Movement category.

Once a score had been used from the list of 3,500 random scores, it was crossed
off. Within a category, the pool of scores was also exhausted. Thus, if a randomly
generated W had been skipped during the search for the next available D or Dd, it
would be inserted in the next possible instance (i.e., when the next original D or Dd
response was changed). This step ensured the newly assigned scores would have
roughly the same base rates as the existing scores.

For determinant scores, additional rules were developed to simplify the pro-
cess. A proportion of responses containing determinants other than Pure Form (F)
were automatically changed to F responses. The remaining responses with non-F
determinants were altered in the manner described previously. Finally, any F re-
sponse was changed to a randomly generated determinant or determinant blend,
with blends determined randomly by the base rates for every determinant option.

Reliabilitycoefficients for thesesampleswerecalculatedbycomparing theorigi-
nal (i.e., correct) scores to the scores derived from the protocols in which 10%, 20%,
or 30% of the responses had been changed. Thus, the original scoring was treated as
Rater 1 and the revised scoring with random error was treated as Rater 2.

Data Analysis

Statistics. To assess the reliability of response-level scores, Cohen’s (1960)
kappa was used. To assess the patient-level reliability of summary scores, we calcu-
lated intraclass correlation coefficients (ICC) using a one-way random effects
model (Shrout & Fleiss, 1979, Model 1; also see McGraw & Wong, 1996). The ICC
is a chance-corrected reliability coefficient suitable for continuous data and equiva-
lent to kappa under appropriate conditions (Fleiss & Cohen, 1973; Shrout, Spitzer,
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& Fleiss, 1987). According to Shrout and Fleiss (1979), a one-way random effects
model treats each protocol as if it were scored by a different set of raters who are
randomly selected from a larger population of raters. Under this model, the effects
due to raters, to the interaction of raters and protocols, and to random error cannot
be separated. As McGraw and Wong (1996) stated in more simplified terminology,
for any given protocol, the designation of who is considered Rater 1 and who is con-
sidered Rater 2 (or Rater 3, etc.) is random.

Statistical assumptions: Raters. When an earlier version of this manu-
script was reviewed, questions were raised about the Model 1 ICC assumptions in
relation to our data sets. We thus present the issues in detail, beginning with as-
sumptions about the assignment of raters. At issue is whether the Model 1 ICC re-
quires each protocol to be scored by a separate and unique pair of raters. If so, then a
study examining 25 protocols, each of which are scored twice, would require a total
of 50 different people to act as raters to ensure that 2 unique and distinct raters
scored each protocol. Although this was the case in Sample 3, some rater pairs
scored more than one protocol in Samples 1, 2, 4, and 5. As such, a separate and
unique pair of raters was not used to score each protocol. By not having a distinct
and unique pair of raters for each protocol in the data set, the residual effects (i.e.,
effects that go beyond the effects of the protocol under consideration and the popu-
lation mean across all observations) may not be completely independent because an
effect of repeated rater pairs may be embedded within the residuals.

However, statisticians have argued that the Model 1 ICC does not require
unique and distinct rater pairs for each protocol. Cicchetti (1991) stated that the
Model 1 ICC is “the statistic of choice” (p. 120) for designs like those found in our
Samples 1, 2, 4, and 5 (also see Cicchetti & Prusoff, 1983). The statisticians at
SPSS consider the Model 1 ICC to be the appropriate model for these samples as
well. The Model 1 assumptions are described as follows: “Raters are a random
sample from a specified population of raters, and each rater does not rate all sub-
jects/objects. Therefore, each subject/object is rated by a potentially different set
of raters” (italics added; see Nichols, n.d., para. 3). This principle is spelled out
even more specifically and explicitly by Nichols (1998).3 Andreasen et al. (1981;

230 MEYER ET AL.

3Nichols (1998) stated the following, where N is the number of objects being rated (e.g., protocols),
j is the total number of raters who contributed to the data base, and k is the number of ratings available
for each object:

Suppose the k ratings for each of the N persons have been produced by a subset of j > k rat-
ers, so there is no way to associate each of the k variables with a particular rater. In this situa-
tion, the one-way random effects model is used, with each person representing a level of the
random person factor. Then, there is no way to disentangle variability due to specific raters,
interactions of raters with persons, and measurement error. All of these potential sources of
variability are combined within person variability, which is effectively treated as error.
(para. 4)



2nd reliability design) relied on the same rationale when confronted with a sample
that had a mix of different raters but not a distinct pair of raters for every
participant.

Furthermore, because of the documented equivalence between the Model 1
ICC and kappa (Fleiss, Nee, & Landis, 1979), the methodological literature on
kappa is relevant as well. Fleiss (1971) explicitly generalized kappa to the situa-
tion “where each of a sample of subjects is rated on a nominal scale by the same
number of raters, but where the raters rating one subject are not necessarily the
same as those rating another” (p. 378). Fleiss et al. reaffirmed the appropriateness
of computing kappa under these circumstances and further clarified that kappa can
be computed in situations when different participants are rated by “different sets of
equal numbers of raters” (p. 974). Given that Fleiss et al.’s article also documented
the equivalence of kappa and the Model 1 ICC and was published in the same year
as Shrout and Fleiss’s (1979) ICC article, it seems clear that Fleis would believe it
is appropriate to use the Model 1 ICC in our data sets. In practice, it is also the case
that many prominent, large-scale, grant-funded studies have computed kappa from
a design like that found in our Samples 1, 2, 4, and 5. These are studies in which
two raters (R1 and R2) evaluate some proportion of the cases, two different raters
(R3 and R4) evaluate another proportion of the cases, and different pairs of raters
(e.g., R5 and R6) or shuffled pairs of raters (e.g., R1 and R4, R2 and R3) evaluate
additional portions of the sample. The following citations are for field trials with
the Diagnostic and Statistical Manual of Mental Disorders (4th ed., American
Psychiatric Association, 1994) or the International Classification of Diseases
(ICD–10; World Health Organization, 1992) that employed this type of statistical
design: Buysse et al. (1994), First et al. (1995), Keller et al. (1995), Loranger et al.
(1994), Volkmar et al. (1994), and Williams et al. (1992).

If the preceding still leaves doubt about the limiting assumptions of the Model 1
ICC, three other considerations also support our use of this model. First, Shrout
and Fleiss (1979) indicated how for a given set of data, the one-way random effects
model generally provides more conservative (i.e., lower) reliability estimates than
the alternative two-way random effects model or two-way mixed effects model.
Second, the alternative ICC models contain assumptions that clearly would have
been violated in our Samples 1, 2, 4, and 5. Model 2, the two-way random effects
model, assumes that the same fixed coders have rated every protocol. Model 3, a
two-way mixed effects model, further assumes the fixed number of coders in the
study are the only coders of interest (i.e., there is no desire to generalize the reli-
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From this it can be seen that the Model 1 ICC is appropriate whenever the total number of raters (j) ex-
ceeds the total number of ratings (k) available for each CS protocol (N), as long as it is not possible to
associate a given rating designation (i.e., Rater A, Rater B) with a specific rater. As an illustration, our
student sample has a total of five raters (j) who coded 66 protocols (N). Each protocol was scored by
two (k) of the five raters. Because raters were randomly designated as Rater A and Rater B, there is no
way to link specific raters to the designated categories.



ability findings to other potential raters). Neither of these assumptions fit for any
of our data sets.

Finally, from a practical perspective, when evaluating this issue empirically
with our data it makes no difference if we used the Model 1 or Model 2 ICC. In the
composite sample of 219 protocols, across the 164 CS scores that were assigned by
at least one rater, the average difference between the Model 1 ICC and the Model 2
ICC was –.0000496510 (with Model 2 results being slightly larger, as predicted by
Shrout & Fleiss, 1979) and the maximum difference was –.0050982338. Because
we report reliability coefficients to two decimal places, it would not make a differ-
ence which ICC model results we reported. However, the results reported in the
following are all derived from the Model 1 ICC.4

Statistical assumptions: Normality and CIs. Another common assump-
tion of the one-way random effects model (and all alternative models) is that the
rated characteristic is normally distributed across participants (McGraw & Wong,
1996; Shrout & Fleiss, 1979). This assumption presents a potential problem for
Rorschach scores because many variables have skewed and kurtotic distributions.
However, Lord and Novick (1968, pp. 162–166) pointed out how the key assump-
tion for the ICC is that each rater is targeting an equivalent score distribution, re-
gardless of its shape. Thus, the critical assumption is that every replication (e.g., the
scores generated by Rater 1 and Rater 2) will have the same population parameters.
As such, Lord and Novick indicated that the ICC calculations themselves do not de-
pend on assumptions of normality. However, these assumptions become critical if
one wishes to determine the statistical significance of an observed ICC value or if
one wishes to generate a confidence interval (CI) about an observed value. Our goal
is to use the ICC data descriptively rather than inferentially. As a result, our empha-
sis is on the magnitude of the reliability coefficients.

Nonetheless, a reviewer requested that we present CIs for our coefficients. We
do so for the composite sample. These CIs should be considered tentative esti-
mates because the underlying distribution for many scores is skewed, kurtotic, or
both. Subsequently, we also demonstrate the inaccuracy of these CIs.

Contending with the impact of restricted variance. When interpreting
an ICC coefficient, it is essential to consider score variance across all the partici-
pants in the study. This is because it is impossible to demonstrate reliability if the
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4As noted in the text, we discussed statistical assumptions in detail because of questions raised dur-
ing the editorial review process. One argument was that we should discard the results from several of
our samples. Given the literature cited in the text, this is a view that we strongly dispute. Another argu-
ment was that we produced artificially large reliability coefficients by using the “wrong” ICC model.
Clearly, however, because there was an average difference of just –.00005 between the results of the
Model 1 and Model 2 ICC, this argument was mistaken.



characteristic being rated does not differ from participant to participant (Finn,
1970; Jones, Johnson, Butler, & Main, 1983; Lahey, Downey, & Saal, 1983; Sel-
vage, 1976; Whitehurst, 1984). Thus, in a sample of 10 patients, if it just so happens
that all 10 patients have the same or nearly the same value for some CS score, such
as M (Human Movement) or P (Popular), it would be impossible or virtually impos-
sible to demonstrate that scoring was reliable in this sample—even if the coders
scored accurately and with considerable agreement. This constraint with the ICC is
analogous to the constraint encountered when calculating kappa coefficients on
variables with extreme base rates (see Grove, Andreasen, McDonald-Scott, Keller,
& Shapiro, 1981; Meyer, 1997a).

As with kappa, several authors have proposed solutions to correct ICCs for re-
strictedbetween-subjectsvariance.Onefactor that couldcause restrictedvariance is
a skewed distribution (Whitehurst, 1984). Many Rorschach variables are inherently
skewed because most patients receive values of 0 or 1, whereas a limited number ob-
tain values of 3, 4, 5, or higher. Such distributions have restricted variances relative
to distributions in which the scores are normally or randomly distributed across the
full range of possible scores (Finn, 1970, 1972; Selvage, 1976; Whitehurst, 1984). If
it is reasonable to assume that scores can be randomly distributed across the full
rangeofvalues (i.e., ifchancecanbedefinedaswhathappenswhenratersblindlyas-
signscoresacross the rangeofpossiblevalues,without regard to relative frequency),
then an alternative statistic, Finn’s r (rF), can be used to generate chance-corrected
reliability. Although the merits of rF have been debated (see Cicchetti, 1985;
Whitehurst, 1985), it should be noted that rF corrects ICC coefficients in the same
way that kappan (Brennan & Prediger, 1981) corrects Cohen’s kappa for problems
induced by extreme base rates (Cicchetti, 1985; Meyer, 1997a).

Lahey et al. (1983) proposed an alternative solution, recommending that ICCs
should not be calculated unless scores have statistically significant variance across
targets. Although this is reasonable in some respects, statistical significance de-
pends on power, so even a small degree of between-subject variance will be signif-
icant if there are many target protocols. Another problem is that scores are less
likely to be statistically significant across participants when raters are sloppy, yet
more likely to be significant when raters are accurate. This is because significance
is determined by the F ratio comparing between-subject variance to within-subject
variance. Assuming the same small degree of between-subject variance (MSB),
more reliable coders will produce a smaller degree of within-subject variance
(MSW) and a larger F value than sloppy coders who will produce a larger MSW
and a smaller F value. Thus, the same small degree of between-subject variance is
more likely to be statistically significant for good raters than poor raters. If one
used significance to determine when an ICC should be calculated, good coders
would be held to a more demanding standard than poor coders because they would
have to demonstrate reliability on a smaller degree of genuine construct variance
(i.e., a smaller MSB). This penalizes good raters who correctly identify samples
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with minimal between-subject variance in the same way that kappa penalizes good
raters who independently determine that a score occurs infrequently (Meyer,
1997a; Zwick, 1988).

Given the preceding considerations, we believe it is better to avoid a relativistic
criterion like the statistical significance approach of Lahey et al. (1983) to deter-
mine when ICC calculations are appropriate. We also believe it is better to avoid
theoretical assumptions about how scores could be normally or randomly distrib-
uted when they are observed to have restricted variance or skewed distributions
(e.g., as with Finn’s r). Instead, to determine when ICC coefficients are likely to be
statistically stable and appropriate to calculate, we relied on fixed guidelines akin
to those proposed for kappa. Grove et al. (1981) indicated scores with a base rate of
less than .05 should be considered statistically unstable and discouraged research-
ers from calculating chance corrected reliability statistics under these circum-
stances. In this study, we used a more demanding criterion and set a base rate of .01
as our cutoff. Scores that occurred less than 1 time in 100 responses were consid-
ered statistically unstable.

For most of the following analyses, we only present summary data (i.e., mean
and median) for statistically unstable variables. Nonetheless, because part of our
goal was to present a complete review of the CS, we present all ICC values for the
composite sample, regardless of score base rates.

Using a fixed base rate to determine when it is appropriate to compute ICC values
protectsagainstmost instancesof restrictedbetween-subjectvariance.However, re-
stricted variance can still occur when scores coincidentally happen to be relatively
similar across participants (e.g., when, by chance alone, all participants in a sample
happen tohavesimilarMscores).Ofcourse, this ismore likely in small samples than
in large samples. To protect against this problem in our analyses, we tried to obtain a
relatively large N for each sample. However, Sample 3 contains only 19 patients. As
a result,when the165structural summaryvariablesareexaminedacross these19pa-
tients, it is likely some variables will coincidentally have a restricted degree of be-
tween-subject variance, even if the score has a base rate greater than .01.

General points. In a reliability study, raters make use a written record of re-
sponses. Because the written record generally makes it clear as to what constitutes a
response, there should be relatively little ambiguity about two CS variables, R and
Afr. Both of these variables are defined by the number of responses in a protocol.
Nonetheless, raters can and do disagree about what constitutes a response. There-
fore, even though reliability for these two variables may be somewhat high by defi-
nition, they were included in our analyses.

For all analyses, N refers to the number of target objects rated (i.e., either the
number of patient protocols or the number of responses contained in these proto-
cols) and k refers to the number of ratings obtained for each object. Traditionally,
ICC and kappa (κ) values are interpreted as follows: values greater than .74 are
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considered to indicate excellent reliability, values from .60 to .74 are considered
good, values from .40 to .59 are considered fair, and values below .40 are consid-
ered poor (Cicchetti, 1994; Cicchetti & Sparrow, 1981; Fleiss, 1981).5

RESULTS

Summary Score Reliability for the Genuine
Clinical Samples

Table 1 reports summary ICC information for all eight samples.6 Sample 1, the stu-
dent sample, contained 133 statistically stable scores, 27 unstable scores, and 5
scores that were never assigned. The stable scores had a median reliability of .85 (M
= .82) and ranged from a low of .34 to a high of 1.0. Using ICC interpretive guide-
lines, the relatively inexperienced coders in this sample displayed poor reliability
for 1 score (i.e., C'F), fair reliability for 4 scores (FT, FV, FC, S – %), good reliabil-
ity for 22 scores (i.e., Wv, MQu, SQu, WDu, CF, C, SumV, YF, Hd, (Hd), An, Ay,
Hh, Ls, Idio, DV1, INC1, FAB1, ALOG, An + Xy, Xu%, SCZI), and excellent reli-
ability across the remaining 106 variables (79.70%). The 25 statistically unstable
scores had a median ICC of .49 (M = .51). Attesting to the fragility of these statisti-
cally unstable coefficients, six of the coefficients came from instances in which one
rater never assigned the score but the other rater assigned the score one time across
the 1,407 responses. In each of these instances, the ICC was zero. For three of the
six variables (MQ+, FQx+, WD+), the disagreement occurred because a single re-
sponse was assigned FQx+ by one rater, whereas the other rater assigned FQxo. If
this single FQx+ score is disregarded, the median and mean ICC become .59 and
.57, respectively. If one only considers scores assigned at least one time across the
1,407 responses by both raters, the median and mean ICC for the unstable scores in
this sample become .69 and .66, respectively.

Sample 2, the experienced coder sample, contained 140 stable scores, 20 unsta-
ble scores, and 5 scores that were never assigned. The stable scores had a median
ICC of .96 (M = .95) and ranged from a low of .64 to a high of 1.0. Thus, the coders
in this sample scored virtually all variables with excellent accuracy. The only vari-
able that fell within the good classification was the score for vague Perceptions
combined with poor Form Quality (i.e., DQv with FQ–). The remaining 139 scores
(99.29%) had excellent reliability. In this sample, the 20 statistically unstable
scores had a median ICC of .88 (M = .83).
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5Landis and Koch (1977) proposed an alternative convention for interpreting κ and ICC values that
is more frequently encountered in the medical literature. They suggested the following guidelines: less
than .00 = poor, .00 to .20 = slight, .21 to .40 = fair, .41 to .60 = moderate, .61 to .80 = substantial, and
.81 to 1.00 = almost perfect.

6A table of specific values for the stable scores in each sample is available from Gregory Meyer.



TABLE 1
The Reliability of 165 Comprehensive System Structural Summary Scores: ICCs for Four Clinical Samples, a Composite Clinical Sample, and Three

Experimentally Altered Samples Containing 10%, 20%, and 30% Random Scoring Error

Statistically Stable Scores (Base Rate ≥ .01)
Statistically Unstable

Scores No. of
Scores
Never

Assigned

% in ICC Classification

Samples N M R k
No. of
Scores

Mdn
ICC

M
ICC

Poor
< .40

Fair
.40–.59

Good
.60–.74

Excellent
≥ .75

No. of
Scores

Mdn
ICC

M
ICC

Clinical samples
1. Student 66 1,407 2 133 .85 .82 .008 .030 .165 .797 27 .49a .51a 5
2. Experienced 65 1,299 2 140 .96 .95 .000 .000 .007 .993 20 .88 .83 5
3. Clinicians 19 388 5 135 .97 .91 .015 .007 .096 .881 15 .59 .66 15
4. Applied 69 1,667 2 139 .95 .94 .000 .000 .022 .978 24 .89 .88 2
5. Composite 219 4,761 2 138 .93 .91 .000 .000 .029 .971 26 .83 .83 1
Forced random error samples
6. 10% random 57 1,378 2 143 .95 .94 .000 .000 .007 .993 16 1.00 .89 0
7. 20% random 57 1,378 2 142 .89 .88 .000 .000 .042 .958 17 .87 .76 0
8. 30% random 57 1,378 2 141 .82 .80 .007 .050 .206 .738 18 .84 .71 0

Note. ICC = intraclass correlation coefficients; N = number of target patients who provided Rorschach protocols; M R = mean number of responses contained in the
protocols (averaged across raters); k = number of raters who coded each protocol.

aFor six variables, one rater never assigned a score, whereas the other rater assigned it one time across the 1,407 responses. In each of these instances, the ICC was zero.



Sample 3, the clinician sample in which 19 protocols were scored five separate
timesbya totalof95differentclinicians,had135statisticallystablescores,15unsta-
ble scores, and 15 scores that were never assigned. The 15 unstable scores had a me-
dian ICC of .59 (M = .66). The stable scores had a median ICC of .97 (M = .91),
indicating overall reliability almost identical to that seen in the experienced rater
sample.However, inSample3, the ICCvalues for thestablescoreshadamuch larger
range, extending from a low of .35 to a high of 1.0. Two values fell in the poor range
(i.e., FY and DR2), 1 was fair (i.e., Level 2 Special Scores), 13 were good (i.e., SQu,
CF, CF + C, FT, FV, SumY, Idio, DV1, DR1, FAB2, AB, PTI, SCZI), and the re-
maining 119 scores (88.15%) were in the excellent classification range.

The results from Sample 3 suggest two possibilities. First, it may be the raters
were generally as proficient as those in the other samples (reflected in the very
similar median and mean ICC values), but stumbled more often when considering
some particular scores (reflected in several low ICC values). Indeed, the data for
this sample were collected after the scoring rules were altered for Diffuse Shading
(Y scores), Achromatic Color (C' scores), and all of the cognitive Special Scores
(in which the Level 1 vs. Level 2 distinction was added). Thus, relatively new rules
may have been partially responsible for the lower coefficients observed with a
number of variables (i.e., FY, SumY, DV1, DR1, DR2, FAB2, Level 2 Special
Scores, PTI, SCZI).

The second possibility is that restricted variance in this sample may have made
it more difficult to demonstrate reliability for some variables. The scores FY, DR2,
SQu, AB, and Id all had less than excellent ICC values. They also had five of the
seven smallest MSB values, indicating there was little between-subject variance
on these characteristics. In addition, had we followed Grove et al. (1981) and clas-
sified all variables with a base rate less than .05 as statistically unstable, then 9 of
the 16 scores that did not have excellent reliability values would never have been
calculated (i.e., SQu, FY, FT, FV, Id, DV1, DR2, FAB2, AB). More broadly, 15
scores were never assigned by any of the coders in this sample, which is 3 to 15
times the rate of unassigned scores in the remaining samples. This reflects the
small number of target protocols in Sample 3 and is another indication that be-
tween-subject variability was constrained. Taken together, these factors suggest
statistical confounds probably played a role in lowering reliability coefficients for
some variables in this sample. We return to this point later.

Sample 4, the applied reliability sample in which 69 protocols were initially
scored by clinicians as part of their regular clinical practice and then rescored by re-
searchers, contained 139 stable scores, 24 unstable scores, and 2 scores that were
never assigned. The stable scores had a median of .95 (M = .94) and ranged from a
lowof .64 toahighof1.0.Threevariableshadgoodreliability (INC1,ALOG,COP),
whereas the remaining 136 (97.84%) had excellent reliability. Thus, in this sample
scores that were initially assigned as part of daily clinical practice corresponded
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quite closely to scores that were assigned as part of a formal research investigation.
The 24 unstable scores in this sample had a median of .89 (M = .88), suggesting the
clinicians and researchers also scored these variables reliably.

The composite sample of 219 protocols had 138 statistically stable scores, 26
unstable scores, and one score (FQf+) that was never assigned. The stable coeffi-
cients had a median value of .93 (M = .91) and ranged from a low of .62 to a high of
1.0. Four variables had good reliability (C'F, FV, INC1, ALOG), whereas the re-
maining 134 stable scores (97.10%) had excellent reliability. The unstable vari-
ables had a median of .83 (M = .83). One of these scores (TF) would be classified
as having fair reliability, 4 would be classified as good (MQnone, SQ+, C', (Ad)),
and the remaining 21 would be classified as having excellent reliability.

Table 2 uses the format of a structural summary to present reliability coeffi-
cients for every CS score in the composite sample (N = 219). Coefficients are pre-
sented for all variables regardless of base rate. However, the statistically unstable
scores are identified and their coefficients should be interpreted cautiously.

To generate CIs for variables in the composite sample, we utilized the formu-
las developed by Shrout and Fleiss (1979) as operationalized in SPSS. The CIs
can be perfectly predicted from an observed ICC value using a nonlinear regres-
sion equation. For our sample of 219 patients, the following equations have R2

values of 1.0 for predicting the observed lower bound CI value, the upper bound
CI value, and the CI range:

Predicted lower 95% CI value = –.120247 + (.938253 × ICC value) +
(.181915 × (ICC value)2)

Predicted upper 95% CI value = .138428 + (.957575 × ICC value) – (.096036
× (ICC value)2)

Predicted 95% CI range = .258688 + (.019308 × ICC value) – (.277951 ×
(ICC value)2)

Because one can compute specific CIs for each score listed in Table 2 using
these equations, we do not report intervals for each score. Instead, the left side of
Table 3 reports CIs for some benchmark coefficients.

Summary Score Reliability for the Samples Containing
Fixed Proportions of Random Error

Table 1 reports reliability for the three samples containing a fixed proportion of ran-
domly generated error. Sample 6, in which 10% of the responses had been changed
to have randomly generated erroneous scores, contained 143 stable scores and 22
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TABLE 2
The Reliability of a Comprehensive System Structural Summary: Intraclass Correlation Coefficients

for the Composite Clinical Sample Containing 219 Rorschach Protocols

LOCATION DETERMINANTS CONTENTS SPECIAL SCORES
FEATURES BLENDS SINGLE H = .98 COGNITIVE SPECIAL
Zf = .98 M = .96 (H) = .93 SCORES
ZSum = .98 Color Shading = .87 FM = .95 Hd = .92 Lv1 Lv2
ZEst = n/c m = .92 (Hd) = .88 DV = .84 .80a

All Blends = .93 FC = .83 Hx = .96 INC = .74 .82
W = .99 CF = .84 A = .99 DR = .82 .85
(Wv = .92) C = .92 (A) = .94 FAB = .90 .81
D = .99 Cn = .97a Ad = .95 ALOG = .69
Dd = .98 FC’ = .86 (Ad) = .72a CON = .76a

S = .94 C’F = .62 An = .92
C' = .71a Art = .91 Raw Sum6 = .91

DQ FT = .78 Ay = .84 Wgtd Sum6 = .90
(FQ–) TF = .54a Bl = .98

+ = .98 (.96) T = .97a Bt = .96 OTHER SPECIAL
o = .99 (.96) FV = .72 Cg = .95 SCORES
v/+ = .81a (.87a) VF = .81a Cl = .87a

v = .91 (.75a) V = 1.0a Ex = .86a AB = .93
FY = .90 Fd = .94 AG = .90
YF = .82 Fi = .93 CFB = .96a

FORM QUALITY Y = .79a Ge = .94a COP = .86
FQx FQf MQ SQ WD Fr = .98 Hh = .85 CP = .79a

+ = .91a n/a .90a .66a .91a rF = .85a Ls = .94 GHR = .89
o = .98 .96 .94 .88 .97 FD = .88 Na = .94 PHR = .94
u = .93 .91 .82 .84 .93 F = .97 Sc = .93 MOR = .89
– = .96 .92 .92 .91 .97 Sx = .96 PER = .94
None = .93 — .66a .82a .93 Xy = .95a PSV = .84

(2) = .97 Id = .92

RATIOS, PERCENTAGES, AND DERIVATIONS

R =  1.0 L = .98 (PureF% = .95) FC:CF + C = .83:.89 COP = .86 AG = .90
EB = .96:.94 EA = .96 Pure C = .92 GHR:PHR = .89:.94
eb = .95:.94 es = .95 EBPer = .92 SmC':WSm C = .90:.94 a:p = .96:.92

Adj es = .94 D = .89 Afr = .99c Food = .94
AdjD = .87 S = .94 Sum T = .89

FM = .95 Sum C' = .90 Sum T = .89 Blends/R = .93 Human Cont= .98
m = .92 Sum V = .81 Sum Y = .91 CP = .79a (HHd):(AAd)= .95:.92

XA% = .92 H+A:Hd+Ad = .99:.95
WDA% = .94 Zf = .98 PER = .94 Isolate/R = .96

Sum6 = .91 X – % = .93 W:D:Dd= .99:.99:.983r + (2)/R = .96
Lv2 = .87 S – % = .75 W:M = .99:.96 Fr + rF = .98

a:p = .96:.92 WSum6 = .90 P = .93 Zd = .93 SumV = .81
Ma:Mp = .96:.91 M – = .92 X + % = .96 PSV = .84 FD = .88
2AB+Art+Ay = .93 MNone = .66a F + % = .93 DQ+ = .98 An + Xy = .92
MOR = .89 Xu% = .83 DQv = .91 MOR = .89

H:(H)Hd(Hd) = .98:.96
PTI = .88 SCZI = .87 DEPI = .84 CDI = .87 S–CON = .83 HVI = .91 OBS = .91

Note. n/a = variable was never assigned in this sample; n/c = ZEst was not calculated because it is not an
independent score and it has the same reliability as Zf.

aRaters assigned these variables at a base rate of less than .01, making them potentially unstable statistics.



unstable scores. The statistically unstable scores had a median of 1.0 (M = .90). The
statistically stable scores had a median of .95 (M = .94) and ranged from a low of .68
to a high of 1.0. One variable (TF) had reliability values in the good classification
range, whereas the remaining 142 (99.30%) fell in the excellent range.

Sample 7, in which 20% of the responses had been changed to random error,
contained 142 stable scores and 23 unstable scores. The statistically unstable
scores had a median of .84 (M = .78). The statistically stable scores had a median of
.89 (M = .88) and ranged from a low of .63 to a high of 1.0. Six variables had reli-
ability values in the good classification range (TF, Idio, P, AB, Lambda, OBS) and
the remaining 136 (95.77%) fell in the excellent range.

Sample 8, in which 30% of the responses were randomly generated error, con-
tained 141 stable scores and 24 unstable scores. The statistically unstable scores
had a median of .84 (M = .71). The statistically stable scores had a median of .82
(M = .80) and ranged from a low of .39 to a high of 1.0. One variable (Lambda) had
reliability in the poor classification range, 7 variables had reliability in the fair
range (SQo, Fr, Idio, Popular, DV1, Xu%, OBS), 29 variables had reliability in the
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TABLE 3
95% CIs for Selected Benchmark Coefficients in the Composite Samplea

and in Small Samplesb

Composite Sample Small Samples

Observed
ICC Value

95% CI
Range

Lower
Boundary

Upper
Boundary

95% CI
Range

Lower
Boundary

Upper
Boundary

.99 .0054 .9869 .9923 .0213 .9748 .9960

.97 .0159 .9610 .9769 .0608 .9271 .9879

.95 .0262 .9353 .9615 .0992 .8806 .9798

.93 .0362 .9097 .9459 .1362 .8352 .9715

.91 .0461 .8842 .9303 .1721 .7910 .9631

.89 .0557 .8589 .9146 .2067 .7479 .9546

.85 .0743 .8087 .8830 .2724 .6650 .9374

.80 .0962 .7468 .8430 .3482 .5670 .9152

.75 .1168 .6858 .8026 .4171 .4752 .8923

.70 .1360 .6257 .7617 .4796 .3891 .8687

.65 .1538 .5665 .7203 .5359 .3084 .8442

.60 .1702 .5082 .6784 .5863 .2326 .8189

.50 .1989 .3944 .5932 .6710 .0945 .7655

.40 .2219 .2842 .5061 .7362 –.0282 .7080

.30 .2395 .1776 .4171 .7845 –.1384 .6461

.20 .2514 .0747 .3261 .8186 –.2392 .5794

.10 .2578 –.0246 .2332 .8410 –.3336 .5074

.00 .2587 –.1202 .1384 .8544 –.4245 .4299

Note. CI = confidence interval; ICC = intraclass correlation coefficient.
aN = 219. bN = 20.



good range (DQv/+, TF, Sum T, Fr + rF, Form%, SQu, FQfo, FQfu, H, (A), Ay,
Na, Hh, FAB2, PSV, GHR, Mp, EB Pervasive, AdjD, M–, XA%, WDA%, X + %,
X – %, S – %, F + %, EGO, PTI, SCZI), and the remaining 104 (76.42%) fell in the
excellent range. Overall, Table 1 reveals that the process of inserting randomly
generated error worked as expected by psychometric theory (Nunnally &
Bernstein, 1994). As the proportion of response-level random error increases,
summary score reliability decreases. Simultaneously, across samples, the sum-
mary score reliability coefficients remain quite high. These findings may seem
surprising. However, the data indicate that CS summary scores are generally quite
reliable despite forcing a considerable degree of random error into the responses.
Although this is reassuring, it is essential to recognize that random error is very
different from systematic error. This is an issue we return to later.

Impact of Sampling Variance on ICC Coefficients

Very often, researchers consider a sample of 20 Rorschach protocols to be suffi-
ciently large for determining CS scoring reliability (cf. Weiner, 1991; also see
Acklin, McDowell, Verschell, & Chan, 2000). Samples of this size may be quite
appropriate for indexes of absolute coder agreement (e.g., percentage agreement)
because these indexes are not dependent on between-subject variance. However,
for statistics like κ or the ICC, a sample of 20 protocols may possess some unusual
characteristics just by coincidence, and this can adversely affect chance-corrected
reliability statistics.

As noted previously, there were several indications that between-subjects vari-
ance was constrained for some of the scores in Sample 3, which contained only 19
Rorschach protocols. The upper portion of Table 4 presents the nine scores from
this sample with ICC values less than .70. The columns indicate the observed ICC
in this sample, the ICC in the full population of 219 protocols, the MSB and MSW
for the five raters in this sample, the average variance for each individual rater in
this sample, the average variance for each rater in the composite sample, and an F
ratio comparing the last two variances. Considering the last column of F ratios, it
can be seen that the variance in Sample 3 was significantly smaller than the corre-
sponding variance in the composite sample for six of the nine variables (and eight
of nine using a one-tailed significance test). Treating each of the variances as the
meta-analytic estimates they are (with aggregated df = 90 and 436), eight of the
nine variables have significantly less variance in Sample 3 than in the composite
sample. Thus, with the exception of DV1, there was generally restricted between-
subjects variance for the coefficients with ICC values < .70.7
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7The DV1 reliability coefficient was low largely because of one rater’s lapse on a single case. For
this case, four of the raters assigned between three and five DV1 scores, although the remaining rater
assigned just a single DV1 response. With this rater excluded, the ICC increased from .64 to .72.



The lower portion of Table 4 illustrates this further by comparing two target
scores with less than optimal reliability (SQu and FY) to relevant comparison vari-
ables. Data on SQu are presented along with statistics for two counterpart scores,
SQo and SQ–. Data on FY are presented along with information for other Form
Dominated Color and Shading determinants. In each case, it can be seen that the
between-subjects variance in Sample 3 was constrained for the target score rela-
tive to the between-subjects variance for the counterpart scores, even though scor-
ing error (i.e., MSW) was generally no worse for the target score than for the
counterpart scores. These analyses demonstrate how sampling error can influence
reliability. When 165 scores are examined in a relatively small sample, by chance
alone some of the 165 characteristics are likely to be artificially constrained. This
constraint will reduce interrater reliability coefficients.

Instability of Small Sample Reliability Estimates

The preceding raises broader questions about the accuracy of reliability estimates
derived from small samples. Even though a 95% CI should indicate the range in

242 MEYER ET AL.

TABLE 4
Range Restriction As a Factor in the 19–Protocol Clinician Sample

Sample 3
ICC

Full
Population

ICC

Sample 3 M Variance
in Sample 3
per Rater

M Variance
in Population

per Rater

Sample to
Population F(18,

218) RatioVariable MSB MSW

Variables with ICC < .70 in the 19-protocol sample
FY .35 .90 1.44 .39 0.59 4.34 0.14***
DR2 .39 .85 1.56 .37 0.58 0.91 0.64
Level 2 SS .54 .87 4.56 .65 1.44 3.16 0.46*
DR1 .60 .82 6.13 .72 1.80 3.16 0.57
DV1 .64 .84 4.38 .44 1.23 1.02 1.21
SQu .65 .84 1.55 .15 0.43 0.96 0.45*
Id .66 .92 1.53 .14 0.42 2.52 0.17***
PTI .69 .88 3.06 .26 0.82 2.24 0.36**
AB .69 .93 1.03 .08 0.28 0.85 0.32**

SQu and FY considered alongside relevant comparison variables
SQo .99 .88 4.61 .01 0.93 1.08 0.86
SQu .65 .84 1.55 .15 0.43 0.96 0.45*
SQ– .89 .91 5.77 .14 1.27 2.14 0.59

FC .85 .83 11.23 .38 2.55 2.24 1.14
FC' .87 .86 10.40 .31 2.32 2.74 0.85
FY .35 .90 1.44 .39 0.59 4.34 0.14***
FT .74 .78 3.02 .19 0.75 0.94 0.80
FV .74 .72 2.21 .15 0.56 0.60 0.94

Note. ICC = intraclass correlation coefficient; MSB = mean square between (between-subjects variance);
MSW = mean square within (rating error variance).

*p < .05. **p < .01. ***p < .001.



which one should find the true population reliability coefficient 95% of the time, as
we noted earlier, nonnormal score distributions violate a critical assumption for
computing ICC CIs. Thus, it is likely that CIs will be misleading when they are
computed on CS scores with skewed and kurtotic distributions, particularly when
the reliability sample is small. To more thoroughly investigate this issue, we con-
ducted a series of ancillary analyses. Specifically, we considered the composite
sample of 219 protocols to be the full population of interest. Consequently, the ICC
values reported in Table 2 are considered population parameters that indicate the
true reliability in the population (although with an N of 219, the data in Table 2 are
themselves sample estimates of underlying population parameters). We then drew
100 random samples of 20 protocols each from this population. For each of the 20-
protocol samples, we computed ICCs and the 95% CI around the observed values.
This was done for all the scores listed in Table 2. Theoretically, the true population
reliability coefficient (i.e., the values in Table 2) should fall within the computed CI
95 times out of 100. In other words, in 95 of the 100 random draws, the value re-
ported in Table 2 should fall within the CI computed from the 20-protocol samples.
To the extent that this does not happen, it indicates that problems exist when trying
to estimate chance-corrected reliability coefficients from small samples.

Table 5 reports summary data from our analyses. The first column indicates the
164 scores under consideration (because no Pure Form responses were also as-
signed a FQ+ score, the score FQf+ was dropped from these analyses). The second
column reports the mean base rate in the full population rounded to three decimal
places (SQ+ and V had base rates of .0003 and .0002, respectively). Base rates are
not reported for those variables in which it does not provide a meaningful index
(i.e., weighted scores and percentage scores). The third column indicates the reli-
ability coefficient observed in the population. The fourth and fifth columns report
the mean and minimum reliability coefficients observed across the 100 randomly
selected 20-protocol samples from the population (excluding those samples in
which the reliability coefficient could not be computed because of a lack of vari-
ance). We do not report maximum values because the vast majority were 1.0 (for
107 scores) and the lowest was .96.

The sixth and seventh columns of Table 5 indicate the difference between the
reliability observed in the full population and that observed in the 100 randomly
selected 20-protocol samples. Two differences are reported. The sixth column re-
ports the raw difference between the population ICC and the mean ICC across all
100 samples. The seventh column reports the difference after the ICC coefficients
have been transformed using Fisher’s Z, which is designed to correct for the skew
inherent in the distribution of correlational values.

The eighth and ninth columns of Table 5 report the percentage of times when
the ICC coefficient in the population fell outside the 95% CIs derived from the one
hundred 20-protocol samples. Because CIs cannot be determined when a score has
no variance or when an observed ICC is unity, the percentages only consider in-
stances when it was possible to compute CIs. Specifically, the eighth column re-
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TABLE 5
The Impact of Sampling Error on 164 Observed ICC Values: Interrater Reliability in the Composite Sample of 219 Protocols Relative to100

Random Draws of 20 Protocols Each

Population Sample ICC

Population Minus
Sample

Difference
% When

Population ICC Is % When Sample ICC Is

Score M BR ICC M Minimum ICC Z ICC < SLL > SUL < .40 < .60 < Population – .10

Zf 0.579 0.98 0.98 0.92 .01 0.00 .12 0.09 .00 .00 .00
ZSum — 0.98 0.97 0.90 .01 –0.01 .14 0.09 .00 .00 .00
W 0.420 0.99 0.99 0.97 .00 –0.05 .15 0.18 .00 .00 .00
Sum Wv 0.025 0.92 0.83 0.44 .10 0.28 .12 0.40 .00 .04 .45
D 0.444 0.99 0.99 0.96 .00 –0.08 .21 0.14 .00 .00 .00
Dd 0.136 0.98 0.97 0.84 .01 –0.10 .27 0.16 .00 .00 .01
S 0.130 0.94 0.93 0.70 .01 –0.07 .18 0.13 .00 .00 .09
DQ+ 0.292 0.98 0.97 0.79 .01 –0.06 .25 0.16 .00 .00 .07
DQo 0.658 0.99 0.99 0.94 .00 0.02 .11 0.15 .00 .00 .00
DQv/+ 0.009 0.81 0.77 –0.06 .04 0.09 .10 0.16 .07 .15 .29
DQv 0.041 0.91 0.85 0.46 .06 0.11 .13 0.27 .00 .05 .33
DQ+ & FQ– 0.075 0.96 0.93 0.36 .03 0.08 .15 0.17 .01 .01 .06
DQo & FQ– 0.173 0.96 0.94 0.80 .01 –0.01 .11 0.13 .00 .00 .04
DQ/ & FQ– 0.003 0.87 0.77 0.00 .09 0.47 .00 0.52 .12 .16 .29
DQv & FQ– 0.008 0.75 0.53 –0.12 .22 0.24 .14 0.42 .30 .53 .58
FQx+ 0.005 0.91 0.68 –0.03 .23 0.61 .15 0.60 .23 .28 .45
FQxo 0.486 0.98 0.97 0.91 .01 0.00 .07 0.08 .00 .00 .00
FQxu 0.232 0.93 0.91 0.71 .02 0.01 .10 0.13 .00 .00 .11
FQx– 0.259 0.96 0.95 0.82 .01 –0.01 .13 0.17 .00 .00 .05
FQxNone 0.017 0.93 0.83 0.00 .10 0.39 .05 0.51 .03 .11 .39
FQfo 0.180 0.96 0.96 0.87 .00 –0.08 .16 0.04 .00 .00 .00
FQfu 0.088 0.91 0.88 0.47 .03 –0.01 .12 0.12 .00 .02 .15
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FQf– 0.096 0.92 0.90 0.49 .03 0.01 .11 0.11 .00 .02 .12
MQ+ 0.004 0.90 0.63 –0.06 .28 0.68 .23 0.63 .30 .33 .48
MQo 0.103 0.94 0.92 0.74 .02 0.03 .12 0.12 .00 .00 .11
MQu 0.037 0.82 0.80 0.38 .02 –0.02 .10 0.08 .01 .08 .20
MQ– 0.049 0.92 0.90 0.67 .01 –0.02 .09 0.08 .00 .00 .08
MQNone 0.001 0.66 0.45 0.00 .21 0.80 .00 1.00 .55 .55 .55
SQ+ 0.000 0.66 0.35 0.00 .32 0.70 .00 0.87 .62 .62 .62
SQo 0.040 0.88 0.85 0.45 .03 0.00 .13 0.08 .00 .03 .19
SQu 0.030 0.84 0.80 0.33 .04 0.03 .10 0.13 .01 .11 .28
SQ– 0.057 0.91 0.90 0.56 .01 –0.09 .19 0.09 .00 .01 .14
SQnone 0.002 0.82 0.64 –0.03 .18 0.78 .00 0.58 .27 .30 .47
WDFQ+ 0.005 0.91 0.68 –0.03 .23 0.61 .15 0.60 .23 .28 .45
WDFQo 0.459 0.97 0.97 0.88 .01 0.00 .06 0.09 .00 .00 .00
WDFQu 0.185 0.93 0.91 0.77 .02 0.00 .14 0.09 .00 .00 .09
WDFQ– 0.198 0.97 0.96 0.79 .01 0.03 .10 0.16 .00 .00 .03
WDFQNone 0.016 0.93 0.83 0.00 .10 0.37 .07 0.49 .03 .12 .40
Blends 0.228 0.93 0.92 0.67 .01 –0.04 .12 0.08 .00 .00 .08
C – Sh Blend 0.042 0.87 0.86 0.37 .02 –0.05 .17 0.08 .01 .02 .16
M 0.192 0.96 0.95 0.82 .01 0.00 .10 0.09 .00 .00 .03
FM 0.149 0.95 0.94 0.83 .01 –0.03 .13 0.03 .00 .00 .02
m 0.079 0.92 0.90 0.66 .02 –0.02 .14 0.08 .00 .00 .10
FC 0.075 0.83 0.79 0.47 .04 0.03 .06 0.11 .00 .08 .25
CF 0.075 0.84 0.80 0.43 .03 0.00 .13 0.10 .00 .06 .26
C 0.027 0.92 0.87 0.16 .05 0.13 .14 0.22 .03 .06 .21
Cn 0.001 0.97 0.43 0.00 .54 1.92 .00 0.92 .57 .57 .57
FC' 0.080 0.86 0.83 0.52 .03 –0.01 .12 0.10 .00 .03 .24
C'F 0.017 0.62 0.59 –0.03 .02 –0.05 .17 0.10 .23 .47 .34
C' 0.004 0.71 0.56 –0.05 .15 0.33 .05 0.41 .32 .40 .40
FT 0.032 0.78 0.75 0.34 .03 –0.04 .16 0.13 .03 .17 .30
TF 0.006 0.54 0.52 –0.12 .02 0.05 .09 0.15 .34 .55 .35
T 0.001 0.97 0.76 0.00 .21 1.94 .00 1.00 .21 .21 .29
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246 TABLE 5 (Continued)

Population Sample ICC

Population Minus
Sample

Difference
% When

Population ICC Is % When Sample ICC Is

Score M BR ICC M Minimum ICC Z ICC < SLL > SUL < .40 < .60 < Population – .10

FV 0.016 0.72 0.65 0.10 .08 0.05 .13 0.20 .20 .41 .41
VF 0.005 0.81 0.77 –0.03 .04 0.09 .13 0.14 .10 .11 .22
V 0.000 1.00 1.00 1.00 .00 — — — .00 .00 .00
FY 0.072 0.90 0.86 0.51 .04 0.04 .11 0.16 .00 .02 .22
YF 0.018 0.82 0.74 0.12 .08 0.07 .14 0.25 .10 .22 .35
Y 0.005 0.79 0.64 –0.06 .16 0.44 .06 0.48 .26 .34 .48
Fr 0.019 0.98 0.98 0.79 –.01 0.30 .00 0.22 .00 .00 .05
rF 0.003 0.85 0.54 –0.06 .31 0.61 .12 0.68 .39 .40 .52
FD 0.048 0.88 0.86 0.52 .02 –0.05 .17 0.09 .00 .02 .18
F 0.368 0.97 0.97 0.89 .00 –0.10 .22 0.06 .00 .00 .00
Pairs 0.363 0.97 0.97 0.86 .00 –0.15 .31 0.15 .00 .00 .02
H 0.123 0.98 0.97 0.84 .00 –0.08 .20 0.06 .00 .00 .01
(H) 0.075 0.93 0.91 0.66 .02 –0.01 .17 0.14 .00 .00 .14
Hd 0.082 0.92 0.91 0.40 .01 –0.23 .33 0.12 .01 .03 .13
(Hd) 0.022 0.88 0.82 –0.06 .06 0.04 .16 0.25 .04 .10 .30
Hx 0.014 0.96 0.81 –0.06 .15 0.59 .09 0.49 .10 .12 .38
A 0.363 0.99 0.98 0.82 .00 –0.08 .22 0.15 .00 .00 .01
(A) 0.033 0.94 0.89 0.14 .05 0.08 .18 0.27 .01 .04 .23
Ad 0.093 0.95 0.95 0.77 .00 –0.21 .28 0.10 .00 .00 .07
(Ad) 0.005 0.72 0.64 –0.06 .08 0.20 .04 0.20 .16 .30 .30
An 0.059 0.92 0.91 0.24 .01 –0.28 .45 0.13 .02 .04 .13
Art 0.031 0.91 0.86 0.44 .06 0.10 .18 0.28 .00 .08 .28
Ay 0.025 0.84 0.81 –0.03 .03 0.00 .18 0.17 .03 .12 .23
Bl 0.027 0.98 0.98 0.79 .01 0.53 .00 0.60 .00 .00 .03
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Bt 0.050 0.96 0.96 0.87 .00 0.03 .05 0.04 .00 .00 .00
Cg 0.081 0.95 0.94 0.78 .01 –0.03 .13 0.06 .00 .00 .01
Cl 0.011 0.87 0.84 0.00 .03 0.17 .05 0.26 .04 .09 .19
Ex 0.005 0.86 0.84 –0.03 .01 0.35 .00 0.37 .05 .07 .19
Food 0.016 0.94 0.91 0.34 .03 0.22 .03 0.26 .01 .03 .13
Fi 0.024 0.93 0.93 0.51 .00 0.03 .03 0.15 .00 .01 .09
Geog 0.007 0.94 0.92 0.00 .02 0.67 .00 0.68 .02 .03 .20
Hh 0.036 0.85 0.83 0.33 .02 –0.08 .22 0.14 .04 .13 .17
Ls 0.041 0.94 0.91 0.63 .03 0.08 .12 0.15 .00 .00 .13
Na 0.029 0.94 0.92 0.45 .03 –0.01 .18 0.16 .00 .03 .13
Sc 0.035 0.93 0.91 0.68 .02 –0.04 .19 0.15 .00 .00 .14
Sx 0.042 0.96 0.94 0.63 .03 0.10 .10 0.22 .00 .00 .08
Xy 0.006 0.95 0.89 0.00 .05 0.82 .00 0.77 .05 .05 .24
Idio 0.053 0.92 0.86 0.45 .06 0.12 .09 0.25 .00 .03 .28
DV1 0.022 0.84 0.72 –0.05 .12 0.14 .13 0.29 .12 .27 .44
INC1 0.032 0.74 0.72 0.27 .02 –0.09 .19 0.11 .10 .19 .26
DR1 0.064 0.82 0.79 0.26 .03 0.00 .10 0.10 .01 .10 .24
FAB1 0.037 0.90 0.83 0.52 .08 0.14 .18 0.36 .00 .02 .41
ALOG 0.017 0.69 0.70 –0.15 –.02 –0.17 .27 0.12 .13 .26 .25
CONTAM 0.004 0.76 0.63 –0.09 .13 0.31 .08 0.39 .25 .29 .48
DV2 0.005 0.80 0.59 –0.07 .22 0.35 .15 0.50 .33 .41 .48
INC2 0.010 0.82 0.76 0.00 .05 0.12 .13 0.25 .11 .20 .27
DR2 0.022 0.85 0.79 –0.03 .06 0.01 .16 0.17 .04 .11 .28
FAB2 0.016 0.81 0.75 0.12 .06 0.04 .14 0.18 .08 .19 .33
Sum6 0.231 0.91 0.90 0.55 .00 –0.08 .15 0.09 .00 .01 .09
WSum6 — 0.90 0.89 0.63 .01 –0.05 .10 0.07 .00 .00 .11
AB 0.018 0.93 0.87 0.34 .06 0.24 .13 0.40 .01 .05 .33
AG 0.039 0.90 0.86 0.41 .03 0.03 .13 0.10 .00 .02 .19
CFB 0.001 0.96 0.81 0.00 .15 1.94 .00 1.00 .19 .19 .19
COP 0.039 0.86 0.83 0.28 .03 –0.06 .22 0.16 .02 .08 .25
CP 0.001 0.79 0.60 –0.03 .20 0.89 .00 0.76 .36 .36 .45
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TABLE 5 (Continued)

Population Sample ICC

Population Minus
Sample

Difference
% When

Population ICC Is % When Sample ICC Is

Score M BR ICC M Minimum ICC Z ICC < SLL > SUL < .40 < .60 < Population – .10

GHR 0.141 0.89 0.88 0.76 .01 0.01 .04 0.00 .00 .00 .05
PHR 0.193 0.94 0.93 0.56 .01 –0.08 .26 0.09 .00 .01 .07
MOR 0.084 0.89 0.87 0.34 .02 –0.01 .08 0.10 .01 .02 .12
PER 0.059 0.94 0.92 0.72 .02 –0.03 .19 0.13 .00 .00 .11
PSV 0.011 0.84 0.80 –0.03 .04 0.08 .08 0.14 .04 .09 .24
R 1.000 1.00 1.00 0.98 .00 0.02 .20 0.26 .00 .00 .00
Lambda — 0.98 0.94 0.54 .04 0.19 .17 0.50 .00 .01 .15
Form % — 0.95 0.95 0.73 .00 –0.09 .12 0.05 .00 .00 .02
FM + m 0.229 0.95 0.94 0.77 .01 –0.04 .16 0.06 .00 .00 .03
WSumC — 0.94 0.93 0.64 .01 –0.12 .21 0.12 .00 .00 .07
Sum Shading 0.257 0.94 0.93 0.76 .00 –0.05 .07 0.05 .00 .00 .05
EA 0.345 0.96 0.95 0.80 .00 –0.06 .14 0.03 .00 .00 .02
es 0.485 0.95 0.95 0.83 .00 –0.05 .06 0.06 .00 .00 .04
Adj es 0.377 0.94 0.93 0.81 .01 –0.02 .06 0.04 .00 .00 .01
EBPer — 0.92 0.91 0.72 .01 –0.05 .11 0.04 .00 .00 .05
D Score — 0.89 0.88 0.61 .02 –0.01 .08 0.07 .00 .00 .10
AdjD — 0.87 0.85 0.64 .02 0.01 .05 0.02 .00 .00 .16
Sum C' 0.101 0.90 0.89 0.73 .01 –0.03 .08 0.05 .00 .00 .09
Sum V 0.021 0.81 0.78 0.27 .03 –0.05 .23 0.15 .03 .17 .30
Sum T 0.039 0.89 0.86 0.55 .03 –0.02 .18 0.18 .00 .02 .27
Sum Y 0.096 0.91 0.87 0.49 .04 0.04 .07 0.15 .00 .03 .20
CF + C + Cn 0.103 0.89 0.87 0.48 .02 –0.03 .13 0.08 .00 .01 .17
Afr — 0.99 1.00 0.94 .00 0.06 .21 0.31 .00 .00 .00
Blends/R — 0.93 0.92 0.73 .01 –0.02 .07 0.04 .00 .00 .04
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Active 0.276 0.96 0.95 0.84 .01 –0.05 .18 0.09 .00 .00 .02
Passive 0.147 0.92 0.90 0.75 .02 0.03 .09 0.10 .00 .00 .11
All H Cont 0.302 0.98 0.97 0.73 .01 –0.18 .31 0.12 .00 .00 .03
(H) + (Hd) 0.097 0.95 0.94 0.79 .01 –0.01 .15 0.16 .00 .00 .05
(A) + (Ad) 0.038 0.92 0.88 0.16 .05 0.05 .19 0.22 .02 .02 .21
H(H)A(A) 0.595 0.99 0.99 0.92 .00 –0.07 .16 0.11 .00 .00 .00
Hd(Hd)Ad(Ad) 0.201 0.95 0.94 0.72 .01 –0.09 .25 0.12 .00 .00 .09
Isol Index — 0.96 0.95 0.79 .00 –0.16 .23 0.12 .00 .00 .04
Ma 0.126 0.96 0.95 0.80 .01 –0.05 .15 0.15 .00 .00 .01
Mp 0.069 0.91 0.88 0.65 .03 0.03 .10 0.10 .00 .00 .14
Intel Index — 0.93 0.90 0.55 .03 0.03 .17 0.23 .00 .01 .20
Sum6 Lvl 2 0.054 0.87 0.84 0.46 .04 0.03 .10 0.08 .00 .04 .16
XA% — 0.92 0.91 0.76 .01 –0.06 .17 0.05 .00 .00 .07
WDA% — 0.94 0.94 0.77 .01 –0.03 .13 0.09 .00 .00 .07
X – % — 0.93 0.92 0.77 .01 –0.04 .14 0.06 .00 .00 .06
S – % — 0.75 0.75 0.18 .00 –0.22 .28 0.13 .08 .24 .26
Popular 0.212 0.93 0.93 0.81 .01 –0.03 .12 0.04 .00 .00 .04
X + % — 0.96 0.96 0.85 .01 –0.04 .08 0.07 .00 .00 .02
F + % — 0.93 0.92 0.71 .01 –0.09 .18 0.05 .00 .00 .05
Xu% — 0.83 0.81 0.46 .02 –0.03 .15 0.09 .00 .09 .21
Zd — 0.93 0.92 0.77 .01 –0.05 .09 0.07 .00 .00 .07
Egocent Ind — 0.96 0.95 0.76 .01 –0.05 .15 0.07 .00 .00 .01
Fr + rF 0.023 0.98 0.98 0.86 .00 0.26 .00 0.23 .00 .00 .01
An + Xy 0.065 0.92 0.92 0.24 .00 –0.33 .43 0.15 .01 .04 .14
NonPureH 0.179 0.96 0.94 0.69 .01 –0.10 .27 0.15 .00 .00 .10
PTI 0.074 0.88 0.87 0.64 .01 –0.05 .13 0.06 .00 .00 .12
SCZI 0.115 0.87 0.87 0.61 .00 –0.07 .12 0.05 .00 .00 .13
DEPI 0.187 0.84 0.83 0.29 .01 –0.02 .04 0.07 .01 .01 .17
CDI 0.122 0.87 0.87 0.75 .00 –0.06 .05 0.00 .00 .00 .02
S Con 0.242 0.83 0.82 0.52 .01 –0.04 .10 0.02 .00 .02 .18

(continued)
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TABLE 5 (Continued)

Population Sample ICC

Population Minus
Sample

Difference
% When

Population ICC Is % When Sample ICC Is

Score M BR ICC M Minimum ICC Z ICC < SLL > SUL < .40 < .60 < Population – .10

HVI 0.133 0.91 0.90 0.74 .01 –0.05 .11 0.05 .00 .00 .08
OBS 0.053 0.91 0.89 0.33 .02 0.00 .13 0.13 .01 .01 .15

M .11 .90 0.86 0.48 .04 .10 .13 .21 .05 .08 .17
Minimum .00 .54 0.35 –0.15 –.02 –.33 .00 .00 .00 .00 .00
Maximum 1.00 1.00 1.00 1.00 .54 1.94 .45 1.00 .62 .62 .62
SD .16 .08 .12 .34 .07 .33 .08 .21 .11 .14 .15
Kurtosis 8.65 3.39 2.92 –1.22 15.01 15.68 2.08 4.20 9.20 4.19 .10
Skewness 2.57 –1.64 –1.66 –.40 3.39 3.53 .83 2.10 2.94 2.16 .91

Note. Raw differences of .05 or greater between the population ICC and the mean sample ICCs in Column 6 are in bold. In the last column, an underlined value
indicates instances in which the small samples underestimated the population coefficient by a magnitude of .10 or more at least 10% of the time. ICC = intraclass
correlation coefficient; BR = mean base rate in the full population; SLL = sample lower limit; SUL = sample upper limit.



ports the percentage of times when the population ICC fell below the lower limit of
the 95% CI from the samples, whereas the ninth column reports the percentage of
times it fell above the upper limit. In theory, if the CIs are accurate, the population
ICC should fall below the lower limit 2.5% of the time and above the upper limit
2.5% of the time, so the values in each column should be .025.

Finally, the last three columns in Table 5 indicate the percentage of times in
which the one hundred 20-protocol samples deviated from fixed benchmarks. Spe-
cifically, the tenth column indicates the percent of times that the 20-protocol sam-
ples indicated reliability was poor (i.e., ICC < .40). The eleventh column indicates
the percent of times when the randomly drawn samples indicated reliability was
not good (i.e., ICC < .60). The final column indicates the proportion of samples
that found ICC values that were lower than the population ICC value by more than
.10 (e.g., when a sample indicated reliability was < .75 when in fact the population
ICC was .85).

To illustrate, consider the fourth row examining the sum of Wv responses. This
score had a base rate in the population of .025, indicating that it occurred 2.5 times
out of every 100 responses. It had an ICC of .92 in the full population. Across the 100
random samples of 20 protocols, the mean ICC was .83 and the minimum was .44
(the unreported maximum was .99). The average small sample ICC was lower than
the population parameter by a raw value of .10 (i.e., .921 – .8255 = .955) and by a
magnitude of .28 after transforming the ICC values by Fisher’s Z. With respect to the
95% CIs from the 100 small samples, the population ICC value (i.e., .92) fell below
the sample’s lower limit 12% of the time but fell above the sample’s upper limit 40%
of the time. None of the 100 subsamples produced an ICC coefficient less than .40.
However, 4% of the time the small samples produced an ICC less than .60 and 45%
of the time the small samples produced an ICC that was lower than the population
valuebyamagnitudeofat least .10.Overall, thedata indicate that small samplescon-
sistently underestimated the true reliability for this score.

Perusing Table 5, it can be seen that many variables had relatively constant ICC
values (e.g., Zf, D, DQo, F, R), whereas others changed considerably across the ran-
domly selected subsamples. For instance, DQv/+ reliability ranged from –0.06 to
1.00 even though the population parameter was .81, FQxNone ranged from .00 to
1.00 even though the population parameter was .93, (Hd) ranged from –0.06 to 1.00
even though the true reliability was .88, FAB2 ranged from .12 to 1.0 despite a popu-
lation parameter of .81, COP ranged from 0.28 to 1.0 around a parameter of .86, and
Sum Y ranged from 0.49 to 0.99 even though the population parameter was .91.

A careful examination of Table 5 reveals many instances in which there are
marked disparities between the mean ICC derived from the small samples and the
true ICCin thepopulation (e.g.,FQx+,MQNone,Cn,T, rF,DV2,CP).Furthermore,
for these kinds of scores, the small samples give very imprecise and misleading esti-
mates of reliability. Considering just the 38 scores with a population versus sample
raw difference of .05 or more (in bold), on average the true reliability in the popula-
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tion is higher than the upper limit of the sample’s CI about half the time (i.e., 48%).
The true reliability is lower than the lower limit of the sample’s CI an average of just
10% of the time. Thus, small samples often produce misleading reliability results.
When this occurs, the small sample results underestimate the true reliability about
five times more often than they overestimate it.

More important, the scores that are most likely to be underestimated by small
samples can be predicted with a substantial degree of accuracy. In particular, as
scores becomes less frequent in the population, small samples are more likely to
provide underestimates of their true reliability. Figures 1 and 2 plot this relation.
Figure 1 shows the association between score base rates in the population (hori-
zontal axis; using a logarithmic scale) and the raw difference between the popula-
tion ICC and the mean ICC observed across the 100 random samples (vertical
axis). In other words, the figure plots the data from columns 2 and 6 in Table 5. It
can be seen that there is a negative curvilinear relationship (R = .80) such that the
true reliability of a score is more drastically underestimated for increasingly rare
scores. Small samples provide adequate estimates of scores that occur at least 5
times in 100 responses (i.e., base rate > .05). For scores that occur less often, and
particularly those that occur less than 1 time in 100 responses (which corresponds
to about 15% of the scores in our analyses), small samples are increasingly likely
to underestimate reliability and the underestimates are increasingly severe.
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FIGURE 1 The association between score base rates in the population and the raw difference
between the population intraclass correlation coefficient (ICC) and the mean ICC observed
across the 100 random samples of 20 protocols.



Figure 2 plots a similar relation. The vertical axis now quantifies the extent to
which the population ICC exceeds the upper limit of the 95% CI in the smaller
samples (i.e., column 9 in Table 5). There is again a strong negative nonlinear rela-
tionship with base rates in the population (R = .87). Once again, the small samples
provide more reasonable CIs for scores that occur at least 5 times in 100 responses
(although even at this frequency, the true ICC values fall above the confidence
range much more often than the expected rate of .025). In general, for scores that
occur less than 1 time in 100 responses, true reliability falls above the upper limit
of the sample’s 95% CI between 30% and 100% of the time.

Returning to Table 5, note that there are two instances in which the mean ICC
across samples is slightly higher than the population ICC (see column 6; Fr =
–.0052; ALOG = –.0151). For both scores, the disparity occurred because the rater
pair for a single protocol in the full population produced outlier results. Conse-
quently, when the random samples did not include this rater pair, the sample
reliabilities tended to be a bit higher. More specifically, one rater in the student
sample assigned two Fr scores to a patient, whereas the other rater did not assign
any. Excluding this protocol, the ICC difference became +.007 rather than –.0052.
In the applied reliability sample, one rater assigned five ALOG scores to a patient,
whereas the other rater did not assign any. Excluding this protocol, the ICC differ-
ence became +.0600 rather than –.0151.
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FIGURE 2 The association between score base rates in the population and the extent to which
the population intraclass correlation coefficient (ICC) exceeds the upper limit of the 95% confi-
dence interval (CI) in the 100 random samples of 20 protocols.



A careful review of Table 5 also reveals numerous instances in which the raw
difference between the population ICC and the average sample ICC (i.e., column
6) has a positive value, whereas the Fisher’s Z transformed difference (column 7)
has a negative value. In these instances, the Fisher’s Z coefficients are artifactual.
The positive raw difference truly indicates that the population ICC is larger than
the mean ICC obtained across the 100 small samples. The transformed Fisher’s Z
coefficients suggest just the opposite (i.e., that the average small sample ICC is
larger than the population ICC) because the Fisher’s Z transformation is imprecise.
Particularly when a raw coefficient is large, the transformation creates an upward
bias that artificially inflates the Z transformed coefficient (see Hunter & Schmidt,
1990). Across the 100 small samples, there are many opportunities for this bias to
emerge, which in turn creates the seemingly contradictory data in those two col-
umns in Table 5.

Overall, the data in Table 5 indicate that chance factors related to sampling er-
ror affect observed ICC values in relatively small samples (for additional compel-
ling data, see Carroll & Faden, 1978). Sampling error can occur through at least
two relatively independent processes. First, chance affects the specific proto-
col–coder pairs selected for analysis. To the extent protocols are relatively easy or
hard to score, or to the extent coder skills are aligned across pairings, the observed
disagreement among coders (i.e., MSW) will either be too large or too small rela-
tive to the population parameter. If the MSW is biased by being too large, it will
generate lower ICC values; if it is too small, it will generate larger than expected
ICC values. The second way chance will affect ICC values is through between-
subjects variance. Relative to the population at large, if patients in a sample differ
more than average on certain characteristics, ICC values for corresponding Ror-
schach variables will be larger than expected because the MSB will be larger than
average. Conversely, to the extent patients in a sample happen to be quite similar
on certain characteristics, ICC values for those characteristics will be smaller than
expected. The latter processes affect rare scores more often than common scores.

Response-Level Reliability Versus Patient-Level Reliability

In the next set of analyses, we tested whether the reliability of scores assigned to
each response present a more stringent standard than the reliability of summary
scores evaluated across patients. This was accomplished by comparing response-
level κ coefficients to their corresponding summary score ICC values. For this
analysis, we limited the variables to those that were assigned at least one time by
each rater across samples. We also only examined those scores for which a dichoto-
mous scoring decision (i.e., present vs. absent) could be made at the response level
and then compared to an equivalent score at the protocol level. The variable R was
excluded because there are problems evaluating this score at the response level.
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Specifically, even though it is easy to determine when both raters agree a response
is present or when one rater believes a response is present and the other does not, it
is impossible to count the number of times both raters agree a response is absent.
Consequently, it is impossible to compute a meaningful kappa coefficient for R at
the response level of analysis. In total, we evaluated 108 scores.

Because κ and the ICC are equivalent chance-corrected statistics for dichoto-
mously assigned scores in increasingly large samples,8 and because all 108 scores
can be considered dichotomous assignments to each response (i.e., present vs. ab-
sent), the impact of aggregating scores across responses can be seen by the differ-
ence between summary score ICC coefficients and response-level κ coefficients
for the same variables. Table 6 presents summary results for these analyses. The
table reports the mean κ and ICC values across all 108 scores. It also indicates the
mean and median difference between these two statistics (i.e., ICC – κ) and the
percentage of times the ICC was larger than κ by a difference of .10 or more. The
last two columns report the difference after converting both coefficients to
Fisher’s Z statistics (i.e., ZICC – Zκ). Summary results are presented for the seven
samples that had more than 50 participants. Sample 3 was excluded because, as we
demonstrated already, its size (N = 19) would have produced less stable findings.

Focusing on the raw differences, it can be seen that the results from each sample
support psychometric theory. Summary scores that have been aggregated across
all the responses produced by a patient are more reliable than scores assigned to in-
dividual responses because random measurement errors tend to cancel out as in-
formation is accumulated across responses. Table 6 also indicates that the effect of
aggregation is more salient when there is a greater degree of random scoring error.
In the clinical samples, the greatest degree of difference was observed with the stu-
dent raters, and the smallest differences were seen with the experienced raters. In
the student sample, on average across these 108 scores the response-level κ coeffi-
cients were lower than the summary score ICC coefficients by a magnitude of .09
(i.e., M = .69 vs. M = .78, respectively). For 36% of the scores in this sample, re-
sponse-level reliability was lower than summary score reliability by a magnitude
of at least .10. In contrast, with the experienced raters the average difference was
.02 (i.e., M = .91 vs. M = .93, respectively) and only 1% of the scores had a reliabil-
ity difference of .10 or greater. The same pattern was observed for the samples
containing 10%, 20%, and 30% random scoring error. As one moves across these
samples, the average difference between response-level reliability and summary
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8As Fleiss and Cohen (1973) indicated, ICC calculations divide between-subjects variation by N – 1
rather than N to obtain the MSB. To make the ICC exactly equivalent to κ, the MSB must be multiplied
by (N – 1)/N. However, for large samples like those used here, the difference between the two ICC com-
putations is trivial. In our composite sample, on average the reported ICC values (generated by MSB
with df = 218) for all 164 summary scores were too large by a magnitude of .00042 (maximum =
.00162) relative to the calculations that would make them exactly equivalent to κ. In our smallest clini-
cal sample (N = 65), the average difference was .00089 (maximum = .00558).



score reliability increased from .06 to .14, whereas the proportion of scores that
had noticeably lower response-level reliability increased dramatically from 16%
to 67%. Thus, the pattern supports psychometric theory. Like self-report scales
that sum across items, random CS coding errors tend to cancel out when the scores
are aggregated across individual responses, resulting in summary scales that are
more reliable than the scores assigned to individual responses. Furthermore, the
impact of aggregation is more pronounced in instances when the response-level
scoring is less accurate. This suggests that although skilled raters benefit to some
extent from summarizing scores across responses, it is relatively less proficient
raters who benefit the most.

Table 7 presents results for specific scores to illustrate the difference between
response-level and protocol-level reliability. Data are presented from the four
samples that provide optimal contrasts, including the student coders versus the ex-
perienced raters and the sample containing 30% random error versus the sample
containing 10% random error. Reviewing the student rater sample, it can be seen
that aggregation across responses often leads to dramatic gains in reliability for
those scores the raters found difficult to code on a response-by-response basis
(e.g., FQxu, INC1, DR1). Considering the cognitive Special Scores (i.e., DV1 to
FAB2), with the exception of DR2, the response-by-response coding would be
classified as poor or fair although the summary score coding would be considered
good or excellent. Thus, even though these coders could not synonymously clas-
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TABLE 6
The Superior Reliability of Comprehensive System Summary Scores: A Summary of

Response-Level Reliability Coefficients (κ) Versus Total Score Reliability Coefficients (ICC)
for 108 Variables Across Samples

Raw
Difference % of Raw

Difference
≥ .10

Fisher’s Z
Difference

Sample M κ M ICC M Mdn M Mdn

Clinical samples
1. Student .69 .78 .09 .06 36 .23 .21
2. Experienced .91 .93 .02 .02 01 .27 .27
4. Applied .89 .92 .03 .03 03 .37 .30
5. Composite .84 .89 .05 .04 10 .29 .26
Forced random error samples
6. 10% error .88 .94 .06 .06 16 .42 .38
7. 20% error .77 .88 .11 .11 57 .39 .39
8. 30% error .66 .80 .14 .14 67 .36 .34

Note. Kappa (κ) was calculated across responses (N = 1,407; 1,299; 1,667; 4,761; 1,378; 1,378; and
1,378, respectively for each sample). ICC was calculated across protocols (N = 66, 65, 69, 219, 57, 57,
and 57, respectively). ICC = intraclass correlation coefficient; raw difference = ICC – κ; Z difference =
Fisher’s ZICC – Fisher’s Zκ.



TABLE 7
Illustrating the Difference Between Response Level Reliability (κ) and Summary Score Reliability (ICC) With Specific Results

From Four of the Samples

Student Experienced 30% Error 10% Error

κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference

W .95 0.99 0.04 1.00 1.00 .00 0.45 0.76 .31 0.81 0.96 .15
Wv .72 0.72 0.00 0.90 0.94 .04 0.68 0.79 .12 0.87 0.92 .05
D .88 0.97 0.09 0.99 1.00 .01 0.51 0.90 .39 0.83 0.98 .15
Dd .85 0.96 0.11 0.99 1.00 .01 0.63 0.86 .23 0.90 0.97 .07
S .83 0.87 0.04 0.95 0.97 .02 0.66 0.78 .12 0.89 0.97 .08
DQ+ .86 0.92 0.06 0.95 0.98 .02 0.45 0.81 .36 0.81 0.97 .15
DQo .83 0.98 0.15 0.93 0.99 .07 0.39 0.84 .46 0.79 0.97 .18
DQv/+ .75 0.79 0.04 0.77 0.75 –.02 0.65 0.74 .09 0.94 0.96 .02
DQv .75 0.78 0.03 0.84 0.91 .07 0.69 0.84 .15 0.86 0.95 .08
DQ+ & FQ– .66 0.86 0.20 0.91 0.96 .05 0.59 0.80 .21 0.80 0.93 .13
DQo & FQ– .73 0.91 0.18 0.91 0.96 .05 0.67 0.87 .20 0.91 0.98 .06
DQv & FQ– .21 0.47 0.26 0.65 0.64 .00 0.56 0.69 .13 0.70 0.84 .14
FQxo .84 0.94 0.11 0.98 0.99 .01 0.51 0.84 .33 0.84 0.94 .10
FQxu .59 0.82 0.24 0.92 0.95 .03 0.57 0.90 .33 0.87 0.98 .11
FQx– .72 0.88 0.17 0.96 0.98 .02 0.56 0.91 .35 0.83 0.97 .13
FQxNone .62 0.78 0.16 1.00 1.00 .00 0.69 0.86 .17 0.88 0.94 .07
FQfo .85 0.95 0.10 0.97 0.98 .01 0.65 0.72 .07 0.88 0.93 .05
FQfu .62 0.85 0.23 0.92 0.95 .03 0.64 0.68 .04 0.91 0.93 .02
FQf– .67 0.86 0.18 0.92 0.97 .05 0.64 0.84 .20 0.87 0.95 .07
MQo .87 0.80 –0.07 0.97 0.99 .02 0.68 0.76 .08 0.91 0.94 .03
MQu .66 0.72 0.06 0.87 0.81 –.07 0.65 0.77 .12 0.90 0.95 .05
MQ– .71 0.87 0.16 0.96 0.98 .02 0.64 0.73 .09 0.84 0.91 .07
SQo .76 0.79 0.03 0.93 0.93 .00 0.66 0.57 –.09 0.89 0.91 .02

(continued)
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258 TABLE 7 (Continued)

Student Experienced 30% Error 10% Error

κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference

SQu .61 0.67 0.06 0.83 0.86 .03 0.67 0.67 .00 0.92 0.96 .04
SQ– .69 0.79 0.10 0.94 0.96 .01 0.74 0.80 .05 0.90 0.95 .05
WDFQo .84 0.92 0.09 0.98 0.99 .01 0.54 0.84 .29 0.85 0.94 .09
WDFQu .61 0.72 0.11 0.94 0.96 .03 0.61 0.91 .31 0.88 0.98 .10
WDFQ– .70 0.89 0.19 0.96 0.98 .02 0.57 0.85 .28 0.82 0.94 .12
WDFQNone .63 0.76 0.13 1.00 1.00 .00 0.70 0.85 .15 0.89 0.94 .06
Ma .89 0.93 0.04 0.96 0.96 .00 0.67 0.80 .14 0.90 0.96 .07
Mp .69 0.75 0.06 0.97 0.99 .02 0.62 0.70 .08 0.87 0.91 .03
M .90 0.93 0.03 0.98 0.98 .01 0.61 0.82 .21 0.87 0.96 .09
FM .92 0.95 0.03 0.94 0.94 –.01 0.66 0.83 .17 0.89 0.95 .07
m .80 0.83 0.03 0.90 0.92 .02 0.65 0.82 .17 0.89 0.96 .07
FC .59 0.53 –0.06 0.88 0.93 .05 0.69 0.82 .13 0.91 0.96 .05
CF .62 0.64 0.02 0.87 0.92 .04 0.71 0.94 .23 0.89 0.97 .08
C .58 0.64 0.06 0.97 0.98 .01 0.69 0.84 .15 0.84 0.92 .08
CF + C + Cn .74 0.77 0.02 0.92 0.97 .05 0.70 0.95 .24 0.88 0.97 .09
Sum C .89 0.91 0.02 0.97 0.99 .02 0.67 0.93 .26 0.88 0.97 .09
FC' .67 0.79 0.12 0.92 0.95 .03 0.65 0.82 .17 0.86 0.92 .06
C'F .39 0.34 –0.05 0.83 0.88 .06 0.79 0.89 .10 0.96 0.98 .02
C' .16 0.20 0.04 1.00 1.00 .00 0.78 0.74 –.04 0.78 0.74 –.04
Sum C' .76 0.88 0.12 0.92 0.94 .01 0.69 0.86 .17 0.88 0.96 .08
FT .61 0.51 –0.10 0.86 0.90 .04 0.58 0.76 .18 0.90 0.94 .04
TF .45 0.51 0.06 0.67 0.52 –.14 0.70 0.63 –.07 0.75 0.68 –.06
Sum T .76 0.85 0.09 0.84 0.89 .04 0.61 0.70 .08 0.85 0.88 .03
FV .44 0.52 0.08 0.89 0.91 .02 0.74 0.89 .14 0.90 0.96 .06
VF .61 0.82 0.21 0.67 0.66 .00 0.79 0.92 .14 0.97 0.99 .01
Sum V .58 0.68 0.09 0.87 0.90 .03 0.74 0.96 .21 0.93 0.98 .05
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FY .51 0.78 0.27 0.93 0.97 .05 0.65 0.83 .19 0.88 0.95 .07
YF .46 0.60 0.14 0.91 0.93 .02 0.74 0.85 .11 0.89 0.93 .05
Y .60 0.47 –0.13 0.89 0.92 .03 0.86 0.88 .03 1.00 1.00 .00
Sum Y .61 0.79 0.17 0.92 0.97 .05 0.68 0.89 .22 0.88 0.96 .08
Fr .88 0.94 0.06 0.96 0.98 .02 0.63 0.53 –.10 0.90 0.91 .01
rF .00 0.49 0.49 0.87 0.94 .07 0.56 0.75 .20 0.78 0.88 .10
Fr + rF .94 0.96 0.03 0.97 0.99 .02 0.60 0.71 .11 0.86 0.93 .07
FD .71 0.76 0.04 0.90 0.93 .03 0.77 0.85 .09 0.90 0.95 .05
F .87 0.97 0.10 0.96 0.99 .03 0.51 0.77 .26 0.85 0.95 .11
Blends .79 0.89 0.10 0.91 0.98 .07 0.64 0.92 .28 0.87 0.97 .11
C – Shd Blend .74 0.83 0.10 0.92 0.94 .02 0.76 0.89 .13 0.89 0.96 .06
Pairs .83 0.94 0.10 0.98 1.00 .01 0.52 0.80 .27 0.85 0.95 .10
H .88 0.92 0.04 0.98 0.99 .01 0.63 0.73 .10 0.88 0.92 .04
(H) .81 0.87 0.06 0.96 0.97 .01 0.65 0.83 .18 0.87 0.95 .08
Hd .75 0.74 –0.01 0.94 0.97 .04 0.69 0.88 .19 0.89 0.97 .08
(Hd) .64 0.67 0.03 0.92 0.96 .04 0.67 0.75 .09 0.90 0.93 .03
Hx .26 0.40 0.13 0.97 0.98 .02 0.62 0.77 .16 0.85 0.92 .07
A .92 0.96 0.04 0.98 0.99 .01 0.56 0.88 .32 0.84 0.96 .12
(A) .71 0.78 0.08 0.92 0.96 .04 0.60 0.66 .06 0.86 0.90 .04
Ad .81 0.90 0.09 0.97 0.99 .02 0.62 0.78 .16 0.90 0.95 .05
(Ad) .44 0.44 0.00 0.86 0.85 –.01 0.81 0.87 .05 0.97 0.98 .01
An .81 0.61 –0.20 0.98 0.99 .01 0.76 0.84 .08 0.90 0.95 .05
Art .73 0.86 0.14 0.94 0.94 .00 0.66 0.86 .20 0.91 0.98 .07
Ay .72 0.70 –0.02 0.95 0.97 .02 0.68 0.69 .02 0.88 0.90 .03
Bl .89 0.92 0.02 0.99 0.99 .01 0.82 0.90 .08 0.89 0.93 .04
Bt .90 0.93 0.03 0.97 0.99 .01 0.58 0.76 .18 0.88 0.94 .06
Cg .85 0.89 0.04 0.92 0.95 .04 0.62 0.79 .17 0.88 0.95 .07
Cl .91 0.90 –0.01 0.75 0.78 .04 0.80 0.84 .04 0.80 0.84 .04
Ex .70 0.69 –0.01 1.00 1.00 .00 0.72 0.79 .07 0.97 0.98 .01
Food .88 0.90 0.01 0.95 0.97 .02 0.71 0.83 .12 0.94 0.96 .02
Fi .91 0.88 –0.03 0.91 0.93 .02 0.74 0.87 .14 0.91 0.96 .06
Geog .82 0.80 –0.02 1.00 1.00 .00 0.86 0.84 –.02 0.92 0.91 –.01
Hh .73 0.64 –0.09 0.95 0.96 .01 0.64 0.74 .10 0.86 0.92 .05

(continued)
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TABLE 7 (Continued)

Student Experienced 30% Error 10% Error

κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference κ ICC
Raw

Difference

Ls .68 0.72 0.04 0.94 0.95 .02 0.70 0.87 .17 0.89 0.94 .05
Na .75 0.86 0.11 0.88 0.88 .00 0.64 0.72 .07 0.90 0.94 .04
Sc .78 0.85 0.07 0.96 0.97 .01 0.67 0.78 .12 0.90 0.94 .04
Sx .74 0.89 0.15 0.94 0.96 .02 0.69 0.82 .12 0.86 0.95 .09
Xy .93 0.95 0.02 1.00 1.00 .00 0.83 0.87 .03 1.00 1.00 .00
Idio .50 0.66 0.16 0.96 0.97 .02 0.48 0.51 .03 0.77 0.82 .05
Popular .84 0.80 –0.04 0.98 0.98 .01 0.56 0.59 .03 0.84 0.80 –.04
Zf .86 0.95 0.08 0.96 0.99 .03 0.55 0.89 .34 0.85 0.98 .13
DV1 .58 0.72 0.13 0.81 0.85 .04 0.63 0.58 –.04 0.89 0.93 .04
INC1 .35 0.61 0.26 0.73 0.76 .03 0.65 0.85 .21 0.89 0.93 .05
DR1 .57 0.82 0.26 0.83 0.90 .07 0.67 0.91 .24 0.91 0.98 .07
FAB1 .53 0.62 0.09 0.83 0.91 .07 0.73 0.87 .15 0.90 0.97 .06
ALOG .58 0.65 0.07 0.66 0.86 .19 0.69 0.86 .16 0.88 0.94 .07
CONTAM .00 1.00 1.00 0.67 0.65 –.02 1.00 1.00 .00 1.00 1.00 .00
DV2 .61 0.84 0.23 0.67 0.49 –.18 0.63 0.68 .06 0.78 0.81 .04
INC2 .57 0.84 0.28 0.86 0.86 .00 0.62 0.76 .13 0.86 0.93 .07
DR2 .25 0.28 0.04 1.00 1.00 .00 0.74 0.90 .16 0.90 0.98 .08
FAB2 .53 0.72 0.18 0.94 0.93 –.01 0.67 0.70 .04 0.90 0.93 .04
AB .64 0.67 0.03 0.97 0.98 .01 0.36 0.28 –.08 0.80 0.88 .08
AG .78 0.83 0.05 0.85 0.87 .02 0.76 0.89 .13 0.92 0.97 .05
COP .79 0.77 –0.02 0.88 0.88 –.01 0.66 0.76 .10 0.86 0.91 .05
GHR .83 0.81 –0.02 0.94 0.94 .01 0.62 0.74 .12 0.88 0.91 .04
PHR .76 0.78 0.02 0.91 0.97 .06 0.62 0.89 .27 0.86 0.97 .11
MOR .81 0.89 0.07 0.90 0.95 .05 0.72 0.90 .18 0.88 0.95 .07
PER .83 0.94 0.12 0.90 0.94 .04 0.67 0.91 .24 0.88 0.98 .10
PSV .80 0.87 0.08 0.81 0.82 .01 0.73 0.67 –.07 0.95 0.95 .00

Note. ICC = intraclass correlation coefficient.



sify all responses on these dimensions, they were much more able to agree on
which protocols contained many or few scores for disrupted thought processes. As
an extreme example, for a protocol one rater could have assigned the scores DR1,
FAB2, DR2, and FAB1 to responses 3, 5, 7, and 9, respectively. A second rater
could assign DR2, FAB1, DR1, and FAB2 to the same responses. The raters would
have no response-level agreement for these scores although they would have per-
fect summary score agreement.

Table 7 also reveals occasions in which the data do not fit the expected pattern.
For instance, FT, Y, and An in the student coder sample and TF and DV2 in the ex-
perienced rater sample all have ICC values that are noticeably lower than their cor-
responding κ values. Some of these unexpected findings reflect very minor
differences (e.g., Hd or Cl in the student sample). However, the other instances il-
lustrate an important point about Rorschach scoring. All scoring errors are not ran-
dom events. Rather, coders may have a peculiar interpretation of some coding
rules or they may have lapses in which they consistently fail to attend to a certain
variable. Both of these problems can result in rater-specific systematic scoring er-
rors rather than random scoring errors. Consider FT, Y, and An in the student rater
sample and TF and DV2 in the experienced rater sample. For each score, a single
protocol was an outlier for the ICC calculations. In each instance, one scorer did
not code the variable (i.e., assigned a score of 0), whereas the other coded it more
frequently (assigning scores of 3, 2, 8, 2, and 2, respectively). When the single out-
lier protocol was removed for each variable, the summary score ICC value then
equaled or exceeded the response-level kappa value, as would be expected by
psychometric theory.

The most dramatic ICC versus κ disparity occurred for the An score in the stu-
dent sample. For one protocol, the target patient produced eight sexual responses.
Both raters always agreed that sex (Sx) was the primary content category for these
responses. However, one rater consistently coded human detail (Hd) as the sec-
ondary content for these responses, whereas the other rater always coded anatomy
(An) as the secondary content. With this outlier protocol removed, the ICC jumped
from .61 to .86. However, even smaller disparities can have a substantial impact on
the ICC values. This is particularly true when the score under consideration is rare.
For instance, in the experienced coder sample, both raters agreed that one protocol
should have a DV score on two of the responses. However, Rater 1 assigned a DV1
to both responses, whereas Rater 2 assigned a DV2 to both responses. The net re-
sult was that the DV2 score for this protocol was 0 for Rater 1 and 2 for Rater 2.
This is a small difference. However, DV2 scores are quite rare and this became the
largest discrepancy in the whole sample of 65 protocols. With this one case re-
moved, the ICC value for DV2 scores jumped from .49 to 1.00.

Overall, although aggregating scores across responses allows random errors of
measurement to cancel out, these data highlight a critical principle. Not all CS
scoring disparities are due to random error. At times, systematic scoring error may
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be present on the part of one rater. This can occur when a rater consistently ne-
glects a score, misunderstands the scoring rules, is consistently conservative in as-
signing scores, or is consistently liberal when assigning scores. When these kinds
of processes are present in some test protocols, summary scores will not necessar-
ily be more reliable than response-level scores. Barring this, however, the data
firmly support classical reliability theory and indicate CS summary scores are
more reliable than the scores assigned to individual responses.

Finally, we should make note of the κ values for the random scoring error sam-
ples in Tables 6 and 7. Had we simply replaced all of the original scores in these
samples with randomly generated scores (i.e., allowing existing scores to be re-
placed with the same “new” score), the theoretical κ value for each score would
have been exactly .90 in the 10% error sample, .80 in the 20% error sample, and .70
in the 30% error sample (in the absence of any sampling error). However, because
we never replaced existing scores with the same new score, we actually introduced
somewhat more error into each altered response. This resulted in κ values that the-
oretically should have been less than the nominal values of .90, .80, and .70 for ev-
ery score (again assuming no sampling error). The results clearly supported this
expectation. Table 6 indicates that the mean κ for each sample was slightly lower
than the nominal value. In the 10% error sample, the mean κ was .88 rather than
.90; in the 20% error sample, the mean κ was .77 rather than .80; and in the 30% er-
ror sample, the mean κ was .66 rather than .70. Furthermore, because common
scores were replaced with random alternatives more often than rare scores and be-
cause common scores were also inserted into the protocols more often as random
errors, in these samples κ tended to be lower than the nominal value for the more
common scores (e.g., D, DQ+, F, 2). Specifically, the correlation between score
base rate and the observed kappa values was –.30, –.55, and –.61 in the 10% error,
20% error, and 30% error samples, respectively. Again, this pattern simply reflects
the strategy we used to alter existing scores in these data sets.

Reliability of Response Segments

The next set of analyses determined whether the estimation formula for κ used
in Meyer’s (1997a) meta-analysis produced accurate results in our five clinical
samples. Meyer (1999) subsequently provided more accurate procedures to esti-
mate κ for response segments and Janson and Olsson (2001) recently presented
even more sophisticated and appropriate reliability procedures for multivariate
observations like these. Nonetheless, at present we evaluate the old estimation
procedures simply to determine whether the previous meta-analysis generated
accurate results.

For each sample, Table 8 presents three statistics: (a) the percent of exact agree-
ment on all scores assigned within a response segment, (b) exact κ values for the seg-
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TABLE 8
Percentage Agreement, Actual Kappa, and Estimated Kappa Values for the Reliability of Comprehensive System Response Segments

in the Clinical Samples

Segment (No. of
Scores)

Sample 1 Studentsa Sample 2 Experiencedb Sample 3 (k = 2) Clinicianc Sample 4 Appliedd Sample 5 Compositee

%A κ Estimated κ %A κ Estimated κ %A κ Estimated κ %A κ Estimated κ %A κ Estimated κ

Location & Space (4) .90 .86 .86 .98 .98 .98 1.00 1.00 1.00 .97 .96 .96 .96 .94 .94
Develop Quality (4) .92 .83 .86 .96 .92 .93 0.98 0.97 0.97 .99 .97 .97 .96 .92 .93
Determinants (28f) .73 .67 .65 .91 .89 .89 0.89 0.88 0.87 .83 .80 .80 .83 .80 .80
Form Quality (5) .82 .72 .70 .97 .96 .96 0.90 0.83 0.85 .97 .95 .95 .92 .88 .88
Pairs (1) .93 .83 .82 .99 .98 .98 1.00 0.99 0.99 .98 .96 .96 .97 .93 .93
Contents (27) .76 .74 .70 .93 .93 .92 0.97 0.96 0.96 .93 .92 .91 .88 .87 .86
Populars (1) .95 .84 .87 .99 .98 .98 0.99 0.99 0.98 .99 .97 .97 .98 .93 .93
Cog Sp Sc (10) .89 .58 .63 .94 .82 .89 0.90 0.79 0.80 .89 .75 .77 .90 .74 .80
Other Sp Sc (10) .86 .78 — .93 .90 — 0.93 0.91 — .90 .86 — .90 .85 —
Other Sp Sc–Old (8) .91 .77 .76 .95 .88 .88 0.95 0.89 0.88 .93 .83 .84 .93 .83 .84
All Sp Sc (20) .78 .71 — .89 .86 — 0.86 0.83 — .82 .79 — .83 .79 —
All Sp Sc–Old (18) .82 .67 .68 .90 .84 .86 0.86 0.80 0.80 .84 .75 .77 .85 .76 .79

M .86 .75 .75 .95 .92 .93 0.94 0.91 0.91 .93 .89 .89 .92 .86 .87
M difference:

Actual κ – estimated κ .0011 –.0095 –.0003 –.0037 –.0097

Note. Values were rounded to two decimal places after all calculations were completed. The mean and mean difference were computed from just the segments with estimated
κ values. %A = percentage agreement; κ = kappa calculated directly from the sample data; estimated κ = kappa estimated using the formula and chance agreement rates presented
in Meyer (1997a, Table 1); Develop = Developmental; Cog = Cognitive; Sp Sc = Special Scores; Old = segment does not include GHR and PHR.

aResponses = 1,407. bResponses = 1,299. cResponses = 388. dResponses = 1,667. eResponses = 4,761. fPure Form was considered the default option when no other
determinants were scored rather than as a code that could be assigned independently and in conjunction with all the other determinants.



ment calculated from within each sample, and (c) κ values that were estimated using
the formula and chance agreement rates proposed by Meyer (1997a). For Sample 3,
we again used data randomly selected from two of the five raters.

To estimate κ for each response segment, chance agreement (CA) rates were
obtained from the five types of samples reported in Table 1 of Meyer (1997a).
Because CA rates are determined by the base rate for all score options in a re-
sponse segment and because base rates and CA rates both change as a function
of psychopathology, it is essential to know the sample under consideration to ac-
curately employ those CA rates. The outpatient CA rates were used for Sample
1. For Samples 2, 3, 4, and 5, the CA rates corresponding to the mixed psychiat-
ric (inpatient and outpatient) population were used. Superficially, Sample 3 was
an outpatient sample. However, because each patient in the sample carried a per-
sonality disorder diagnosis and because only complex records were selected for
the scoring study, the frequency of otherwise rare scores would be substantially
increased in the sample. Thus, it would have been inappropriate to estimate κ
with standard outpatient base rates. Doing so would have led to artificially low
estimates of κ.9

Table 8 contains data on 12 response segments. The Special Score segments de-
serve comment. Although the cognitive Special Scores that contribute to the Sum6
and WSum6 did not change, the other Special Score segment did. Currently, good
and poor human representations (GHR and PHR, respectively) are coded as Spe-
cial Scores. These variables were not part of the CS when Meyer (1997a) con-
ducted his meta-analysis. Thus, Table 8 reports two sets of results for the Other
Special Scores and All Special Scores segments. The first corresponds to current
scoring practices and the second (designated as Old) corresponds to the scoring
practices that were in place when Meyer (1997a) computed the chance agreement
rates to estimate κ for response segments.

Perusing Table 8, it can be seen that the estimation formula produced seg-
ment κ values that were quite consistent with the observed values. As indicated
in the Mean Difference row, when averaged across response segments, the κ es-
timates derived from the formula matched the observed values almost perfectly,
with deviations of .0011, –.0095, –.0003, –.0037, and –.0097 in Samples 1
through 5, respectively. Across all 50 calculations, the average difference be-
tween the estimated and actual κ values was –.0044, a trivial magnitude. Given
this and given that no deviation was ever greater than .06, it can be seen that the
formula Meyer (1997a) used in his meta-analysis provided an accurate means
for predicting response segment κ from the percent agreement rates in the pub-
lished literature.
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Results From This Study Compared to the Published
Literature on CS Reliability

Finally, we compare the results from our investigations to the sample weighted re-
sults obtained from all the other published studies we know of that have reported
chance-corrected interrater reliability coefficients for CS scores. These studies
were identified by consulting articles that reviewed prior research on CS reliability
(e.g., Acklin et al., 2000; McDowell & Acklin, 1996; Meyer, 1997a; Viglione &
Hilsenroth, 2001) and by conducting a thorough PsycINFO database search that
covered the recent literature. The latter identified all articles with the word Ror-
schach in the title or abstract published in the 4-year period from 1997 through De-
cember, 2000. The 247 abstracts identified through this search were reviewed and
winnowed by excluding those in a language other than English, reviews and
nonempirical articles, and those that clearly addressed scoring systems other than
the CS. The 70 articles that remained were then manually inspected to see if they
provided chance-corrected (i.e., κ or ICC) reliability coefficients for CS scores.10

Table 9 presents the relevant information for summary scores, individual scores
at the response level, and response segments. For our study, the average summary
score was obtained from Table 2, the average coefficient for individual scores at
the response level was obtained from Table 6 (using the composite clinical sam-
ple), and the average for response segments was obtained from Table 8 (again us-
ing the composite clinical sample).
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10A study by Grønnerød (1999) initially appeared relevant. It reported reliability at the summary
score level and at the response level for single scores and segments. Even though scores were labeled
using CS terms, a Klopfer-based Norwegian system was actually used to score the protocols (p. 117).
Because scoring did not follow standard CS guidelings (i.e., definitions, examples, practice items), the
data were not included in our summary of the literature. However, Grønnerød’s study has been cited as
evidence of CS reliability (e.g., Lilienfeld et al., 2000), so several other complications should be noted.
Grønnerød reported results for 10 Klopfer-based scores that were said to be defined in the same way as
CS scores (i.e., W, C'F, FV, rF, A, (Hd), Sex, Hx, Cg, and INC). However, it was not clear why these
specific scores were equated with the CS, while many similar scores (e.g., FC', SumC', SumV, Fr) were
not and did not have reliability results reported. It also was not clear why response segment data was
presented for some categories that apparently did not have overlapping definitions with the CS (e.g.,
Form Quality). In addition, Grønnerød computed response segment reliability by averaging results
across the individual scores in a segment. This procedure is not commensurate with other studies in our
review. Finally, summary scores were treated as nominal categories rather than as continuous dimen-
sions and reliability was computed using unweighted κ rather than the ICC. As a consequence, a minor
disparity between two raters (e.g., W = 9 vs. W = 8) would be treated as an error that was as severe as a
major disparity (e.g., W = 9 vs. W = 3 or W = 16 vs. W = 2). This approach is not typical and should pro-
duce lower estimates of reliability than the standard procedures used elsewhere in the literature. Given
these computational differences, at most our review could have included response level κ results for the
10 Klopfer-based scores that were said to be comparable to CS scores. The four scores with a base rate
> .05 had M κ = .87; the six scores with a base rate < .05 had M κ = .41. Had we included all 10 scores in
Table 9, the overall M κ for individual scores would be .80 (N = 15,139) rather than .83 (N = 13,159).



From the published literature, summary score coefficients were obtained from
Acklin et al.’s (2000) clinical and nonpatient samples; Franklin and Cornell
(1997); Greco and Cornell (1992); Netter and Viglione (1994); Ornduff, Centeno,
and Kelsey (1999); and Perry and Viglione (1991). Results from Meyer et al.
(2000) were not used because their reliability protocols were already part of our
study. From Acklin et al. we only used the statistically stable scores. Greco and
Cornell just reported that all ICC values were > .85. Conservatively, the value of
.86 was used as the mean for this study. Netter and Viglione reported that one score
had an ICC of .90, whereas the remaining six scores had ICC values > .95. Conser-
vatively, the latter were assumed to average .96. For Ornduff et al. it was unclear
whether intraclass correlations were reported for two raters or four raters. Given
the ambiguity, we conservatively assumed just two raters.

For individual scores at the response level, reliability coefficients were ob-
tained from Acklin et al. (2000); Baity and Hilsenroth (1999); Hilsenroth, Fowler,
and Padawer (1998); Krishnamurthy, Archer, and House (1996; Archer &
Krishnamurthy, 1997); Perry and Braff (1994); Perry, Potterat, Auslander,
Kaplan, and Jeste (1996); Shaffer, Erdberg, and Haroian (1999); and Young, Jus-
tice, and Erdberg (1999). Krishnamurthy et al. reported the mean κ value for indi-
vidual scores that fell within response segments. Perry and Braff just reported that
κ values were between .88 and .97, so the mean of these two values was used in
calculations. The total number of responses (R) was estimated by assuming 20 re-
sponses per protocol. Perry et al. (1996) reported that κ values were between .74
and .82, so the mean of these two values was used in calculations. Total R was esti-
mated from their Table 3. Young et al. reported that κ values were between .75 and
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TABLE 9
Comprehensive System Reliability in the Current Samples Relative to the Published Literature

This Study Published Literature All Available Data

No. Var N M κ/ICC No. Var Na κ/ICC No. Var Na M κ/ICC

Summary
scores 164 219 .90 2–85 455 .93 2–164 674 .92

Individual
scores 108 4,761 .84 2–88 8,398 .83 2–108 13,159 .83

Response
segments 10 4,761 .86 4–10 7,247b .85 4– 10 12,008c .86

Note. No. Var = number of scores or segments considered in each study; ICC = intraclass correlation
coefficient.

aStudies reporting pairwise agreement rates or multirater coefficients were treated as containing replicated
samples across the rater pairs. As such, the N for these studies was calculated as the number of target protocols or
responses coded times the number of unique observer pairs. bThis is the average number of responses coded across
studies (range from 1,400 to 14,003 responses per segment; Mdn = 6,221). c This is the average number of responses
coded across studies (range from 6,161 to 18,764 responses per segment; Mdn = 10,982).



1.0. The mean of these two values was used in calculations and total R was esti-
mated by assuming 20 responses per protocol.

For response segments, reliability coefficients were obtained from McDowell
and Acklin (1996); the 16 samples summarized in Meyer (1997a); Perry,
McDougall, and Viglione (1995); and Perry, Sprock, et al. (1995).11 Perry,
McDougall, et al. (1995) reported that κ ranged from .63 to .89, so the mean of
these values was used in calculations. Total R was estimated by assuming 20 re-
sponses per protocol. Perry, Sprock, et al. (1995) reported that κ ranged from .71 to
.82. The mean of these two values was used in calculations and total R was esti-
mated from their Table 1.

Although this investigation examined more scores than other studies in the pub-
lished literature, our average results are essentially equivalent to those observed by
other investigators. The average summary score ICC from this study closely
matched the weighted average derived from seven other CS samples in the pub-
lished literature (.90 vs. .93). Similarly, our response-level reliability for individ-
ual scores was almost identical to the average κ value reported in nine other
samples (.84 vs. .83). Finally, our average response segment κ value was virtually
the same as the weighted average derived from up to 19 other samples reported in
the literature (.86 vs. .85).12

DISCUSSION

In this study, we presented detailed findings on the interrater reliability of the Ror-
schach CS in eight large samples. Five of these samples were based on clinical re-
cords: (a) a novice sample containing 2 independent ratings of 66 protocols (R =
1,407), (b) an expert sample containing 2 independent ratings of 65 protocols (R =
1,299), (c) a clinician survey sample containing 95 independent ratings of 19 proto-
cols (i.e., 5 ratings per protocol; R = 388), (d) an applied reliability sample contain-
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11It is not clear that McDowell and Acklin (1996), Perry, McDougall, et al. (1995), and Perry,
Sprock, et al. (1995) computed segment chance agreement rates in the same manner as our study and
Meyer’s (1997a) meta-analysis. To the extent that they did not take into account the base rate for all
score options within a segment, their segment κ values will underestimate reliability.

12Acklin et al. (2000) provided an extensive array of reliability data from two small samples. In
their analyses, protocols had been scored by two students with some advanced training. As such, their
results can be compared to the findings we reported for our student raters. Acklin et al.’s average ICC
values were .78 and .80 across 82 to 85 summary scores. These values are slightly lower than the aver-
age of .82 we found across 133 variables in our Sample 1. Acklin et al.’s average response-level reli-
ability coefficients were κ = .73 and .78 across 88 to 89 variables. These values are higher than the
average κ = .69 across 108 variables in our Sample 1. In addition, McDowell and Acklin (1996) re-
ported κ values for response segments in one of their samples. They found an average κ = .79. Using the
same response segments, the average κ was .78 in our student sample.



ing 69 protocols initially scored as part of everyday clinical practice and then
rescored by researchers (R = 1,667), and (e) a composite clinical sample containing
2 independent ratings of 219 protocols (R = 4,761) that were derived from the four
previous samples. The remaining three samples examined 57 experimentally ma-
nipulated protocols (R = 1,378) in which 10%, 20%, and 30% of all scores were re-
placed with randomly generated erroneous scores. Across all samples, reliability
coefficients were generally excellent, with median ICC coefficients of .85, .96, .97,
.95, .93, .95, .89, and .82, respectively, across the 133 to 143 statistically stable
summary scores in each sample.13 Not surprisingly, the sample containing 30%
random error produced the lowest reliability coefficients. However, even in this
sample reliability remained quite high.

When the four distinct clinical samples were combined to form a single com-
posite sample of 219 protocols and 4,761 responses, the median and mean
interrater reliability coefficients were .92 and .90, respectively across all 164 struc-
tural summary variables that could be evaluated. No variables had poor reliability.
Instead, 1 variable (TF) had fair reliability, 7 were classified as having good
interrater agreement, and the remaining 95% of the variables were classified as
having excellent reliability. These data indicate unequivocally that CS scoring
rules are sufficiently clear and unambiguous to produce highly reliable summary
scores when reasonably trained raters independently code the same responses.

Previously, Wood, Nezworski, and Stejskal (1996, 1997; also see Garb et al.,
2001; Lilienfeld et al., 2000; Wood & Lilienfeld, 1999) suggested CS reliability
may be poor and they asserted that proper reliability studies would demonstrate
how some CS scores were reliable, whereas others were not. Unfortunately, there
was never evidence to support these suppositions. Rather, all the available data had
suggested Rorschach scoring was reliable (cf. Table 9 and Meyer, 1997a, 1997c).
When the historical literature is considered in conjunction with the evidence as-
sembled here, one must conclude that the assertions of poor reliability were erro-
neous. Because the Rorschach has held a contentious place in psychology’s
history, claims of poor reliability may have emerged from negative attitudes to-
ward the Rorschach as a method of assessment rather than from an understanding
of the instrument and an appreciation of the available empirical literature.

The analyses we report here demonstrate several additional points. First, re-
sponse-level reliability coefficients provide more conservative estimates of CS
interrater agreement than summary score coefficients. Second, across samples it
was evident that practicing clinicians produced excellent interrater reliability coef-
ficients that were equivalent to those of researchers. Third, Rorschach summary
scores function like other types of psychometric scales. When scores are aggre-
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locations. This is a statistically stable score. Across all the samples, the reliability of the WD score was
.97, 1.0, 1.0, 1.0, 1.0, 1.0, .99, and .98, for Samples 1 through 8, respectively.



gated across responses, random item-level errors tend to cancel out making the
summary values more reliable. This effect appears most pronounced in samples
that initially contain more response-level random errors.

Some may wonder which type of coefficient is the most appropriate for CS reli-
ability: the ICC for summary scores, κ for response segments, or κ for individual
scores? We believe the answer depends on the goal of the reliability analysis. If the
analysis is designed specifically to examine the extent to which two raters under-
stand and agree on the CS scoring rules, it would be appropriate to focus on the re-
sponse-level reliability of individual scores (although see Meyer, 1997a, and
Table 4 and 5 for cautions when using small samples). Conversely, if the goal is to
understand the applied reliability of the CS for research or practice, it would be
most appropriate to focus on summary score ICCs because summary scores are
generally used for statistical analyses or clinical decision making.

If researchers are interested in documenting that CS scoring is reliable simply
as a precursor to investigating validity (cf. Weiner, 1991), it may be most appropri-
ate to report the reliability for response segments. Although reliability coefficients
derived from response segments do not provide differentiated information on each
CS score, we recommend their use for several reasons. First, it is very time con-
suming to calculate intraclass correlations for 165 summary scores or to calculate
κ coefficients for the 100+ score options that can be assigned to individual re-
sponses. Although computerized programs can be of assistance, programs are not
yet widely available to generate all the necessary calculations from a computer-en-
tered CS sequence of scores (although see Janson & Olsson, 2001). In this study,
we relied on computerized tabulation for all analyses.14 However, it takes many,
many hours to organize the relevant data, import it into a statistical program, and
write the appropriate syntax to transform and analyze the findings.

Some researchers may think it is appropriate to invest many hours computing
the reliability for all CS scores, even when a study is really designed to address
questions of validity for a limited subset of scores. However, there is another com-
plication that must be considered. Tables 4 and 5 demonstrate how sampling error
confounds the reliability statistics derived from small samples (e.g., n = 20). As a
result, small reliability samples are prone to generate at least some misleading sta-
tistics for individual scores. This problem is not addressed by CIs. Table 5 and Fig-
ures 1 and 2 reveal that CIs are often grossly inaccurate and tend to underestimate
true reliability, particularly for the relatively rare CS scores. Thus, true reliability
is often higher than what is reported in a small sample study. In general, research-
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14In a prior version of this manuscript, we relied on manual tabulation or data transformation for
some of the analyses. Consistent with other reports (Meyer, 1998), once all the data were managed and
tabulated electronically, we discovered we had initially made a number of relatively minor errors. The
most serious error resulted from a misaligned tab in an output file that was subsequently read to com-
pute ICC values. The error caused the Science content code in one sample to be computed as having a
reliability of .03 rather than the correct value of .91.



ers should probably calculate κ or ICC coefficients on individual scores only when
they have sufficiently large samples (e.g., 50 to 60 protocols) to ensure adequate
and representative between-subjects variance across all the scores under consider-
ation. Of course, increasing the size of a reliability sample also increases the time
required to compute κ or ICC coefficients for individual scores.

One advantage of computing reliability coefficients for response segments is
that they are less affected by relatively small samples. The reason is a function of
chance agreement rates. Even in small clinical samples, it is quite unlikely for rat-
ers to agree by chance alone on all the Determinant scores, all the Content scores,
all the Special Scores, and so forth (Meyer, 1997a). By contrast, it would not be
surprising for a sample of 20 protocols to have, for example, only one C'F score,
one (Ad) score, or one FAB2 score. Assuming each protocol had an average of 20
responses, these rare scores would then have a kappa-defined chance agreement
rate of .995. This base rate leads to estimates of chance-corrected reliability that
are statistically very unstable.

This study also demonstrated that the formula used in Meyer’s (1997a) meta-
analysis to estimate response segment κ values was accurate. Thus, the results
from that study are stable and generalizable. However, researchers interested in
generating κ for response segments should use the more precise and simple steps
developed by Meyer (1999) or the even more sophisticated procedures developed
by Janson and Olsson (2001).

Although this study reports important positive conclusions for CS reliability,
readers should be equally clear about conclusions that are not warranted by these
data. In particular, it is not the case that anyone who uses the CS is automatically a re-
liable scorer. Such a conclusion is patently false. The CS is a complex coding system
that requires knowledge of many rules and benchmarks for accurate discrimination.
These rules and benchmarks are only acquired through systematic training and prac-
tice; therefore, only well-trained individuals will score accurately. It is reassuring to
know that coders have at their disposal a classification system that can be reliably
implemented. However, the act of classifying Rorschach responses ultimately de-
pends on the coder, not the scoring system. Thus, reliable use of the CS is dependent
on theskill of theclinicianor researcherusing the instrument.Evenwithin thehighly
reliabledatapresentedhere, therewere instanceswhenonecoder inapair systemati-
cally differed from the other. Consequently, even well-trained coders must maintain
a vigilant stance toward proper scoring to avoid lapses and errors. We strongly en-
courage anyone who uses the CS in clinical practice (or any other instrument with
complex scoring) to conscientiously evaluate their scoring accuracy to ensure the
test is being employed in a reliable, clinically defensible manner.
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