A Dissertation

entitled

The Impact of Time-Based Accounting on Manufacturing Performance

by

Robert Hutchinson

Submitted as partial fulfillment of the requirements for the Doctor of Philosophy degree in Manufacturing Management & Engineering

Advisor: Paul Hong, Ph.D.

College of Graduate Studies

The University of Toledo December 2007

Copyright © 2007

This document is copyrighted material. Under copyright law, no parts of this document may be reproduced, exceeding 'fair use', without the expressed permission of the author.

An Abstract

The Impact of Time-Based Accounting on Manufacturing Performance

Robert Hutchinson

The University of Toledo

December 2007

Advanced manufacturing strategies are often undermined by the legacy control mechanisms of another era. In response to today's hypercompetitive global business environment, many manufacturing firms have adopted new business strategies such as time-based manufacturing (TBM). While some firms credit their success in the marketplace to TBM and other advanced manufacturing strategies, still more have realized little or no improvement in performance. Post-implementation failures often find their root not in the manufacturing strategy itself, but in the lack of congruent control mechanisms. One of such important control mechanism is the firm's managerial accounting system (MAS).

Despite evident appeal to both managerial accounting and manufacturing management, few managerial accounting innovations have developed at this interface. There is increasing recognition amongst managerial accounting scholars of the need for innovative studies to fill in the knowledge gaps and provide normative solutions for managerial accounting practice that has increasingly lost its relevance to modern manufacturing.

This study demonstrates that the design of the MAS can significantly affect key manufacturing performance measures. Market, operational, and financial performance measures are utilized in this study in terms of demand fulfillment rate (DFR), cycle-time (CT), and net operating income (NOI) respectively. Three MAS alternatives – traditional costing systems (TCS), activity-based costing systems (ABC), and the newly proposed time-based accounting (TBA) methods – are all examined. This study employs a computer simulation methodology, which presents an opportunity for the direct comparison and quantitative measurement of this impact. The choice of methodology allows for the controlled introduction of supply and demand stochasticity along with differing levels of product mix complexity, modeled in environments with differing levels of manufacturing overhead burden.

The results provide significant evidence of the importance of MAS design vis-àvis manufacturing strategy. No single MAS outperformed all others along all performance measures, indicating the need to align the MAS to the manufacturing strategy. While MAS design alone may not ensure the success of an advanced manufacturing strategy, this study clearly demonstrates that it should be considered an integral part of the initiative. The introduction of TBA demonstrates how MAS design can better support a TBM strategy and regain lost relevance.

iv

For Mariana

All thanks be to God

Table of Contents

Abstract	iii
Dedication	v
Epigraph	vi
Table of Contents	vii
List of Figures	ix
I. Introduction	1
Managerial Accounting Function	3
The Productivity Paradox	
Research Objectives, Questions, and Framework	10
Research Methodology	
Contributions of this Research	16
II. Literature Review	23
The Evolution of Managerial Accounting	23
Relevance Lost	
The Dawn of Time-Based Competition	31
The Impact Increasing Manufacturing Overhead Burdens	38
A Taxonomy of Managerial Accounting Systems	39
Traditional Costing Systems	42
Activities-Based Costing	43
Throughput Accounting	
Time-Based Accounting	
Interface of Managerial Accounting and Operations Management	
The Impact of Product Mix Complexity on Manufacturing	
Simulation Methodologies in Managerial Accounting Research	65
III. Research Design	73
Experimental Design	76
Statistical Hypotheses	78
Experimental Factors	80
Performance Measures	90

IV. Simulation Design	
Model Assumptions	
Technical Details of Simulation Model	
Replications and Variance Reduction	
Verification and Validation	
V. Results	105
Raw Data and Descriptive Statistics	105
Data Screening and Assumption Tests	
MANOVA Results	112
Hypothesis Testing	120
Practical Implications	122
Summary of Research Results	128
VI. Conclusions	
Limitations of Current Study	
Suggestions for Future Research	139
VII. Literature Cited	145
VIII. Appendix A: Direct and Variable Costing Example	155
IX. Appendix B: Time-Based Accounting Overhead Allocation Example	157
X. Appendix C: SIMAN Code	159
XI. Appendix D: Cumulative NOI	180
XII. Appendix E: Raw Data	190

List of Figures

1.1	Framework for Organizational Change	3
1.2	Cost Flow Diagram	5
1.3	Experimental Research Framework	13
2.1	A Time-Line of Managerial Accounting and Industrial Developments	27
2.2	The Trend of Manufacturing: Towards Time-Based Competition	34
2.3	A Comparison of the Key Differences between JIT and TBM	35
2.4	A Comparison of Profit Reporting under Absorption and Variable Costing	40
2.5	Product Costing under Different Managerial Accounting Schemes	42
2.6	A Comparison of Traditional Cost and Throughput Accounting	47
2.7	Cost Distortion and MAS Design in TBM Strategic Context	56
2.8	The Strategy, Action, and Measurement Connection	57
2.9	The Moderating Effect of Quality-Driven Performance Measures	58
2.10	0 Disordinal Interaction of Goal-Congruent Measures and Performance	59
2.1	1 Select Managerial Accounting Studies Using Simulation (2001 - 2006)	67
3.1	Methods for Studying a System	74
3.2	Product and Period Cost Classifications by MAS	80
3.3	Material Purchase Prices	82
3.4	Product Characteristics	87
3.5	BOM Structure by Product	88
3.6	Product Routings	89
4.1	Simulation Model	93
5.1	Total Number of Between-Subjects Factors	106
5.2	Case Processing Summary	107
5.3	Correlations	110
5.4	Bivariate Scatterplots	111
5.5	Box's Test of Equality of Covariance Matrices	112

5.6 Partial Eta Squared Values for MAS, MOH, and MIX Effects	. 114
5.7 Partial Eta Squared Values for MAS, MOH, and MIX Interaction Effects	. 114
5.8 Multivariate Tests	. 116
5.9 Net Operating Income Post-Hoc Test	. 118
5.10 Test of Between Subjects Effects	. 119
5.11 Multiple Comparisons by MAS	.123
5.12 Demand Fulfillment Rate by MAS	. 124
5.13 Cycle-Time by MAS	.125
5.14 Net Operating Income by MAS	125
5.15 Multiple Comparisons by Product Mix Complexity	.126
5.16 Demand Fulfillment Rate by Mix Level	. 127
5.17 Cycle-Time by MIX Level	. 127
5.18 Net Operating Income by MIX Level	128
5.19 Summary of MAS Performance by Experimental Condition Group	129
5.20 Average Demand Fulfillment Rate by MAS	. 130
5.21 Average Cycle-Time (Minutes) by MAS	. 131
5.22 Average Net Operating Income (Low Manufacturing Overhead Level)	. 132
5.23 Average Net Operating Income (Medium Manufacturing Overhead Level)	. 133
5.24 Average Net Operating Income (High Manufacturing Overhead Level)	. 133
6.1 A System-Dynamics Conceptual Framework	. 140
D.1 Cumulative Net Operating Income by MAS (Experimental Condition Group 1)	. 181
D.2 Cumulative Net Operating Income by MAS (Experimental Condition Group 2)	. 182
D.3 Cumulative Net Operating Income by MAS (Experimental Condition Group 3)	. 183
D.4 Cumulative Net Operating Income by MAS (Experimental Condition Group 4)	. 184
D.5 Cumulative Net Operating Income by MAS (Experimental Condition Group 5)	. 185
D.6 Cumulative Net Operating Income by MAS (Experimental Condition Group 6)	. 186
D.7 Cumulative Net Operating Income by MAS (Experimental Condition Group 7)	. 187
D.8 Cumulative Net Operating Income by MAS (Experimental Condition Group 8)	. 188
D.9 Cumulative Net Operating Income by MAS (Experimental Condition Group 9)	. 189

Chapter One

Introduction

Today's advanced manufacturing strategies are often undermined by legacy control systems designed in another era. In response to today's hypercompetitive global business environment, many manufacturing firms have adopted new business strategies such as time-based manufacturing (TBM) and invested heavily in advanced manufacturing technologies in order to maintain their market position over competitors. While some firms credit their success in the marketplace to TBM and other advanced manufacturing strategies, still more have realized little or no improvement in performance. In some cases, implementation has been reported to have had a negative effect on the performance, and, in extreme pathological cases, some firms have even blamed such strategies for complete demise of the company. Quite often, the failure can be traced back not to the manufacturing strategy and/or technologies, but to the lack of appropriate control systems post-implementation (Womack & Jones 1996).

One of the most crucial control systems is the firm's internal managerial accounting system (MAS), which plays a decisively important role in supporting manufacturing strategy. Yet the blatant insignificance conferred upon it by a great number of academic researchers and practitioners remains paradoxical. Empirical research suggests that MAS design rarely reflects differences in manufacturing strategy, operating environment, or competitive pressures (Hughes & Paulson-Gjerde 2003).

Rather than suggest ways to better incorporate strategic measures within the existing managerial accounting framework, many consultants and researchers have advocated an increased use of non-financial measures, i.e. operational measures, in lieu of traditional cost measurers (Chenhall 1997, Sim & Killough 1998, Hoque 2003). The so called 'balanced scorecard' has thus become a popular topic for researchers seeking to restore relevance for cost accounting. Still others believe that in order to influence managers to do the right things, traditional manufacturing cost accounting systems may need to be abandoned altogether (Womack & Jones 2003). Regardless of cost accounting's potential flaws, the bottom line – pun intended – on solutions that would marginalize or even eliminate financial measures is that few manufacturing managers can simply ignore product cost. This presents a real conundrum to manufacturing managers as strategic non-financial performance measures have increasingly come into direct conflict with legacy cost measures that are artifacts of another era of manufacturing.

What is really needed is not a complete abandonment of manufacturing cost accounting systems, but an adaptation that directly links strategic success measures, such as time-based performance measures, to product cost. Alternatives to financial measures, such as the balanced scorecard, remain an enigma for researchers as they are often firmspecific and are seldom identified in practice. The fatal flaw for is that they fail to build on the strengths of manufacturing cost accounting. In the words of Peter Drucker (1990), the world's preeminent authority on management theory:

Cost accounting's strength has always been that it confines itself to the measurable and thus gives objective answers. But if intangibles are brought into its equations, cost accounting will only raise more questions. How to proceed is thus hotly debated, and with good reason. Still, everyone agrees that these business impacts have to be integrated into the measurement of factory performance, that is, into manufacturing accounting.

Managerial Accounting Function

Although not usually ranked high in organizational priorities or in academic research

models, a firm's MAS provides the ultimate scorecard for management. It is critical that

the MAS exhibit the following characteristics (Zimmerman 2003):

- 1. Provide the information necessary to identify the most profitable products and the pricing and marketing strategies to achieve desired volume levels.
- 2. Provide information to detect production inefficiencies to ensure that the proposed products and volumes are produced at minimum cost.
- 3. When combined with the performance evaluation and reward systems, create incentives for managers to maximize firm value.
- 4. Support the financial accounting and tax accounting reporting functions.
- 5. Contribute more to firm value than it costs.

The objectives of the managerial accounting function are to assist managers and

to influence their behavior in a way that results in goal congruent actions (Anthony

1989). Figure 1.1 below presents a framework for organizational change and managerial

accounting's role in driving the action that leads to firm value.

Changes in business environment should lead to the evolution of new strategies and ultimately to changes in the firm's organizational architecture, including changes in the MAS to better align employee incentives to the objectives of the organization (Zimmerman 2003). The MAS is critical in setting profit goals, establishing departmental targets in the form of budget plans, evaluating the effectiveness of resource usage against those plans, investigating successes and failures in terms of specific manufacturing processes and support tasks, and taking action on adjustments and improvements necessary to keep the entire manufacturing enterprise moving towards the established strategic objectives. This raises the question in today's increasingly timebased competitive environment; to what extent do managerial accounting practices incorporate the strategic importance of time into product cost? The answer for many manufacturing firms is that MAS congruence is an afterthought to strategy, if given any consideration at all (Hughes & Paulson-Gjerde 2003).

Perhaps one of the reasons MAS alternatives are rarely considered in conjunction with implementation of TBM or any other advanced manufacturing strategy, may be a general lack of understanding, particularly for non-accountants, as to the fundamental differences between these alternatives. Essentially, the differences between most MAS alternatives come down largely to how manufacturing overheads are allocated or 'absorbed' into product cost. It is often relatively easy to trace costs such as direct materials, direct labor, and certain conversion costs – such as utilities – to particular products. However, in most modern manufacturing facilities, the proliferation of advanced manufacturing strategies and technologies make it difficult, if not impossible, to trace manufacturing overhead burden directly to any particular product or product class. Figure 1.2 below illustrates the typical flow of material, labor, and overhead costs through the work-in-process and finished goods accounts ending in cost of goods sold.

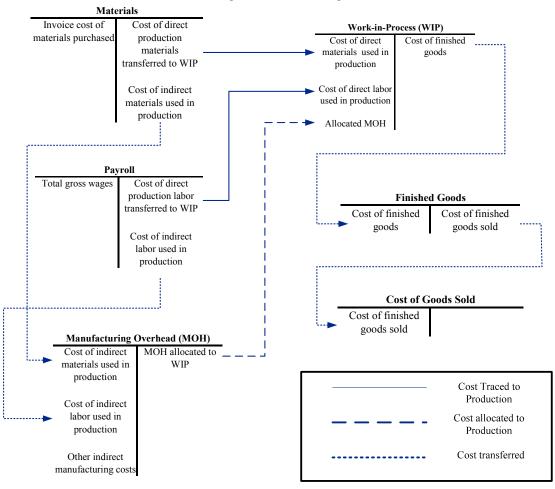


Figure 1.2: Cost Flow Diagram

For all intents and purposes, the MAS may be thought of as nothing more than a methodology for capturing and allocating costs to products, with the defining difference between alternatives being how manufacturing overhead are allocated. The basic difference then becomes the basis for allocating manufacturing overheads. While this may seem simple enough in concept, in reality it becomes a major issue as direct costs, particularly manual labor, have become increasingly insignificant in relation to manufacturing overheads driven by increasing capital investments in advanced manufacturing strategies and technologies.

With the widespread adoption of advanced manufacturing strategies and technologies, many managers have questioned the ability of traditional cost systems

(TCS) to achieve its objectives of strategic planning, budgeting and cost control, product pricing, profit determination, and especially employee motivation. In fact, TCS has often been charged as one of the major obstacles to the success of any advanced manufacturing strategy. Goldratt, whose 'theory of constraints' manufacturing has developed a worldwide cult following, labeled TCS "enemy number one to operational productivity" (Goldratt & Cox 1992). Despite evidence heaped against it from academics and management consultants, most firms in practice continue to use TCS (Garg et al. 2003). Ittner and Larcker (2003) contend that managerial accounting researchers themselves hold much of the responsibility for the failure of managerial accounting practice to effectively adapt.

Kaplan's (1983) call for greater emphasis on manufacturing performance measurement spurred considerable enthusiasm for research on this topic in the managerial accounting community. Notwithstanding this initial enthusiasm and the potential contribution both to scholarly research and practice, the pursuit of new 'hot' topics quickly and substantially reduced research at this interface of accounting and operations management... We are left with an underdeveloped body of [manufacturing accounting] research that fails to build on prior studies to increase our understanding of the topic, leaving many important research topics unexplored, and lacks the critical mass of related studies needed to reconcile conflicting results.

TCS has lost its relevance to the dynamic and fast advancing nature of the modern manufacturing enterprise (Johnson & Kaplan 1987). Nevertheless, case studies suggest that cost remains the primary, and in the majority of cases the only, decision criterion in manufacturing (Veen-Dirks 2006). Continued debate on balancing cost and non-financial measures is of dubious practical value to operations management. The overarching question for research is what effect, if any, different MAS alternatives, with differing methodologies for allocating manufacturing overhead burdens, have on manufacturing system performance. A particular challenge for management accountant researchers today is developing MAS alternatives for practice that directly link manufacturing strategic measures to product cost.

The Productivity Paradox

Beginning in the 1980s, American industry invested heavily in advanced manufacturing strategies and technologies in order to regain competitive advantage lost to Japanese manufacturers. The majority of manufacturers found implementation of these advanced manufacturing systems problematic and realized that fundamental changes in production must be coupled with corresponding changes in control systems. In particular, managerial accounting research began to consider the 'perverse' management incentives created by TCS. Skinner (1986) termed this type of perverse behavior the 'productivity paradox', where manufacturing managers strive to better their measure of productivity rather than making true productivity improvements.

Fry and others (1993) contend that continued reliance on TCS may result in dysfunctional behavior vis-à-vis time-based strategic objectives including:

- Batching of orders to minimize setups at the expense of higher priority orders
- Production overruns and excess inventory to create favorable variances
- Cherry picking easy orders at the expense of higher priority orders
- Delaying preventive maintenance to increase machine utilization
- Understaffing in departments to increase worker productivity
- Delay operator training and cross training to prevent under-utilization
- Building a buffer of backorders to ensure that an adequate level of work exists

In their well-known book, *Lean Thinking*, Womack and Jones (1996) combined the core practices of several advanced manufacturing strategies under a broad conceptual umbrella, which they termed 'lean manufacturing'. They examined the application of the key practices of lean manufacturing across the value chains of many global manufacturing companies. The authors found commonalities between those companies that were successful not only in implementing a lean initiative but also in sustaining the initiative. The following is a list of the critical success factors they observed at firms that successfully implemented and sustained lean manufacturing programs:

- 1. *Institutionalizing change* organizations that accept change as continuous process are more successful in their pursuit of lean manufacturing. Constant change becomes part of the organizational culture, and employees not only accept it as necessary to doing business, but embrace it as a competitive weapon.
- 2. *Find a leverage point* organizations on the brink of failure are more likely to accept the radical changes (item 3) in business practices and processes needed to save the company. It gives the employees a sense of urgency knowing that failure of the 'lean' program is not an option.
- 3. *Radical change* organizations that begin the 'lean' process with a complete reengineering of their business systems and processes are more likely to succeed in instituting lasting change throughout the organization. If the firm is on a course of bankruptcy only a 180 degree turn will save it from destruction.
- 4. *Continuous improvement* once the firm has set a course for improvement, change must focus on continuous and incremental improvement of business processes.
- 5. *Install business support systems* once continuous improvement and change has been institutionalized, support systems must be adjusted to support and encourage a continuation of the program.
 - *a.* Accounting systems those firms that change their accounting systems to better reflect the goals of the 'lean' organization are more likely to succeed. Leaving the legacy accounting system, with its focus on past goals, can create perverse incentives for managers.
 - *b. Compensation systems* incentives should be given based on performance according to the goals of the company.
- 6. *Educate* as part of the system of continuous improvement and employee empowerment, education becomes critical to continued success.
- 7. *Create transparency* business systems need to be designed to create transparency throughout the organization, and information should be shared freely among the various organizations and functional departments.

Womack and Jones stressed the importance of installing appropriate business systems (item 5) to the long-term, continued success of lean manufacturing initiatives, yet this is often forgotten or ignored after the hype of installation on the plant floor. Legacy accounting systems, many of which were developed and widely adopted before World War II, when average cost of production was primary focus of manufacturing, remain in common use and may create perverse incentives for managers that undermine the continued performance of the lean system. It is for this reason that managerial accounting plays a critical roll in lean initiatives, and, according to the authors, the fact that it is often ignored may explain a great number of failures cited by companies that have tried to implement some form of advanced manufacturing strategy.

Sustained success of any advanced manufacturing strategy repeatedly comes down to having goal-congruent support systems, such as the MAS, in place post-implementation. Unfortunately, in many cases these 'backroom' processes are forgotten or simply ignored after the hype of installation on the plant floor. A recent study of three flexible manufacturers similarly found general incongruence of managerial accounting practices with operational strategy. At one particular facility, only one of the sixteen initiatives being reviewed by management was not considered a cost-reduction, despite a supposed emphasis on manufacturing flexibility measures (Veen-Dirks 2006). Again, this suggests an inherent weakness to the 'balanced' scorecard in that cost measures nearly always trump operational measures when they come into conflict.

Managerial accounting plays a critical roll in any advanced manufacturing strategic initiative, and the fact that it is often ignored may explain the great number of failures. The poor performance of many new manufacturing initiatives is due, in part, to

continued reliance on an MAS alternative that fails to provide appropriate goals, performance measures, rewards systems (Kaplan 1983, 1993). Performance measures directly related to business goals are required to ensure that manufacturing processes are in control and continuously improved (Kaplan 1983, Drucker 1990).

Research Objectives, Questions, and Framework

The relationship between time-based manufacturing practices and manufacturing performance is well established in the operations management literature and therefore will not be the focus of this study. However, the strategic importance of time is acknowledged *a priori* as the contextual milieu for this research. *The primary objectives of this study are (1) to examine the impact of different managerial accounting system (MAS) alternatives on manufacturing performance measures and (2) to propose an MAS alternative that better links time-based strategic measures to product cost. The resultant research questions and a testable research framework are developed along with clearly defined experimental factors, performance measures, and a simulation research methodology is developed in subsequent chapters.*

The four managerial accounting systems considered in this study are traditional costing systems (TCS), activity-based costing (ABC), throughput accounting (TA), and the proposed time-based accounting system (TBA). The study is specifically concerned with the impact of various MAS alternatives on production mix decisions (PMD), with the effect of these decisions on manufacturing performance measures (MPM), analyzed in terms of average demand fulfillment rate, throughput-time, and net operating income.

These manufacturing performance measures were chosen because they represent both financial and non-financial and operational and market measures of performance.

In addition, this study examines the impact of MAS choice under varying levels of manufacturing overheads (MOH) and product mix complexity (MIX). Product mix complexity is a multidimensional variable measured through the depth of the bill of material for various products and the variability of demand for those products at a single supply point. The width of a bill of material has been defined within the operations management literature as the maximum number of dependent relationships in a product structure (Veral & Laforge 1985, Sum et al. 1993). Product mix complexity is widely acknowledged in operations management research as one of the primary factors in determining a product cost under different MAS alternatives and has been a primary variable in studies of lot sizing (Blackburn and Millen 1980; 1982a & b, Veral and LaForge 1985, Benton and Srivastava 1985, LaForge 1985), system nervousness strategy (Blackburn et al. 1986), and in capacity control policy (Gutzmann and Wysk 1986).

Product mix complexity defined as the demand variability for different products produced within the same facility has long been acknowledged in the managerial accounting literature as one of the primary drivers of manufacturing cost and may significantly contribute to cost distortions under traditional managerial accounting scenarios (Cooper 1988a , Brimson 1991). Many researchers have posited that TCS may under allocate MOH burden to the low volume, complex products and may over allocate manufacturing overhead burden to the high volume, simple products when both types of products are manufactured in the same facility, because manufacturing overheads are

most often allocated on direct labor hours, machine hours, or some other measure of production volume (Johnson 1991b, Chalos 1992, O'Guin 1991).

Theory in both managerial accounting and operations management has predicted that producing a heterogeneous product mix within a single facility may increase total cost and reduce operating performance (Skinner 1974, Hayes & Wheelwright 1984, Hill 1985, Johnson & Kaplan 1987, Banker et al. 1988). Empirical studies would later confirm the impact of product variety on manufacturing costs (Anderson 1995, Fisher & Ittner 1999, Randall & Ulrich 2001, Pil & Holweg 2004, Peacock 2005). Yet few studies have integrated these factors from managerial accounting and operations management within a single research model.

The experimental framework below in figure 1.3 shows the hypothesized relationship between the managerial accounting system alternative and the production mix decision. This relationship is mediated by the level of manufacturing overhead and product mix complexity. The production mix decision and the managerial accounting system alternative then together affect the manufacturing performance measures. The following research questions will be answered through the experimental research framework presented bellow in figure 1.2:

- 1. Does the use of different managerial accounting systems in production decisions result in differences in average demand fulfillment rate, cycle-time, and/or net operating income?
- 2. What effect does manufacturing overhead level have on average demand fulfillment rate, cycle-time, and/or net operating income?
- 3. For a given level of manufacturing overhead level does the use of different managerial accounting systems in production decisions result in differences in average demand fulfillment rate, cycle-time, and/or net operating?
- 4. What effect does product mix complexity have on average demand fulfillment rate, cycle-time, and/or net operating income?

- 5. For a given level of product mix complexity does the use of different managerial accounting systems in production decisions result in differences in average demand fulfillment rate, cycle-times, and/or net operating income?
- 6. For a given level of product mix complexity does manufacturing overhead level affect result in differences in average demand fulfillment rate, cycle-time, and/or net operating income?
- 7. For a given level of product mix complexity and a given level of manufacturing overhead level does the use of different managerial accounting systems in production decisions result in differences in average demand fulfillment rate, cycle-time, and/or net operating income?

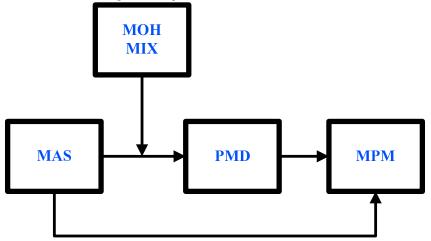


Figure 1.3: Experimental Research Framework

Research Methodology

The impact of various managerial accounting systems on manufacturing performance visà-vis a time-based manufacturing strategy is of primary importance to this study and will be tested via computer simulation, an emergent and increasingly accepted methodology in industrial engineering and operations management research. This methodology was chosen for several reasons, not the least of which the fact that few examples of firms utilizing innovative MAS alternatives are to be found in practice. Traditional or [positivist] social science research methods, such as empirical analysis of large data sets, analytic models of accepted and understood phenomena, and cross-sectional field research, can be effective for studying the universe as it now exists, for understanding "what-is". But these normal science methods are less helpful for managerial accounting research where major social structural changes are occurring in organizations and in the roles performed by managerial accounting systems within these organizations (Kaplan 1993)

There has been an increasing recognition amongst some of the prominent scholars

in the managerial accounting field of the need for innovative studies borrowing novel

methodologies from other disciplines to fill in the knowledge gaps in the literature

(Kaplan 1993, Ittner & Larcker 2001, 2003, Zimmerman 2001). As has been suggested,

at the heart of the problem rests the wider accounting academic community that has

largely fortified itself in its accepted research methodologies and avoided the interface

with other research traditions altogether.¹ A full decade after his seminal article that

questioned the relevance of managerial accounting practice and research to the modern

manufacturing, Kaplan surveyed the managerial accounting field finding many

opportunities remain undeveloped in relation to operations management (1993):

Managerial accounting scholars, unlike their counterparts in operations management (OM), could not easily find widespread adopters of innovative practices. Our OM colleagues could look to leading Japanese manufactures in the automobile, machine tool, and electronics industries for observable examples of total quality management, just-in-time production, computer-integrated manufacturing, and design for manufacturability... But no 'Japan' existed for learning about or studying innovative managerial accounting practices. Therefore, standard cross-sectional field research studies would largely capture traditional managerial accounting systems operating in environments radically different from the ones for which the systems were designed.

¹ It is interesting to note that many of the preeminent scholars in the field of managerial accounting, such as Robert S. Kaplan, H. Thomas Johnson, Robin Cooper, and Eliyahu M. Goldratt, have not been trained as accountants at all. Rather their educational backgrounds include such diverse fields as electrical engineering, operations research, industrial engineering, chemistry, and physics.

Finding few examples of manufacturing organizations exhibiting innovative managerial accounting practice, accounting researchers have largely remained on the sidelines of the cutting edge, leaving the little literature existing on the subject to operations management. Zimmerman (2001: 422) argues that the current research focuses almost exclusively on describing practice rather than testing theories. In his view, managerial accounting field research has become completely descriptive with accounting researchers "wondering the hallways of corporations and manufacturing plants searching for facts unguided by tentative hypotheses."

Kaplan (1993) predicts that new research in high-payoff managerial accounting topics would likely have to be done in the field with innovative organizations requiring a very different set of research methods than have been used in the past, because of the loss of credibility of managerial accounting researchers amongst practitioners. "Traditional empirical analyses in managerial accounting research is not useless, it's just difficult to do without credibility."

Referring back to the research objectives of this study, it is desired not only to better understand the impact of existing managerial accounting practice on manufacturing performance, but also to develop an innovative alternative to traditional cost accounting systems that links time-based manufacturing strategy to product cost. To this end, it becomes necessary to go beyond the positivist tradition of managerial accounting research and its established empirical methodologies and instead take a normative approach employing quasi-experimental methodologies as an active participant. In a substantial departure from the passive, observational role for researchers that has become sacrosanct in the social sciences, and in managerial accounting research in particular

since the 1950s, scholars must become active participants in the change process (Argyris et al. 1985, Argyris 1993, Kaplan 1993).

Contributions of this Research

1) This study integrates theory and methodologies from industrial engineering, operations management, and managerial accounting within a single research model and directly compares the performance of different MAS alternatives in a controlled environment. Managerial accounting has yet to produce an integrated set of theories and empirical results as the field is in a somewhat early stage in its evolution (Zimmerman 2001, Ittner & Larcker 2001). As evident in the review of the managerial accounting and POM literature, managerial accounting systems, product complexity, scope of product mix, and manufacturing overhead levels all play a major role in the manufacturing performance of a firm in a time-based competitive environment, yet little research to date has considered all these variable in a single study. Managerial accounting alternatives are seldom considered as a factor in operations management literature, despite the fact that management accountants have received a great deal of criticism from operations managers. In response, managerial accounting researchers have proposed novel alternatives to traditional costing systems. Each alternative has been examined against traditional accounting systems and claims that it will perform better; however, seldom has the manufacturing environment been considered. In the research that has included the manufacturing environment as a factor, it has been difficult to determine whether improvement is due to the new managerial accounting systems or to the new manufacturing system, e.g. Drugdale and Jones (1996) compared traditional costing

systems in an MRP manufacturing environment to throughput accounting in a theory-ofconstraints environment.

Managerial accounting has a long tradition of utilizing all types of research methodologies including archival, field studies, case studies, survey, experimental, and even simulation to a limited extent; however, there remains a strong need for the development of interdisciplinary work employing methods such as simulation. Controlled experimentation, such as simulation studies, offers a means for filling in many of the research gaps and for supporting existing theories drawn from theoretical inference, field observations, case studies, and surveys of different companies. Unfortunately, direct comparisons of MAS alternatives are often made across entirely different industries with unique manufacturing settings. Often times it is even difficult to truly determine the extent to which alternatives to TCS have been implemented.

2) This study considers the interaction effects of the various MAS alternatives with factors from operations management. The existing research in both managerial accounting and in production operations management often ignores the interrelationships among important factors. For example, most managerial accounting researchers are in agreement that activity-based costing provides more accurate product cost information than TCS, and most managerial accounting research makes the assumption that more accurate product costs will improve the quality of product mix decision thereby improving firm performance (Brimson 1991). However, this assumption is made without examining important factors such as product complexity, scope of product mix, and manufacturing overhead levels, which in the real world application are as important as managerial accounting alternatives on product costing and product mix decisions.

Cooper and Kaplan (1992) remind us that the measure of an improved managerial accounting system is increased profits, not more accurate product costs.

3) This study goes a long way towards bridging this gap that has long existed between managerial accounting and operations management and between academic research and practice. A number of surveys have indicated that potentially up to 90% of all manufacturing companies are considering changes to their internal managerial accounting systems, yet fewer than 20% have actually done so. One possible reason is the lack of knowledge about the various managerial accounting alternatives and their potential impact within various manufacturing environmental settings (Walley et al. 1994). Through evaluating these MAS alternatives with environmental factors that were previously studied separately within a controlled simulation environment, results should create common ground for communication between management accountants and operations mangers.

4) This study goes beyond the more conventional deterministic managerial accounting research with the incorporation of demand and supply stochasticity within the simulation model. The existing managerial accounting literature often draws conclusions about the performance of managerial accounting alternatives assuming a deterministic manufacturing environment setting such as fixed processing times, no demand uncertainty, and no forecasting error (Goldratt 1986, Bakker and Hellberg 1991, Low 1992). Even simplistic models of pull production systems become extremely difficult to analyze mathematically as the assumptions needed for a closed-loop solution often require deterministic assumptions (Leitch 2001). The production operations management

literature has recognized that most manufacturing operations face considerable uncertainty and should be considered stochastic due to:

- 1. uncertainty in the timing customer orders,
- 2. variability in the processing time, rework, and scrap rate,
- 3. inaccuracy of demand forecasting, and,
- 4. uncertainty of equipment failure.

For example, Wemmerlov (1979) investigated the effects of forecast errors on inventory and found that it leads to an increased number of stock-outs, declining service levels, increased inventories, and increased ordering activities. He concluded that the manufacturing environments where demand uncertainty is present are fundamentally different from those where there is no uncertainty. He recommended that future experimentation should consider demand uncertainty since it is a more realistic representation of real life settings.

The production operations management literature has accepted stochasticity in most of its research design and has explored how different manufacturing systems cope with and react to stochasticity. However, despite the fact that stochasticity involved in manufacturing operations may cause product cost and performance measurement fluctuations, it has not been generally included in managerial accounting studies. The fact that the robustness of managerial accounting alternatives to uncertainty is largely emergent remains presents a major opportunity for contribution to the literature.

Simulation modeling allows for a direct comparison of alternative managerial accounting schemes under different levels of product complexity and scope and different levels of manufacturing overhead. Simulation modeling makes these complex comparisons in a controlled quasi-experimental setting possible and allows for the collection and measurement of quantitative data. This is something that empirical methodologies, such as cross sectional surveys and case studies, have not been able to do. Moreover, simulation allows for examination of these factors over an extended, albeit compressed, time period; not just as a snapshot in time. The primary purpose of this study is to examine the four managerial accounting allocation schemes listed above under the exact same environmental settings so that a direct comparison can be made.

Incorporation of supply and demand complexity into the model through stochasticity helps to create a dynamic environment in which to test the robustness of various managerial accounting allocation schemes and provides useful information about its behavior. This will help to bridge the gap between managerial accounting theory often created in academic isolation and real-world practitioners who want to know how these accounting schemes will hold up in practice.

5) This study goes beyond conventional positivist managerial accounting research by taking an active role in developing an innovative alternative to traditional accounting practice, i.e. the proposed time-based accounting system. As was pointed out by Zimmerman (2001), managerial accounting researchers may have lost some credibility in the field because of a failure to positively impact managerial accounting practice. This study addresses the deficiency of simply "describing management consulting practice" as suggested by Zimmerman (2001) and Ittner & Larcker (2001), and may provide helpful and quantifiable information to help struggling manufacturing firms and industries regain their competitive advantage through a better understanding of productivity and profitability. The results of this study will provide useful insights for both the fields of managerial accounting and production operations management research, making

significant contributions both to theory and practice. The introduction of throughput-time accounting demonstrates that, when it comes to managerial accounting schemes in an ever more diverse competitive field of manufacturing, the one-size-fits-all mentality will no longer suffice. Managerial accounting systems are an important consideration with regards to the design and implementation of any manufacturing strategy, if it is to be leveraged to the maximum competitive advantage.

Managerial accounting systems alone may not lead directly to the failure of advanced manufacturing strategies nor will assure its success. However, managerial accounting systems should be viewed as an integral part of the manufacturer's response today's competitive environment (Kaplan 1991). The results of this study will help managers to identify appropriate managerial accounting alternatives, specifically in conjunction with a time-based manufacturing strategy, to evaluate the actual profitability of products and to provide the right motivation for production given product complexities, scope of product variety, and manufacturing overhead levels.

The remaining chapters describe the specifics of this study. Chapter 2 begins with a historiography of the development, evolution, and the more recent stagnation of managerial accounting practice. It later reviews relevant literature on the evolution of time-based competition and managerial accounting alternatives and their potential impact on operations management. In addition, this chapter reviews the literary support from both managerial accounting and operations management on the impact of increasing manufacturing overhead levels and product mix complexity on production mix decisions and ultimately on manufacturing performance. Chapter 3 further develops and operationalizes the experimental factors within the research framework and presents the

statistical hypotheses and methodologies for testing. Chapter 4 addresses the assumptions that were made in the simulation model as well as the issues relating to model verification and validation. Chapter 5 reviews and statistically analyzes the results of the simulation study and the performance of the MAS alternatives. Chapter 6 provides conclusions, applications to practice, limitations of this study, and suggestions for further research at this fertile interface of managerial accounting and operations management.

Chapter Two

Literature Review

The Evolution of Managerial Accounting

The practice and theory of accounting has been in existence for over 6,000 years, even if only in rudimentary form until the late 15th century. A Franciscan Friar, Luca Bartolomeo de Pacioli is considered the father of modern double-entry accounting, known at the time as the Venetian method. The only date during Pacioli's life that is known with absolute certainty is 1494, when nearly fifty years of age, he published the first known work on accounting theory. His famous book was titled *Summa de Arithmetica, Geometria, Proportioni et Proportionalita* – The Collected Knowledge of Arithmetic, Geometry, Proportion and Proportionality. Pacioli wrote the *Summa* in an attempt to redress the poor state of mathematics education at the time, but it is one rather small and obscure section of the book that would make Pacioli famous. This section, a treatise on accounting and reconciliations, was titled *Particularis de Computis et Scripturis* – The Particulars of Reckonings and Writings (Bishop 1995).

His system, a compilation of accounting practices employed by Venetian merchants at the time, included most of the accounting cycle as we know it today. For example, he described the use of journals and ledgers, and he even warned that an accountant should not go to sleep at night until the debits equaled the credits! His ledger included assets – including receivables and inventories, liabilities, capital, income, and expense accounts. He demonstrated year-end closing entries and proposed that a trial balance be used to prove a balanced ledger. Also, his treatise discussed a wide range of related topics from ethics to cost accounting (Bishop 1995).

This new system of financial accounting was state-of-the-art, and literally revolutionized business and economics of the day. The *Summa* made Pacioli an immediate celebrity throughout the Western World and insured him a place in history as the 'Father of Double-Entry Accounting'. The *Summa* was the most widely read mathematical work of its day in all of Italy, and became one of the first books published on the Gutenberg press.

The *Summa* remained the only published work on accounting and mercantile mathematics for almost a century, providing a solid financial foundation for a period of rapid globalization and economic expansion. The Venetian merchant marine would trade goods as far as the seas would take them, making Venice one of the richest principalities in the world. With this new system of accounting, merchants and venture capitalists could compute profitability on their various ventures upon their completion with little disagreement as to the disposition of cargo, profits, and the ship itself at the end of the voyage. From these early mercantilist beginnings, the generation of standard firm-level accounting information became the practice for most all venture enterprises to this day.

It would be nearly four centuries before cost/managerial accounting would begin to develop as a separate field of study. There exist three major paradigms of contemporary historiography in regards to the origins and evolution of managerial accounting as practice and theory; the economic rationalist, Marxian, and Foucauldian schools (Fleischman 2000). However, most all industrial historians recognize Garcke

and Fells (1887) as the first published accounting text to integrate cost accounts into the double-entry system (Littleton 1933, MacDonald 2002). It became widely accepted that cost/managerial accounting developed as a practice in the latter part of the 19th century to provide information to managers in large capital-intensive firms (Littleton 1933, Johnson 1981). The escalating investments in fixed assets created complex control problems that relatively simplistic 18th century accounting systems could not solve (Garner 1954).

The well-known industrial historian, Alfred Chandler (1966), widened the traditional approach of accounting historiography, with its exclusive reliance on 'hard, objective' evidence such as archival artifacts, by considering the development of managerial accounting within its broader historical context. American businesses prior to 1840 were well served by the double-entry mercantile bookkeeping procedures that were introduced a half century earlier. By 1850, however, the technology of production was changing as companies moved from the craft age and adopted factory production systems with increased throughput and fewer workers, resulting in significant productivity gains. Chandler (1977) notes that by the 1880s the focus of managerial accounting systems was prime costs, without any known records of depreciation or overhead costs in most process industries. Johnson (1981) found historical artifacts suggesting that cost accounting may have developed even earlier in the 19th century in certain industries. In his review of records from Lyman Mills and the Boston Manufacturing Company dating back to 1856, he found that management had already developed regular production cost reports to augment the general factory ledger.

Applying Chandler's broad historical context approach, Johnson (1981) contends that cost accounting likely developed in conjunction with the development of textile mills

around the very turn of the 19th century. Despite the lack of hard evidence to substantiate this theory, it seems quite probable given the dramatic paradigm shift of the textile industry at that time. Prior to the development of multi-purpose and mechanized mills, the textile industry operated under a 'domestic' or 'putting-out' business model in which merchant-entrepreneurs provided the raw materials to home-based artisans who received a market-determined piece rate for their production. Accounting records to this time were only utilized to track exchanges and inventories.

Kaplan (1984) attributes the development of modern managerial accounting techniques to the growth of large transportation, production, and distribution enterprises during the period between 1850 and 1925. These enterprises encountered new information needs as they implemented new methods of industrial organization and production. Initially the railroads would provide the greatest source of innovation in managerial accounting as the early tycoons, such as Commodore Cornelius Vanderbilt of the New York Central Railroad and Amasa Leland Stanford of the Central Pacific Railroad, consolidated their power and would seek to gain efficiency in large scale, capital intensive, and geographically dispersed operations (MacDonald 2002).

Sometime between 1870 and 1900, the advent of scientific management ushered in modern manufacturing accounting complete with standard costs, allocation of factory overheads to products, and unit product costing. By 1910 all modern manufacturing accounting was in place with the exception of depreciation accounting, as replacement cost was still being used for book value of plant and equipment in most industries (Chandler 1977). Figure 2.1 below presents a rough time-line of major developments in managerial accounting and industry.

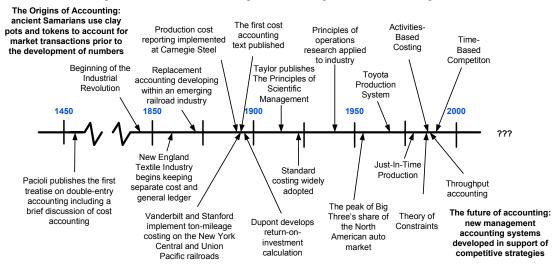


Figure 2.1: A Time-Line of Managerial Accounting and Industrial Developments

Relevance Lost

Traditional managerial accounting practice did not loose relevancy overnight, but progressively over the past century. Many industrial historians claim that managerial accounting practice did not develop as a result of industrialization; rather it was the development of managerial accounting practice that enabled the rapid expansion of industrial production. The relevance of managerial accounting practice was not lost on the industrialists near the turn of the 20th Century, who would leverage the innovative managerial accounting practices of the day to extend their control over vast empires. Many of those methods, such as DuPont's 'return-on-investment', or Carnegie's 'job-costing', and Vanderbilt's 'ton-mileage' calculation, are still widely practiced used control mechanism in industry.

Kaplan (1984) concluded that virtually all of the accounting practices employed by firms today had been fully developed by 1925, and, despite considerable changes in

the nature of organizations and the dimensions of competition during the past 60 years, there has been little innovation in the design and implementation of cost accounting. After a stream of several sole-authored papers, Johnson (1972, 1981, 1983) and Kaplan (1983, 1984) collaborated to provide a more complete picture of the development and stagnation of managerial accounting practice, as summarized in their controversial 1987 book, *Relevance Lost: The Rise and Fall of Managerial accounting*. This book brought into focus a stream of literature begun on the ever widening dissonance between managerial accounting practice and actual operational practices on the production floor. This historiography was yet another call for managerial accounting research to focus its efforts on the increasingly important interface with operations. The authors even suggested that the accounting process has becomes so detached from the operations of the business that often the accountant can work despite being completely ignorant of the nature of core business processes. The Relevance Lost historiography of accounting remains contentious to this day and keeps open the call for an interdisciplinary approach to accounting theory (MacDonald 2002).

The world economy would change for ever on Black Thursday, October 24, 1929, when the world financial markets collapsed. In response to the stock market crash of 1929 and the Great Depression that followed, the accounting establishment in the United States shifted from concern for cost management and operational efficiency to financial accounting and external reporting. Per Zimmerman (2003), supporting the financial accounting and tax accounting reporting functions is one of the primary functions of a managerial accounting system; however, far too often the other functions become subservient to the public reporting needs. Many operations managers have been forced to

base decisions on external financial reporting requirements rather than internal operational performance criteria such as throughput time, inventory turnover, number of defects, or customer service (Fry et al. 1998).

Accountants became overly concerned with the valuation of inventory and not the management of cost (Fry et al. 1993). This concern led to the development of standard absorption costing, as is prevalent today in most industry. Managers began comparing actual results to budgeted figures to assess manufacturing performance, leading to the calculation and development of budget variances. Management by exception became the standard practice, which made sense during this period of mass production with long production runs of standardized products. However, according to Womack and others (1990) the heyday of mass production in America was 1955, when 95 percent of the market of America's largest industry – the automobile industry – was controlled by the Big Three: General Motors, Ford, and Chrysler. The authors point out that 1955 was the year that mass production business model began a steady downhill slide that continues today in the face of advanced manufacturing strategies coupled with flexible automation.

Despite radical changes in modern production strategies and technologies, legacy accounting systems, i.e. TCS, remain firmly in place. Under absorption costing, determining product cost involves adding the costs of direct materials, direct labor, and some percentage of factory overheads. The addition of allocating factory overheads came to be standard practice as United States Generally Accepted Accounting Principals (US GAAP) required that these overheads be allocated to products in inventory valuation for public financial and tax accounting reporting.

Whatever the MAS alternative, US GAAP requires:

In keeping with the principle that accounting is primarily based on cost, there is a presumption that inventories should be stated at cost... It should also be recognized that the exclusion of all overheads from inventory does not constitute an accepted accounting procedure. The exercise of judgment in an individual situation involves a consideration of the adequacy of the procedures of the cost accounting system in use, the soundness of the principles thereof, and their consistent application. (Accounting Research Bulletin No. 43)

Because US GAAP requires some form of absorption costing for inventory valuation – both for public financial and tax reporting – and most companies see maintaining two separate systems as cost prohibitive, variable costing is very seldom used in practice. Most firms began to use the same method of full-absorption costing for both internal management decision making and external reporting.

The most common method of absorption utilizes direct some measure of production volume as a basis for MOH allocation. A study by Price Waterhouse (1989) found that roughly 80% of their American manufacturing clients surveyed continue the use of standard absorption costing with direct labor content as the primary allocation method of overhead costs. Drury and Tayles (1997) conducted a survey with the purpose of investigating the claims of Johnson and Kaplan (1987) that managerial accounting has become subservient to financial accounting. They found 73% of the non-automated and 68% of the automated manufacturers used labor hours as a base for allocations, even though other systems, with claims of better accuracy exist. Only 9% of the surveyed companies had plans or were in the process of implementing some form of ABC, with only 4% having an operational ABC system. The authors concluded that simplistic methods, designed primarily for meeting financial accounting requirements, are being widely used for decision making. A similar survey by Fry and others (1998) of 110

manufacturing companies supported this figure with 75% using TCS with direct labor hours as an allocation basis. An even more recent survey of 131 manufacturing firms shows that little has changed with 88% of firms stilly relying on TCS at least to some degree (Hughes & Paulson-Gjerde 2003).

Supporting the assessment of the chasm between managerial accounting and operational decision making are numerous articles finding that nothing is wrong with the design of cost systems. The authors of these studies argue that the system is simply being misused in that it was never designed for internal reporting, but rather for external reporting documents to be used in valuing inventory and calculating profits and losses (Baker 1989, Edwards 1985, 1984). These authors suggest that operations managers should not use variance reports against standards as the primary tool for control, but rather something more indicative of the actual manufacturing task, e.g. throughput-time for a time-based manufacturer.

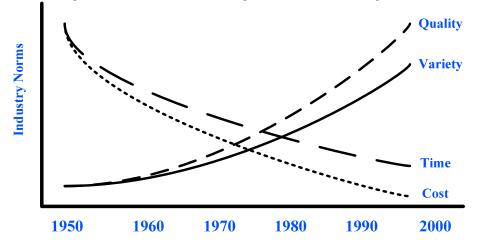
The Dawn of Time-Based Competition

"The way I sell investment in innovation is as a time reduction, not a cost reduction" (Schafrik 2005). This proclamation by the General Manager of GE Aircraft Engines at the International Workshop on Accelerated Radical Innovation underscores both the increasing importance of time and the decreasing relevancy of traditional cost measures in modern manufacturing. Indeed, many managers competing in time-based industries realize that advance manufacturing strategies are often undermined by traditional cost systems developed for another era.

Time is fast becoming the next competitive battleground for American industry (Blackburn 1991). Those manufacturing firms that survive face a major shift in paradigm from mass production systems driven solely by cost efficiency to advanced manufacturing systems driven by quick response to customer demands for a much greater variety of high-quality products (Doll & Vonderembse 1991). A distinctive characteristic of globalized markets has been an increase in customer requirements for ever faster delivery of high quality products without corresponding increases in price (Drucker 1990). This heightened competition has forced most companies to adopt some form of advanced manufacturing strategy in order to remain a viable competitor in the long-term.

The evolution of time-based competition follows a continually evolving global manufacturing environment, where the order winners quickly become order qualifiers. Hayes and others (2005:19) describe this dynamic and evolving basis for competition in the new millennium. According to the authors, "American manufacturers have struggled to keep up with the global competition since the age of mass production, as the basis of competition has shifted from cost, to quality, to variety, and now to speed. It has come to the point where, as one CEO so succinctly stated, 'time accounting is more important [for us] than cost accounting'".

The first major shift in the basis of competition from mass production and its cost efficiencies came with the advent of Total Quality Management (TQM). TQM evolved first as a philosophy in manufacturing that stresses improved quality through continuous process improvement, employee empowerment, and data-based decision making. Closely related to TQM, and evolving shortly thereafter, is the concept of Just-In-Time (JIT) production, which focuses on lot size reductions, minimizing inventory levels,


increasing flexibility, and elimination of all waste in manufacturing and distribution. The relationship between TQM and JIT is very strong, and, although their infrastructural practices have been proven beneficial in isolation, there is an evident synergistic effect in implementing both programs together. TQM delivers the quality levels necessary to support JIT measures for reducing lot sizes and inventory levels, and reduced inventory levels reciprocally expose opportunities for process improvements (Flynn et al. 1995).

The TQM/JIT movement in manufacturing has been described as the genesis of TBM (Blackburn 1991). The first time-based competitors were innovators that applied the TQM/JIT tools and concepts beyond the factory walls and across the entire value chain (Stalk 1988). TBM promises increased customer satisfaction through faster service times and higher quality levels. Time-based competitors found that speed and quality not only allow for premium pricing of products in the marketplace, but it also often leads to reduced internal costs over the long-run and greater profitability.

Figure 2.2 below illustrates long-term trends in manufacturing, adapted from Blackburn (1991: 295-96). Graphing the 1950s, 60s, 70s, 80s, 90s, 2000 and beyond on the x-axis and plotting lines roughly indicating how industry norms have changed form decade to decade during that period presents a revealing picture of the evolution towards time-based competition almost universally across all industries. According to the author:

In most industries – industries as diverse as eyeglasses, package delivery, wholesale distributions, consumer electronics, motorcycles, and automobiles – the patterns are identical. The graph tends to show quickening market response time, improving standards of quality, and increasing product variety... These trends suggest strongly that time-based competition, like quality, is not a fad... Unless a fundamental change occurs in consumer behavior, competition will become increasingly time-based.

Figure 2.2: The Trend of Manufacturing: Towards Time-Based Competition

Hout & Stalk (1993) present case studies reaffirming Blackburn's hypothesis that across almost every industry time has become the basis for competitive advantage. According to the authors, "time-based competition is a reality, not just a concept. It is rapidly becoming the baseline, not the exception."

Time-based competition focuses on reducing response time to customer demand by squeezing time from every facet of the value-delivery system from research and development, to product development, to manufacturing, to marketing and delivery. TBM is a natural evolution of the TQM/JIT philosophy, albeit with a slightly broader scope of application. Suffice to say that time-based manufacturing is an externally focused production system that emphasizes quick response to changing customer needs and to this end seeks to reduce the end-to-end (throughput) time in manufacturing (Stalk and Hout 1990, Blackburn 1991). According to Blackburn (1991), a clear distinction must be made between TBM and JIT strategies. Time reduction, not inventory reduction, is the real underlying driving force behind the TQM/JIT revolution and naturally leads a firm to become a time-based competitor: Inventory reduction is a small part of the story; a benefit of JIT, but not the *raison d'etre*... Cycle-time compression translates in to faster asset turnover, increased output and flexibility, and satisfied customers. Thus, the diminished inventory often associated with JIT is more of a side benefit than a driving force.

Similarities between JIT and TBM sometimes make it difficult to distinguish the two, and it may be debatable as to whether inventory and cycle-time reductions represent two sides of the same coin. Figure 2.3 below summarizes some of the key conceptual differences between these two strategies described in the literature:

Figure 2.3	nctions Between JIT and TBM		
	Internal (Operations)	External (Customer)	
Focus	Inventory, batch size reduction, and elimination of waste	Time compression and product mix	
Scope	Narrowly applied to manufacturing	Broadly applied to value chain	
Key Metric	Inventory cost	Throughput time	

There are many case studies where American manufacturing firms have redesigned their processes to compress time and improve performance (Stalk 1988, Stalk & Hout 1990, Blackburn 1991). These firms achieved higher productivity, increased market share, charged premium prices, reduced risk, and improved customer service. Substantial and sustainable competitive advantage is the prize when firms achieve speed in all facets of the value-deliver system, and all aspects of the business from accounting to engineering to manufacturing to marketing should be aligned towards this strategic goal.

Despite significant conceptual contributions and numerous case study examples, it would be nearly a decade before empirical studies would identify the key practices of time-based manufacturers. Koufteros and others (1998) identified the following specific manufacturing practices that focus on time compression:

- (1) *Shop-floor employee involvement in problem solving*: first level employees participate in activities to define and solve problems.
- (2) Reengineering set up: efforts are taken to reduce setup time.
- (3) Cellular manufacturing: units are produced in a product oriented layout
- (4) *Quality improvement efforts*: methods are developed and used to reduce defects and enhance quality.
- (5) Preventive maintenance: equipment is routinely maintained on a proactive basis.
- (6) Dependable suppliers: suppliers facilitate customer needs for service quality.
- (7) *Pull production*: production is driven by demand from the next work station and ultimately from the customer.

The results of this study found a statistically significant relationship between the composite measure of these time-based manufacturing practices with reduced throughput-time. Throughput time is the ultimate measure of performance for the time-based competitor, and that is determined by how well an organization is able to move materials to, through, and off the shop floor into finished goods inventory and how well that organization is able to minimize finished goods (Fry et al. 1993). Time-based manufacturing requires an emphasis on time measures, such as throughput-time, inventory turnover, on-time shipments, new product introduction time, and quoted delivery times. Managerial accounting systems that fail to emphasize throughput-time may act as a fetter to sustained TBM practices.

Stalk (1989) points out that although time is a more critical competitive yardstick than traditional financial measures, management seldom monitors its consumption explicitly – almost never with the same precision accorded to sales and cost. Older, costbased strategies require managers to do whatever is necessary to drive down costs: move production to, or source from, a low-wage country; build new facilities or consolidate old plants to gain economies of scale; or focus operations down to the most economic subset of activities, all at the expense of responsiveness.

Blackburn (1991) postulates that time-based competition will eventually come to all industries in due time, even those industries that seem to compete on an entirely different basis. It appears that certain industries are immune to or simply resisting timebased competition, such as plastic injection mold producers. The typical mold builder is a small, privately-held machine shop with fewer than 20 employees. Many of these small shops appear to compete for small jobs based mainly on price and the reliability of delivery lead-time, albeit rather long. However; further study in the industry revealed that it would not remain immune to time-based competition for long. Zahorik and others (1989) presented evidence that end users of the molds are increasingly driven by time and willing to pay a premium. According to one manufacturing manager from an IBM plant that is a major consumer of such plastic injection molds, "Time is everything. It's well worth it to pay double to cut production time in half'.

Stalk and Blackburn bring to light an interesting paradox for TBM that has largely been ignored by research, as many managers see throughput-time and product cost as an unavoidable tradeoff. This is especially true with regards to traditional managerial accounting systems that often come into conflict with time-based performance measures. While the Koufteros (1998) study provides a firm foundation for research in time-based manufacturing, it focused solely on the plant floor practices of a time-based manufacturer. While it does conclude with suggestions for future research in time-based practices in the areas of product development and marketing, it completely ignores the

question as to whether a particular MAS alternative would also be associated with reduced cycle-times.

The Impact Increasing Manufacturing Overhead Burdens

Adoption of advanced manufacturing strategies, such as TBM, have often been made in conjunction with increased investments in flexible automation, bringing fundamental and lasting change to the modern factory floor. For those successful manufacturing firms, implementation of these advanced manufacturing systems have brought positive changes including lower inventories, reduced production lead times, shortened product lifecycles, and an emphasis on quality. Probably most obvious of these changes has been the movement of the human production interface from the plant floor to the back office. These trends in modern manufacturing result in corresponding changes in manufacturing cost characteristics, including dramatically reduced direct labor costs with correspondingly greater levels of manufacturing overhead (MOH) burden.

The higher levels of capital investment inherent in flexible technologies drive the need for more accurate tracing of costs to individual work centers and products along with more detailed analyses in both capital authorization and recovery decisions. The failure to recognize the impact of these manufacturing trends on managerial accounting information has resulted in inaccurate product costing/pricing, inadequate operations/cost control, poor inventory management, unnecessary capital investments, and poor strategic decision making. An overemphasis on traditional cost-based performance measurement systems, encourage resource utilizations rather than other time-based competitive practices (Fry et al. 1993). The older cost-based strategies require total management

concentration on minimization of costs in an attempt to maximize profits, often in exclusion of other more meaningful performance criteria (Kaplan 1984).

While many managerial accounting researchers have logically inferred the impact of increasing MOH burdens, given outmoded overhead allocation practices left from the mass production era, few have ventured to quantify the level of manufacturing overheads at which TCS begins to grossly misallocate costs. Vokurka and Lummus (2001) performed a simple scenario analysis to determine at what level of manufacturing overhead burden level does the implementation of an ABC system make a significant difference compared to TCS. In this study they compare four fictitious companies producing the same five products all with differing levels of MOH burden, ranging from 6.2% to 40% of total product cost. There findings were that in general the higher the overhead rate, the greater the difference between traditional and activity-based costing approaches. Given the rather high cost of implementing an ABC system, they conclude that any company with an overhead burden of less than 15% should probably not consider the effort.

A Taxonomy of Managerial Accounting Systems

A firm's MAS is called upon both in strategic and tactical planning, as well as providing support to financial and tax reporting systems. A major concern of management, therefore, is to select the appropriate MAS alternative that would provide accurate product cost information, derive the most profitable production mix decisions, minimize throughput, and maximize capacity utilization in a given manufacturing context.

Most MAS alternatives fall under two broad categories, based on method of inventory valuation; they are absorption and variable costing. The distinction between absorption and variable costing is based on the treatment of overheads. Under absorption costing, fixed overhead is assigned to units of inventory and shows up in the income statement as part of the cost of goods sold when the units are sold. When the units are produced, but not yet sold, allocated MOH stays in finished goods inventory. Under variable costing, no MOH is allocated to inventory. Fixed overhead is treated as a period expense which enters the income statement on a line-item every period regardless of the number of units sold.

Absorption costing makes a primary classification of costs according to manufacturing and non-manufacturing functions, emphasizing the gross margin – sales less cost of goods sold (CGS) – available to cover all fixed and variable selling, general, and administrative expenses (SG&A). Variable costing makes a primary classification of costs into variable and fixed categories, emphasizing the contribution margin (sales less variable costs) available to cover all fixed costs. Figure 2.4 demonstrates how the formats for profit reporting under absorption and variable costing differ:

Absorption Costing	Variable Costing			
Revenues	Revenues			
Less: Cost of Goods Sold	Less: Variable Manufacturing			
Gross Margin	Less: Variable S&A			
Less: Variable S&A Less: Fixed S&A	Contribution Margin			
	Less: Fixed Manufacturing			
Profit	Less: Fixed S&A			
	Profit			

Figure 2.4: A Comparison of Profit Reporting under Absorption and Variable Costing

The difference between the two income measurement approaches is essentially the difference in the timing of the charge to expense for fixed factory overhead costs. In the absorption costing method, fixed factory overhead is first charged to finished goods inventory; thus, it is not charged to expense until the period in which the inventory is sold and included in cost of goods sold. In contrast, under the variable costing method, fixed factory overhead is expensed immediately, and only variable manufacturing costs are included in finished goods inventory. Therefore, if inventories increase during a period, i.e. production exceeds sales, the variable costing method will generally report less operating income than will the absorption costing method. When inventories decrease, the opposite effect occurs with variable costing reporting great operating income than absorption costing.

The four specific managerial accounting systems considered in this research include traditional cost systems (TCS), activity-based costing (ABC), throughput accounting (TA), and the proposed time-based accounting (TBA). A comparison of product costing under these four alternative managerial accounting schemes is presented in figure 2.5. As illustrated, the four accounting alternatives inherently have a different focus in terms of decision making, with the major difference being whether and how overhead costs are allocated to products. Managerial accounting researchers tend to criticize variable costing methods such as throughput accounting for being short-term in their focus, since no attempt is made to allocate manufacturing overheads to product cost.

Long-Term	ABC Costing	Time-Based Accounting	Traditional Costing	Throughput Accounting	Short-Term
Focus	Direct Material Direct Labor MOH - Variable (Allocation by specific cost drivers) - Fixed (insignificant) SG&A Expenses - Marketing - Design - Engineering - Supply Chain - General Administrative	Direct Material Direct Labor MOH - Variable - Fixed (Allocation by time measures)	Direct Material Direct Labor MOH - Variable - Fixed (Allocation by volume measures)	Direct Material	Focus

Figure 2.5: Product Costing Under Different Managerial accounting Schemes

Traditional Costing Systems

Using a TCS, management assigns the rates at which products will 'absorb' direct material, direct labor, and MOH. Unlike direct materials and direct labor, MOH is not broken down by actual activity drivers, and is instead assigned through a simple calculation of dividing the total MOH burden by some known allocation basis. Typically, the allocation basis is some quantifiable measure of volume, such as direct labor hours or direct machine hours.

Though widely used today by roughly three quarters of manufacturing firms, a TCS is most appropriate in specific manufacturing environments (Price Waterhouse 1989, Fry et al. 1998). In particular, standardized processes, similar and limited product lines, high direct cost, and a mature stage in the product cycle all lend themselves to the use of a TCS (Kaplan 1983, Baker 1989, Fry et al. 1998). At the zenith of the industrial age, when labor and materials represented 70-80 % of total production costs, the use of direct labor to allocate overhead seemed logical. Regardless of the apparent logic, if MOH burden was a negligible portion of total production costs, misapplication would not be a concern (Ruhl & Bailey 1994).

This stands in stark contrast to the manufacturing paradigm of today, where overheads, driven by large investments in advanced manufacturing technologies, may represent the single largest percentage of manufacturing costs. Labor, conversely, often represents the smallest share of total costs in most modern manufacturing plants at 10 % or less (Seed 1984, Turk 1990). The allocation of MOH by means of direct labor content or labor dollars has led managers to focus strict attention on direct labor variances, not to control direct labor costs but rather to control the allocation of overhead costs to each product (Fry et al. 1993). Fundamental changes in production also mean that the occurrence of overheads is no longer proportional to production volume. Traditional cost accounting practices tend to influence overproduction, as managers feel the need to maximize standard labor hours in order to spread out MOH (Womack & Jones 2003).

Activities-Based Costing

The increased magnitude of MOH burden and the corresponding decrease of direct labor component in advanced manufacturing facilities have led practitioners and researchers alike to search for a more relevant alternative to TCS to reflect the fundamental changes in manufacturing. The time was ripe for any alternative to established accounting techniques, and activity-based costing (ABC) quickly became a popular focus for consultants and researchers in the early 1990s. ABC was introduced as an alternative to traditional accounting techniques by Cooper and Kaplan (1988) and quickly became a popular focus for both practitioners and researchers alike. ABC proposes that all activities in the organization exist to support the production and distribution of goods and services and that activities consume resources and that products consume activities.

Conceptually, ABC is not radically different from the TCS it is meant to replace. It simply accumulates MOH and SG&A into 'activity pools' and then allocates them to products by specific individual cost drivers as opposed to a single generic and often irrelevant drivers such as direct labor hours or machine hours. ABC attempts to better model the relationships between the final product and all the resources used at all stages in its manufacture, thereby, tying the activity costs to the appropriate activity driver. Many managerial accounting scholars consider ABC superior to TCS because it provides a more accurate and consistent method for calculating manufacturing costs (Andrea et al. 1999). The result of this detailed system is a more accurate cost calculation, which may better highlight the constraints driving costs on the manufacturing floor (Kee & Schmidt 2000).

Although it is conceptually easy to understand and is intuitively logical, actual implementation often proves difficult. Many ABC systems introduced in recent years have been regarded as failures (Cooper et al. 1992, Argyris & Kaplan 1994). In most cases the effort required in identifying and modeling all the individual cost-driving activities within a manufacturing process and back office support functions from beginning to end does not justify the cost. The ability to fully and accurately allocate all overheads, or at least a significant portion, remains a major problem for implementing ABC. According to Johnson (1992), advocates of ABC tell companies that are unable to fully allocate all manufacturing overheads, in effect, to cost products differently for financial reporting purposes than for management purposes, such as planning and decision-support. For financial reporting, the ABC advocates recommend that companies continue allocating overheads using the volume sensitive drivers they have used since the

early years of the past century. The need for maintaining the TCS is that for inventory valuation purposes, US GAAP requires that all overhead costs be fully absorbed into either cost of goods sold or into inventory. The ability to fully allocate all MOH remains the Achilles' heal for ABC advocates.

Kaplan and Anderson (2004) acknowledge that part of the failure of ABC comes from the inability to fully and accurately trace all overhead activities to all products, often leaving large amounts of overhead unallocated. On the other side, they point out an even more sinister demon in the ABC system, that when industrial engineers or management accountants survey individuals in overhead support functions to determine how they spend their time it almost always adds up to 100%. Few people, if any, report any significant amount of their time is spent idly or unproductively. Managers do not typically look favorably on work time that cannot be directly allocated to any particular cost pool, but – as we all know – most operations in the real world run considerably lower than their capacity.

Other factors hypothesized as contributing to the failure of ABC may include the failure to truly leverage all the benefits due to lack of sufficient information system infrastructure and the general resistance or simple lack of appreciation by decision makers (Malmi 1997). Hiromoto (1988) points out another flaw of ABC; that is the failure to leverage the motivational aspects of the MAS. While Japanese companies are well aware of the principle that an allocation system should capture as precisely as possible the reality of shop floor costs, they are more concerned with the motivational potential of the accounting system used in terms of long-term manufacturing strategies than with precise data on costs, variance, and profits.

Johnson (1992) agreed with Hiromoto's assessment of ABC and broke with Kaplan to write a new book entitled *Relevance Regained: From Top-Down Control to Bottom-Up Empowerment*. In this book he was equally critical of ABC as he had been of TCS, describing it as "relevance lost déjá vu". According to Johnson, "the pathway to global competitive excellence is not reached by doing better what we should not be done at all" (1992:149). The point the author makes is that ABC, while certainly potentially more accurate in product costing than TCS, does little to motivate employees towards strategic goals. Johnson follows with two case studies of manufacturing companies,one in the automotive market and one in the electronics market, where ABC information prompted managers to reduce costs and improve short-term profits by altering product mix or process mix, not by altering the way work is performed and the customer is served.

Throughput Accounting

Throughput as the most important measure of manufacturing performance was originally proposed by Eliyahu Goldratt through the concept of "theory of constraints" (TOC) in his 1992 book *The Goal*. TOC has had a significant impact on production scheduling theory and has many similarities with JIT production – with the emphasis of stock reduction and on 'pulling' production only as needed, but TOC advocates stock buffers to protect bottleneck facilities (Drugdale & Jones 1996). TOC also shares many similarities with TBM in that both emphasize the reduction of throughput-time. Goldratt recognized the inherent perversity of TCS that rewarded manufacturing managers for overproduction, while the shop floor and warehouse back up with WIP and aging finished goods

inventory. He argued on many occasions that cost accounting is 'enemy number one of productivity', through sub-optimal behavior driven by local efficiency and utilization measures along with the standard accounting practice of 'recovering' overhead into stocks as goods are produced – not sold. According to Goldratt & Cox (1992: 91-92):

The goal of a plant is to make money, and the measurements we are seeking should measure progress towards that goal...The result is that our cost accounting measurement have caused either a loss in throughput or an increase in inventory or operating expense – not consistent with the goal of the organization. Measurements should provide incentives for the plant to run more smoothly, but these cost accounting measurements seem to have the opposite effect.

Throughput accounting advocates that only direct materials are included in product cost and all other costs are fixed and not identifiable with products (Goldratt & Cox 1992). The earliest reference to 'throughput accounting' can be traced to a series of four articles written by Galloway and Waldron beginning in 1988. Waldron worked for Goldratt's consulting firm, and contributed to the development of TOC, but would later diverge from Goldratt in attempting to reconcile its principles with more traditional accounting analyses. Throughput accounting (TA) began to appear in some textbooks and has been incorporated into the UK's Chartered Institute of Management Accountants (CIMA) syllabi. Figure 2.6 below compares TCS with TA:

Figure 2.6: A Comparison of Traditional Cost and Throughput Accounting Traditional Cost Accounting Throughput Accounting			
There are direct (variable) and indirect (fixed) costs	Distinguishing between direct and indirect costs is impossible and unproductive		
Summing component costs to derive product cost and subtracting the result from the sales price used to determine product profitability	It is the rate at which the factory earns money that determines profitability, the the contribution of each product		
Inventory is an asset and working on material increases its value	Inventory is not an asset! It is the result of unsynchronized manufacturing and stands in the way of profits		
Reducing component cost directly increases profits	Profit is a function of material cost, total factory cost, and throughput		

Throughput, inventory, and operating expense are the three terms used in TOC as well as TA. Because some textbooks may not define these terms exactly as they have been defined by Goldratt & Cox (1992), it is necessary to provide some definitions. *"Throughput* (T) is the rate at which the system generates money through sales". As interpreted by throughput accounting, it is equivalent to contribution margin, defined as the selling price minus the total variable cost. That is to say that under throughput accounting, product cost is equivalent to variable costs only. From an economic standpoint, the category of variable cost is dependent on the chosen time horizon. As described by Goldratt (2002) in one of his "late night discussions":

We recognize that at the beginning of the century vast majority of costs were totally variable. You see, I don't think that differentiating between variable and fixed costs is very useful. At the end, the difference is based on an arbitrary decision. Even the building is not a fixed cost, it can be sold. Look at industry in the past ten years. Overall, what we call variable costs have stayed the same, while during the same time, fixed costs have doubled. So variable is fixed, and fixed is changing.

Under short-term conditions, only material costs, utilities, etc. are variable. Under longer-term horizons all costs are potentially variable (Bakke & Hellberg 1991). Under TA, all costs except material costs are considered fixed and therefore excluded from product costs. This means that only the material costs should be included in the product costs and that labor costs and factory overheads are considered to be part of operating expenses (Miller & Vollmann 1985)

"Inventory (I) represents all the money the system invests in purchasing things the system could or intends to sell". This is the total amount of investment in the system, including things as buildings, equipment, vehicles, and raw material inventory. This does not, however, included added value for labor or factory overheads in the inventory. This view of inventory not as an asset, as is traditional for accounting, rather as a 'money pit'

is not entirely new. Drucker (1990) had also challenged manufacturing accountants to develop new cost concepts redefining costs and benefits in the manufacturing context.

In the traditional cost accounting system, [inventory] is treated as an asset. In the new manufacturing accounting, however, inventory of finished goods is a 'sunk cost' (an economist's, not an accountant's term). Stuff that sits in inventory does not earn anything. In fact, it ties down expensive money and absorbs time. As a result, its time costs are high. The new accounting measures these time costs against the benefits of finished-goods inventory (quicker customer service for instance).

"Operating expense (OE) is all the money the system spends in turning inventory

into throughput". This is all the money constantly poured into the system to keep it operating, i.e. expenses for labor, supplies, maintenance, depreciation, advertising, etc.

TA is a new tool for managerial accounting that was initially developed to support the TOC. The basic philosophy is that profit is a function of manufacturing response to time and that the long-term objective of management must be to maximize profit. TA has been offered as an alternative to absorption accounting systems such as TCS and ABC systems, for which TOC advocates have little use. The TA measurements provide a method of operationalizing the key concepts of TOC – throughput, inventory, and operating expense – into a functional accounting system (Ruhl 1997). Throughput accounting states:

When:

$$Throughput = Sales - \frac{10tal variable}{costs}$$

T (1 · 11

Then:

Proponents of TA laud its simplicity while opponents criticize its complete disregard for fully capturing detailed product costs. Critics point out that TA is shortterm focused and does not provide adequate product costing information for long-term decision making. Short-term variable cost may not reflect the true product cost because the decision to make a product creates a long-term commitment to manufacturing, marketing, and post sales support, thereby resulting in an increase in fixed cost (Cooper & Kaplan 1988). TA is not very helpful to strategic decision making, which typically requires the investment of significant capital over a long period of time and is concerned with more than just throughput (Ruhl 1997).

Goldratt and Cox counter these arguments by pointing out that the long-term is nothing more sophisticated than a series of short-terms. According to them, the only relevant element for product cost decisions is variable costs, because all fixed costs have already been incurred, or have been committed to be incurred, and cannot be changed in the short-run. This is the same argument that economists have long made for marginal analysis, i.e. all decisions should be made on the margin.

Despite criticisms from established scholars, the simple lack of novel alternatives to TCS drove some to operationalize TA. Galloway and Waldron (1988a) in their first article on TA claimed that a new language for manufacturing is needed to replace traditional concepts such as direct/indirect costs, economic batch sizes, and the idea of adding value to stock. They later develop a series of articles which make operational the concepts of TOC through development of management tools.

In the second article (1988b) they develop the 'TA ratio', which they suggest can be used to rank individual products.

If:

$$\frac{Return \ per}{factory \ hour} = \frac{\frac{Sales \ price -}{Material \ cost}}{Time \ on \ key}$$

$$resource$$

And:

$$\begin{array}{r} Cost \ per \\ factory \ hour \end{array} = \begin{array}{r} Total \ factory \\ \hline Total \ time \ on \\ key \ resource \end{array}$$

Then:

The third article (1989a) introduces the 'primary ratio', where instead of defining profit as throughput less operational expense, they prefer a ratio:

Primary ratio = Throughput Total factory cost

Recognizing a need for local measures to drive 'throughput thinking' on the plant floor, they develop a set of time-based measures. This is opposed to measures based on departmental sales, which would imply some form of transfer pricing between departments.

Departmental throughput = Standard minutes of throughput	x	Budgeted departmental cost per minute
--	---	---

Waldron (1994) continued to show his commitment to developing departmental measures within the context of TOC.

Departmental ratio = Throughput Total facility cost

In their fourth article (1989b), Galloway and Waldron note that in complex manufacturing environments, there are often several manufacturing facilities, and within each facility, the 'focal' point needs to be identified.

 $\begin{array}{r} Cost \ per \ focal \\ point \ minute \end{array} = \begin{array}{r} Total \ facility \\ cost \\ \hline Focal \ point \\ capacity \ (minutes) \end{array}$

In conclusion, product costs can be computed on TA principles:

Product cost	=	Time required on	r	Cost per focal	+	Material
		focal point	\mathcal{A}	point minute	т	cost

Throughput-based product costs would therefore penalize products that make heavy use of focal points while products not routed through focal points would be cost as materials only, creating a new set of perverse incentives. Waldron (1994) would later agree that TA principles are not conducive to product costing, and he later would propose that ABC is more appropriate for product costing (Drugdale & Jones 1996). He would go on to suggest that companies need both ABC for product costing and TA to tell how many products can be made and how fast. According to Waldron:

Some sectors in the accounting world would want to set TA against ABC... that's a whole lot of junk, because you need the added information and they're both adding something... [ABC] doesn't tell you anything about how the business can make money... It doesn't tell you how many [products] I can make, or how fast... [but] TA will never tell you the right price to go to the market with for a product. So you need both... TA is not a product costing system.

Given the already low success rate of ABC systems due to the cost and complexity of implementation, adding yet another MAS alternative on top does not present a practical solution. Moreover, careful analysis of the entirety of Waldron and Galloway's ratios reveals that they are in fact analogous to familiar concepts of maximizing contribution per unit of limiting factor. If materials were the only variable cost, contribution and throughput would be identical and there would be no difference between traditional contribution analysis and 'throughput' analysis, therefore there is nothing new in throughput accounting (Willett 1989). Maximizing throughput per bottleneck minute, in the guise of 'contribution per unit of limiting factor', has been standard textbook material for many years, and although he may not succeed in destroying the 'cost world thinking', Goldratt may have succeeded in reinvigorating debate on historical issues such as relevant cost, contribution, and variable cost analysis (Drugdale and Jones 1996).

Furthermore, the debate as to whether to use absorption or variable costing appears to have long been settled by government regulations and the costs of maintaining two separate accounting systems. Because of the US GAAP requirement that some form of absorption costing be used for inventory valuation and tax reporting purposes, TA does not present a viable alternative for most manufacturing firms. Although several studies have included TA or other forms of direct costing, and it is an interesting alternative from an academic standpoint, this study will compare only the three forms of absorption costing that are most likely to be used in practice. To be included in this study are the previously mentioned TCS and ABC system as well as the following proposed TBA

system, which does incorporate the same importance of throughput-time in

manufacturing that the TA system does.

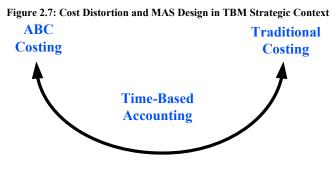
Time-Based Accounting

Drucker (1990) predicted that managerial accounting would play an even bigger role than in the past in the American factory of the future, and that time – not labor – would be the critical driver of costs by 1999.

Labor costs are clearly the wrong unit of measure in manufacturing. But – and this is a new insight – so are all the other elements of production. The new measurement unit has to be time. The costs for a given period of time must be assumed to be fixed; there are no 'variable' costs. Even material costs are more fixed than variable, since defective output uses as much material as good output does. The only thing that is both variable and controllable is how much time a given process takes. And 'benefit' is whatever reduces that time. In one fell swoop, this insight eliminates cost accounting's traditional limitations.

Unfortunately, managerial accounting practice has failed to advance vis-à-vis Drucker's prediction. One often cited reason for the lack of innovation in managerial accounting practice is that no 'Japan' exists for learning about or studying innovative managerial accounting practices as is the case in operations management (Kaplan 1993). While there may be no example of a single wide-spread managerial accounting development in Japanese industry for cross-sectional study, this is more a reflection of the nature of Japanese managerial accounting practice, which tends to be firm-specific. There are many known case studies of Japanese companies that utilize the allocation of factory overheads to motivate employees towards long-term strategic goals (Hiromoto 1988). For example, a Hitachi factory producing refrigeration and air-conditioning equipment employs an overhead allocation technique based on the number of parts in product

models in order to influence product design decisions towards reducing the number of parts per product.


In large part, Japanese companies have rejected ABC as providing little if any marginal value for management decision making and control.

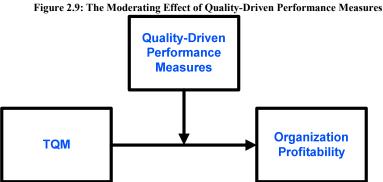
While Japanese management is well aware of the guiding principle that an allocation system should capture as precisely as possible the reality of shop floor costs, they are more concerned with the motivational potential of the MAS in terms of long-term strategy than with absolute precision of cost, variance, and profit data. The allocation basis used commonly in Japan is primarily determined by the activity or resource usage that management wants to minimize. In the case of a time-based competitor, the resource usage to be minimized is time itself – throughput time in manufacturing terms.

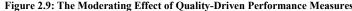
One possibility for the time-based manufacturer is to simply change the allocation method to reflect TBM strategy, i.e. time-based accounting (TBA). Rather than volume measures such as direct labor, throughput-time could be used as a basis for allocating overheads. As a time-based manufacturer competes on time, using product throughput time as an allocation basis would encourage managers to constantly reduce time in order to reduce product cost. Since this modification would not violate any aspect of US GAAP or compromise public reporting, TBA could be readily implemented. A simple numerical example of TBA allocations is provided in Appendix B.

TBA accounting would be much easier to implement than ABC, as it does not require radical change in the entire accounting system. However, the real advantage in using product throughput-time to allocate overheads for a time-based manufacturer is that

any investment initiatives are ultimately justified in terms of expected time reductions via product cost. Under TCS justifications on improvements are often made via reduction in labor content that is really *de minimus* in terms of overall product cost (Fry et al. 1993). TBA maintains the strategic decision making strength inherent to absorption costing systems, in that it fully allocates manufacturing overheads to products thereby supporting long-term investment strategy. TBA has the tactical decision making strengths of TA, in that it motivates turning inventory quickly into throughput, i.e. into cash. Furthermore, it presents none of the organizational complexity and cost found in ABC implementations; possibly its greatest strength. Although many accounting experts agree that ABC can generate more accurate cost information, with low manufacturing overhead or a single product line, the cost to implement and adopt ABC may exceed the benefits (Vokurka & Lummus 2001). TBA supports 'the Goal' as articulated by Goldratt and Cox (1992) "to make money in the present as well as in the future". Most importantly, in linking throughput-time directly to product cost, TBA mitigates cost distortions and serves to eliminate potential dysfunctional behavior in terms of TBM strategy (figure 2.7).

Level of Cost Distortion


Interface of Managerial Accounting and Operations Management


The potential of any advanced manufacturing systems is greatly enhanced by the use of appropriate manufacturing performance measures reflected in the MAS. Hiromoto (1988) points out that a central principle guiding managerial accounting in Japan is that accounting policies should be subservient to corporate strategy, not independent of it. Nanni and others (1992) support the belief that performance measurement, i.e. MAS, is of equal importance to management strategy and actions (figure 2.8). The relationship between strategies and actions is fairly obvious. An organization's actions should be taken to support strategies, but the role played by measures in supporting strategies and actions should be equally obvious.

This belief that MAS congruence with manufacturing strategy would lead to higher levels of firm performance has been touted by academic researchers and consultants ever since Kaplan's (1983) seminal article. While very little has been written on MAS congruence in terms of a time-based manufacturing strategy, there have been a handful of studies linking performance of other advanced manufacturing systems with appropriate accounting measures. These empirical studies suggest the need to develop an innovative MAS alternative for a TBM strategy.

Chenhall's (1997) study of 39 manufacturing organizational units exemplifies the reliance on manufacturing measures and its impact on the potential increased organizational profitability of TQM. Given the nature of advanced manufacturing philosophies, such as TQM, those firms whose MAS focuses on key measures of customer satisfaction, on-time delivery, and quality production measures – such as throughput-times, defect rates, and inventory levels – show greater organizational profitability. Figure 2.9 below shows moderating effect of quality-driven performance measures on the relationship between TQM and organizational profitability.

Firms utilizing an MAS alternative geared towards corporate goals show highest performance. Sim and Killough (1998) showed a disordinal interaction between advanced manufacturing systems, such as TQM/JIT, and the appropriateness of manufacturing performance measures, i.e. the firm's MAS. As seen in figure 2.10 below, those companies demonstrating high levels of TQM/JIT practices and utilizing appropriate performance measures related to customer quality along with performance contingent rewards showed the highest performance. One interesting result was that firms utilizing a low degree of TQM/JIT also performed well as long as their accounting measures also reflected a law degree of TQM/JIT congruent measures. This would indicate that mass production industries may perform best using traditional cost systems.

Degree of Use of Goal- Congruent Accounting Measures	High	Low Performance	High Performance	
		High Performance	Low Performance	
	Low		High	
		Degree of Use of Advance Manufacturing Systems		

Figure 2.10: Disordinal Interaction of the Goal-Congruent Measures and Performance

This empirical evidence indicates that a firm's MAS should be designed contingent on characteristics of the production system, or that the characteristics of the production and managerial accounting systems should be simultaneously designed. It further suggests the possibility that an important reason some firms have not experienced performance gains from implementing advanced manufacturing systems is a reliance on an inappropriate MAS alternative. The following matrices illustrates the match between goal-congruent accounting measures and the degree of use of advanced manufacturing systems as adapted from the findings of Sim & Killough 1998 and clearly reinforces the need for congruence between the manufacturing practices and the performance measures utilized in the form of managerial accounting systems.

Using a survey of top manufacturing executives at 253 US firms, Fullerton and McWatters (2002) found a relationship existed between the level of JIT manufacturing practices implemented and the performance measures and incentive systems inherent to the managerial accounting system. Specifically, the use of non-traditional measures such as bottom-up measures, product quality, and vendor quality, as well as incentive systems of employee empowerment and compensation rewards for quality production are positively related to the degree of JIT manufacturing practices implemented. The factors which emerged as critical for performance measures and incentive systems and are

associated with a high degree of JIT manufacturing practices are:

- The frequency with which quality issues are measured and reported to management strata.
- The importance of quality and teamwork in determining compensation.
- The use of bottom-up data gathering techniques such as Pareto analysis, histograms, and cause-and-effect diagrams to evaluate operations
- The importance of adherence to budget items in determining compensation
- The use of benchmarking to evaluate operations.
- The use of performance measure related to waste and inefficiency in evaluating the manufacturing system.
- The extent to which employees understand the firm's strategic plan.
- The use of performance measures related to timeliness and vendor performance in evaluating the manufacturing system.
- The use of non-financial measures to determine compensation.
- The extent to which line managers and non-management personnel are empowered to make decisions.

The authors suggest that in order to build and strengthen long-term competitive advantage, firms must provide low-cost, high-quality products under time-based demands. The results of this study demonstrate that successful implementation of JIT practices also requires a complementary decision making and control system.

It is clear that the selection of an appropriate accounting system is critical to the performance of the manufacturing system. The question is which accounting system to use, given several options. The answer is to choose the accounting system that best depicts the manufacturing reality. In the cases where manufacturing overhead was high in relation to direct labor and material costs and product variety is high, ABC outperformed the other two systems. In cases where a 'push' manufacturing strategy is used for long production runs of standardized products, in conjunction with centralized resource management systems such as manufacturing resource planning (MRP), MRP II,

or enterprise resource and planning systems (ERP), TCS outperformed the other two accounting systems (Lea & Min 2003).

Other variations of MAS alternatives have been proposed and have shown positive results when applied in the appropriate manufacturing environment. One of these is the so called 'balanced score card', which focuses on four key performance measures: customer, financial, learning, and internal processes (Hoque 2002). Another variation proposed is one of integrated performance measures, which is based on a continuous process of developing performance measures. Based on case studies observed by Nanni and others (1992) propose an 'Integrated Performance Measurement System', which balances cost and other performance knowledge and employs it operationally at every step in the strategic management cycle. The utility of the MAS in supporting advanced manufacturing systems diminishes as the variety of cost data needed increases, the emphasis on future cost increases, and the importance of non-financial measures increases. In a dynamic manufacturing environment, in which the process is continuously changing, dynamic performance measures give the best results.

Although rarely seen in practice, the pathologic case of abolishing the MAS altogether has also been proposed by some researchers and practitioners, citing the fact that in many cases factory managers ignore internal accounting reports all together. It seems that production managers have come to realize that the performance measures being generated by the MAS more often than not reflect little more than a distorted view of shop floor reality. Neely (1999) found much the same reaction in his case study research of UK manufacturing, as he watched a production manager of a small manufacturing business through a freshly-delivered 200 page performance report straight

into the waste bin. The response of the manager to Neely's puzzled look; "we measure everything that walks and moves, but nothing that matters." In their book, *The Race*, Goldratt and Fox (1986) share their experiences consulting to many manufacturing companies and finding that managers often used a combination of cost and intuition in deciding what actions to take, where cost is trumped by intuition.

Currently we are using both cost and intuition to determine what actions to take. The mere fact that we override the cost recommendations so frequently already tells us that cost procedures are not adequate. Intuition often helps to improve the cost recommendation, but unfortunately intuition is not a basis for good communication. Even though this combination of cost and intuition were not sufficient in the past, this new competitive race has now made them totally obsolete.

The Impact of Product Mix Complexity on Manufacturing

Product mix complexity has been a focus of study in both the managerial accounting and the production operations management literature for some time now. Product complexity is commonly defined along two dimensions, breadth complexity and depth complexity (Bentorn and Srivastava 1985). Breath complexity is represented by the number of components in the parent product (Bentorn and Srivastava 1985). Depth complexity is defined as the maximum number of dependent relationships in a product structure (Veral and Laforge 1985, Sum et al. 1993).

Product mix complexity has commonly been found as a primary variable in various POM studies such as in lot sizing studies (Blackburn and Millen 1980; 1982a & b, Veral and LaForge 1985, Benton and Srivastava 1985, LaForge 1985), in system nervousness strategy studies (Blackburn et al. 1986), and in capacity control policy studies (Gutzmann and Wysk 1986). In all studies it has been shown as a primary driver of cost as the number of levels in the product BOM increases. In addition, some researchers have shown that JIT strategies work better with a flat BOM structure, while MRP performs better with a deep structure (Vollmann et al. 1992).

Product mix complexity has also been reported as an important factor in product costs amongst various managerial accounting alternatives. Many researchers have suggested that product complexity increases cost distortions under traditional managerial accounting scenarios (Cooper 1988a, Brimson 1991). Their research has shown that the manufacturing of complex products with many part numbers and complex functions places far greater demands on overhead support activities such as production planning, engineering, purchasing, quality control, and logistics than do more simple products. When the quantity of volume-related resources that a product consumes does not vary in direct proportion to the quantity of volume-unrelated resources consumed, a volumebased cost system such as traditional absorption-based costing systems will report distorted product costs (Cooper 1988a). Many researchers in managerial accounting have posited that traditional absorption-based costing systems may under allocate manufacturing overhead costs to the low volume, complex products and may over allocate manufacturing overhead costs to the high volume, simple products when both types of products are manufactured in the same facility, because these manufacturing overheads are most often allocated on direct labor hours, machine hours, or some other volume basis (Johnson 1991b, Chalos 1992, O'Guin 1991).

Increasing complexity is the bane of a factory manager's life. With increasing complexity comes and increased number of parts, greater material handlings and inventories, more diverse process flows, higher supervision requirements, an increase of errors and defects, and smaller batches produced in shorter runs. (Abegglen & Stalk 1985, pg. 81)

Henry Ford was possibly the first industrialist to realize the full cost of variety on operations when he famously ruled that "the American can have a Ford in any color as long as it is black". Closely related to product complexity is the impact of demand variability production operations. Theories in economics, operations management, and managerial accounting have long predicted that producing a heterogeneous product mix increases costs and reduces operating performance (Skinner 1974, Hayes & Wheelwright 1984, Johnson & Kaplan 1987, Banker et al. 1988, Anderson 1995) as a result of transactions caused by complex material flows, capacity balancing, quality control, and change (Miller & Vollmann 1985).

The impact of product mix complexity has become of increasing importance to researchers in both managerial accounting and production operations management as producers have struggled to cope with the ever increasing demands of consumers for greater product variety in the post-industrial age (Doll & Vonderembse 1991). The scope of product mix complexity is defined as the breadth of product offerings produced at a single facility; the wider the breadth of product offerings, the greater the complexity of the factory operations.

As factory complexity increases, greater overhead resources must be committed to ensure smooth operations. For example, the scheduling, material handling, and expediting efforts required to support a line on which only one product is assembled are significantly lower than the efforts required to support a line on which ten or twenty products are assembled... The more variety of products fabricated or assembled on a line, the less focused, the more difficult to manage, and the greater the required overhead support will be. By inference, the more products a factory manufactures, the less focused, the greater the overhead requirements and costs and the higher its total production costs will be. (Abegglen & Stalk 1985: 81-83)

Theory in both managerial accounting and operations management has predicted that producing a heterogeneous product mix increases costs and reduces operating performance (Skinner 1974, Hayes & Wheelwright 1984, Hill 1985, Johnson & Kaplan 1987, Banker et al. 1988). Later empirical studies confirm the impact of product variety on manufacturing costs (Anderson 1995, Fisher & Ittner 1999, Randall & Ulrich 2001, Pil & Holweg 2004, Peacock 2005). Numerous operations management and accounting studies indicate that product variety's greatest impact may be on indirect and overhead costs rather than on direct labor productivity, yet little attention has been given to the impact of product variety in mixed-model assembly operations (Fisher & Ittner 1999).

Under TCS, the addition of greater product offerings can place an unfair burden on older, less complex products, which often require far less overhead support activities than the newer, more complex products.

Complexity can also be substantially increased when a new product line is introduced, but the older product line is continued for parts or to keep a valued customer. In the early stages of product line expansion, the savings from the product redesigns and from the incremental volume often offset the costs and aggravation of the factory's increased complexity. However, as the expansion continues, the factory becomes increasingly less efficient, more costly, and less profitable. Because most management [accounting] and [financial] accounting systems are used as score cards rather than to demonstrate cause and effect, they are unlikely to show why the performance of the factory is deteriorating. (Abegglen & Stalk 1985, pg. 81)

Simulation Methodologies in Managerial Accounting Research

There has been an increasing recognition amongst some of the top scholars in the managerial accounting field of the need for innovative methodologies to fill in the knowledge gaps (Kaplan 1993, Zimmerman 2001, Ittner & Larcker 2001, 2002). Ittner

and Larcker (2001) highlight that managerial accounting research has developed a somewhat faddish nature and has yet to produce an integrated, substantive body of knowledge. Zimmerman (2001: 422) is even more critical of the state of managerial accounting research and its over reliance of empirical methods. He argues that the state of affairs described by Ittner & Larcker (2001) is caused by a focus of describing practice rather than testing theories. In his view, managerial accounting research has become completely descriptive, and he believes that nothing more substantial can be learned from continued field research. He describes accounting field researchers as "wandering the hallways of corporations and manufacturing plants searching for facts unguided by tentative hypotheses".

Since this dialogue was brought back to the forefront of managerial accounting research, there has been a renewed interest in looking outside the more established empirical methods, towards other fields. Since managerial accounting interfaces with operations management, it makes sense that it should borrow some of the more established methodologies such as mathematical modeling and linear programming and emerging methodologies such as simulation modeling.

Figure 2.11 below has a listing of recent studies from operations management, industrial engineering, and managerial accounting which have employed some form of simulation methodology within the past ten years. As evident from this listing, with only one journal article greater than five years old, and the rest within the past five years, this methodology is gaining acceptance within the research community.

No.	Author	Date	Title	Publication	Methods	Findings
1.	Vokurka & Lummus	2001	At What Overhead Level Does Activity-Based Costing Pay Off?	Production & Inventory Management Journal	Scenario analysis with four fictional companies with identical production but different OH levels comparing TCS and ABC	Companies should examine their overhead levels to determine whether ABC is valuable to them. Companies with high overhead levels and companies with a wide product mix and identifiable activities may benefit. Companies with lower overhead and statice product mix may find it cost prohibitive to implement.
2.	Boyd & Cox	2002	Optimal Decision Making Using Cost Accounting Information	International Journal of Production Research	Simulation in a resource constrained environment (TOC) compares TCS, ABC, direct costing, and TA.	TA produced the same results linear programing. All others produced suboptimal results. For cost accounting systm to provide information for optimal decisions it must be aware of production constraints and not use allocated cost.
3.	Özbayrak et al.	2004	Activity-Based Cost Estimation in a Push/Pull Advanced Manufacturing System	International Journal of Production Economics	Uses mathematical modeling and simulation to compare TCS and ABC in an automated manufacturing setting.	Pull strategy gives consistantly better results under both TCS and ABC, but the optimum is using ABC.
4.	Lea & Fredendall	2002	The Impact of Management Accounting, Product Structure, Product Mix Algorithm, and Planning Horizon on Manufacturing Performance	International Journal of Production Economics	Large-scale simulation examines TCS, ABC, and TA in two shops, one with a flat and one with a deep product structure, in a highly automated industry (high overhead).	No single shop setting is best of all perfomance measures. The manager must determine which performance measures are most important when chosing an MAS, product mix algorithm, or product structure.
5.	Lea & Min	2003	Selection of Management Accounting Systems in Just-In-Time and Theory of Constraints- Based Manufacturing	International Journal of Production Research	Large-scale simulation examines TCS, ABC, and TA in highly automated JIT and TOC environments with different planning horizons.	The management accounting system that best depicts the manufacturing process provides better product cost information and results in better system performance.
6.	O'Brian & Sivaramakrishnan	1996	Coordinating Order Processing and Production Scheduling in Order Initiated Production Environments	Journal of Management Accounting Research	Simuation model of order initiated environment compares cost (TCS) and cycle time in as order cutoff criteria for coordinating order processing.	A simple cycle-time cutoff decision rule outperforms a cost decision rule.
7.	Leitch	2001	Effect of Stochasticity, Capacity and Lead Time Cost Drivers on WIP and Throughput in a Pull Production Environment	Management Accounting Research	Simulation examines the tradeoffs of cost drivers and its effects on strategic cost management.	The effects of these cost drivers are much different than traditional push manufacturing systems and management may need to model these and other cost drivers to assess their impact on performance.
8.	Burrows et al.	2001	Real-Time Cost Management of Aircraft Operations	Management Accounting Research	Uses flight simulation to model cost impact of pilot inflight decisions on entire flight network.	Provides a unique and detailed description of cost- drivers and cost-behavior information for a non- manufacturing environment.
9.	Balakrishnan & Sivaramakrishnan	2002	A Critical Overview of the Use of Full-Cost Data for Planning and Pricing	Journal of Management Accounting Research	Uses mathematical modeling and simulation in conjunction to determine the relationship between product pricing and product, capacity, and allocation decisions.	Flexible capacity mitigates the potential perverse incentives of full-costing on product, capacity, and capacity allocation decisions.
10.	Banker & Hansen	2002	The Adequacy of Full-Cost-Based Pricing Heuristics	Journal of Management Accounting Research	three pricing heuristics in a service operation.	Full costing provides optimal performance when demand is greater than capacity in a service operation where there is 'soft' capacity in the form of backorderd service.
11.	Leitch et al.	2005	Opportunity Costing Decision Heuristics for Product Acceptance Decisions	Journal of Management Accounting Research	Uses simulation to evaluate full-cost heuristics under different levels of stochastic demand, lead-time, cost structur, and workstation capacity.	Full costing works well when lead times are long and shop capacity is balanced. Deviations reduce its performance over other heuristics.
12.	Meade	2004	Modeling the Strategic Impact of Management Accounting Methods on the Implementation of Lean Manufacturing	Doctoral Disseration: Western Michigan University	Evaluates lean implementation ex post facto through the lens of differing MAS alternatives.	Focus on short-term impact (6 month simulation) limited the generalizability of findings.
13.	Whittenberg	2004	Decision Usefulness of Management Accounting Information Systems in Constraints-Based Manufacturing Operations	Doctoral Disseration: Nova Southeastern Unviversity	Human experiment using masters of accountancy students to determine impact of MAS design on decision making.	Results inconclusive as time allowed for only two iterations and difficult to determine if improvements were due to changes in MAS design or simply learning to better play the game.

Figure 2.11: Select Managerial Accounting Studies Using Simulation Methodologies (2001-2006)

Vokurka and Lummus (2001) use a simple scenario analysis with a spreadsheet of four fictional companies with identical production and differing levels of factory overhead (6%, 18%, 31%, and 40%) to compare TCS and ABC. The results suggest that companies need to examine their overhead levels in order to determine whether implementing ABC will be valuable. Companies with high levels of manufacturing overhead, wide product mixes, and clearly identifiable activity drivers may benefit, while companies with lower levels of manufacturing overhead and a static product mix may find it cost prohibitive to implement.

Boyd and Cox (2002) use simulation software in a resource constrained environment (TOC) comparing TCS, ABC, direct costing, and TA. They found that TA produced the same results as a linear programming model, while all others produced suboptimal results. In the TOC environment, for a cost accounting system to provide information for optimal decision making it must be based on production constraints and not use allocated costs.

Özbayrak and others (2004) use a combination of analyticall and simulation modeling to compare TCS and ABC in a highly automated manufacturing setting. They found that a pull strategy gives consistently better operational results, regardless of accounting scheme, but is optimized in conjunction with ABC.

Lea and Fredendall (2002) use a large-scale simulation model to examine TCS, ABC, and TA in a highly automated manufacturing environment, i.e. manufacturing overhead. They compare these accounting schemes under different product structures finding that no one performs best under all shop settings. The manager must determine which performance measures are most important when choosing an MAS. Lea and Min (2003) repeated this simulation comparing the same managerial accounting schemes in both a JIT and TOC environment with different planning horizons. The found that the MAS that best depicts the manufacturing process provides better product cost information and results in better system performance.

This research follows a similar methodology as that used in Lea and Fredendall (2002) including two of the same input variables, i.e. MAS alternatives and product mix complexity. The current study develops an additional MAS alternative and addresses another limitation of the Lea and Fredendall (2002) study – namely that it only considered an environment with a high level of manufacturing overhead. One additional limitation, from an accounting standpoint, is that TCS is not operationalized as is most

common in practice, with direct labor hours as an allocation basis. Rather, they use direct machine hours, which would be consistent with a highly automated environment. They note that this may be the reason why their anomalous results were inconsistent with other researchers (Cooper & Kaplan 1992, Johnson 1991 & 1992, Kaplan 1989, O'Guin 1991).

O'Brian and Sivaramakrishnan (1996) used a simulated order initiated environment to compare financial and operational cutoff criteria under a TCS for coordinating order processing. They found that a simple throughput-time cutoff decision rule outperforms a cost decision rule. Although this study is not concerned with different account schemes, the use of throughput-time for the decision rule further supports the use of throughput-time as an allocation basis within the managerial accounting scheme.

Leitch (2001) used a simple simulation model of a pull-production environment to examine the tradeoffs between various cost drivers (stochasticity, capacity, and lead-time constraints) and its effects on strategic cost management. He notes that even relatively simple simulated pull-production environments can offer much complexity and difficulty in analysis. He found that the effects of these cost drivers are much different than in traditional push manufacturing systems, and that management needs to consider the impact of these and other cost drivers on performance. This study supports the use of simulation in accounting studies, so that stochasticity may be introduced to the experimental environment.

Burrows and others (2001) accessed a flight-simulator and utilized its 'real-time' operational data to model the impact of pilot in-flight decisions on the entire network. This research provided a unique and detailed description of cost-drivers and costbehavior in a non-manufacturing environment.

Balakrishnan and Sivaramakrishnan (2002) used analytical and simulation modeling to determine the relationship between product pricing, production capacity and allocation decisions in a fictional organization. They found that flexible capacity mitigates the potential perverse incentives of full-costing on production capacity and allocation decisions.

Banker and Hansen (2002) used analytical and simulation modeling in order to compare three pricing heuristics in a fictional service operation. They found that full costing provided optimal performance when demand is greater than capacity in a service operation where there is soft capacity in the form of backordered service.

Leitch and others (2005) used simulation modeling to evaluate full-cost heuristics under different levels of stochastic demand, lead-time, cost structure, and work station capacity. They found that full costing works well when lead ties are long and shop capacity is balance. Deviations from this ideal scenario reduce its performance over other heuristics.

A search of doctoral dissertations/theses involving managerial accounting (including the terms managerial accounting, cost accounting, costing, and accounting) and simulations was performed in ProQuest since 2000 returning two such dissertations. Meade (2004) uses simulation to model the short-run (six months) impact of the implementation of lean manufacturing on financial performance measures through different managerial accounting methods. The focus of this research was not on how the MAS alternatives affect manufacturing operations, but rather how the view of manufacturing operations is changed through the lenses of different accounting schemes during the implementation phase of lean manufacturing. Although this study provided a

useful look at the impact of lean manufacturing through various accounting treatments, its short-term view did little to show the system-dynamic relationship of managerial accounting on the success of lean initiatives. The author provided some useful suggestions for future research that are incorporated into the study at hand including expansion of the time horizon, incorporation of customer service measures, use of income measures, and the addition of non-normal distributions in supply and demand.

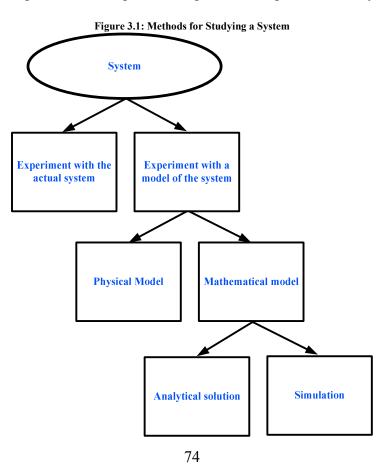
Whittenberg (2004) compared the decision usefulness of various managerial accounting schemes in a constraints-based manufacturing environment. This study utilized a scenario experiment where human participants made production decisions based on information provided, both operational and financial. Although this was a novel approach to introducing 'real' human decision making into the simulation game model, it had a number of limitations due to its nature. First, because of time constraints and the attention span of participants, the simulation could only be run in two iterations, one without the accounting information and one with the accounting information. Even then, the two or three hours needed to play the game precluded most of the operations and accounting professionals originally targeted for the study.

In the end, a group of 159 participants, including 15 industry professionals, was assembled mainly from accounting undergraduate and graduate students. Since time only allowed for two iterations of the game, it was difficult to determine whether improvements in system performance are due to improved decision making or simply to the learning curve of the game itself. In the end, the author notes that the variability introduced by allowing human subjects, from many backgrounds and experience levels, the freedom to make decisions tends to limit the conclusions that can be drawn form the

results. The author suggests that future research would add controls to limit the decision making alternatives; however, this would obviate the purpose of having real human subjects. This conclusion supports the use of integer linear programming in conjunction with the simulation model, which would allow for a realistic decision making process without the inherent variability.

Chapter Three

Research Design


This chapter describes the development of an experimental research design that utilizes a simulation modeling methodology to examine the impact of different MAS alternatives on production decision making and ultimately on manufacturing performance in the context of a TBM strategy. The simulation model is developed and executed within Rockwell Automation Corporation's ARENA software, one of the most powerful commercially available simulation tools on the market today. ARENA is a highly flexible and endlessly reconfigurable tool that allows the research analyst to create an animated simulation model representing virtually any system, build in complex underlying costing and decision logic sub models, and statistically analyze the results of system input modifications.

Increasingly researchers are giving less credence to the pejorative old saw often describing simulation as a 'method of last resort'. In fact, researchers are increasingly looking to simulation methods as a method of first resort, in most cases due to the sheer complexity of systems of interest and the models necessary to represent them in a credible and valid way (Law & Kelton 2000). To observe real manufacturing systems is often very expensive and sometimes cumbersome; a simulation model is an easier way to build up models representing real-life scenarios (Ali et al. 2005).

Despite the fact that simulation is an emergent field of research, it has already become foe of the most widely used in techniques in industrial engineering and

operations research. There have been several meta-analytic studies that support this claim. Lane and other (1993) reported that from 1973 through 1988 that simulation was ranked consistently as on of the three most important operations research techniques. The other two were math – a catch all category as simulation is itself a form a modeling – and linear programming. Gupta (1997) analyzed 1,294 papers from 1970 through 1992 in the journal *Interfaces* – one of the leading journals highlighting real world applications of operations research theory – finding simulation only second to 'math' programming out of the 13 research methodologies utilized.

Since the impact of the introduced TBA method of accounting is of primary interest, the scope of this study is limited to experimental methodologies. Law and Kelton (2000) describe the various options to the researcher in terms of experimental methodologies. Figure 3.1 below presents experimental options for studying a system.

Unlike case studies that examine actual companies, simulation studies use hyperphysical companies in purposefully designed experimental environments. The scale, processing times, decision criteria, and other settings are usually carefully designed to examine extreme pathological settings as well as normal settings. Therefore, results from the simulation model demonstrate patterns and trends over a decision space, but managers need to interpret the results carefully to ensure they correspond to their own manufacturing environment (Lea & Fredendall 2002). However, the use of longitudinal data from a single [simulated] plant avoids differences in production functions and other correlated omitted variables that may bias cross-sectional studies (Fisher & Ittner 1999). All other variables can be controlled through the use of simulation, and a sufficiently large sample of outcomes can be obtained to achieve significant comparisons between production systems with differing degrees of variation and levels of stress due to capacity and service constraints (Leitch 2001).

Simulation modeling is becoming a widely used tool in particularly in service operations management studies, where the behavior of human participants in the service system both as servers and customers can be erratic. According to Metters and others (2006), simulation offers several advantages over some more traditional OM techniques such as analytical (mathematical) modeling. One of the biggest advantages is that it allows for the compression of years of experience into just a few seconds or minutes of computer possessing time. While it may take multiple simulation runs and scenarios to evaluate a system, with no guarantee of an optimal solution, the results of simulation modeling are far more general than mathematical models. Although both simulation and

mathematical approaches require assumptions, a simulation model can deal with complexity better and a mathematical model affords greater precision (Leitch 2001).

The remainder of this chapter is organized as follows: the first section describes the experimental design, statistical hypotheses, and decision logic foundation of this study. The second section describes the design and parameters of the simulation model and experiment. The third section defines the experimental factors and performance measures used to evaluate the various managerial accounting systems.

Experimental Design

The experimental research design used to address the research questions posed in Chapter 1 includes three experimental factors; the various levels of management accounting system alternatives(MAS), three levels of product mix complexity (MIX), and three levels of manufacturing overhead (MOH). According to Kleijnen (1995) most simulation analysts apply an inferior design of experiments, changing one input at a time as opposed to factorial (2^{K-P}) designs, which controls estimated effects of input changes and shows the importance of interaction effects. For each performance measure the experimental design is a 3 X 3 full factorial with 60 replications, thus resulting in a total of 1620 (3x3x3x6) observations.

The experimental design is then:

Statistical Hypotheses

Research Questions

RQ1: Does the use of different managerial accounting systems in production decisions result in differences in average demand fulfillment rate, cycle-time, and/or net operating income?

Null Hypotheses

 H_01 : The use of different managerial accounting systems has no effect on average demand fulfillment rate, cycle-time, and/or net operating income..

RQ2: What effect does manufacturing overhead level have on average demand fulfillment rate, cycle-time, and/or net operating income?

$MAS_a = 0$

 H_02 : Manufacturing overhead level has no effect on average demand fulfillment rate, cycle-time, and/or net operating income.

 $MOH_0 = 0$

RQ3: For a given level of manufacturing overhead level does the use of different managerial accounting systems in production decisions result in differences in average demand fulfillment rate, cycle-time, and/or net operating income?

RQ4: What effect does product mix complexity have on average demand fulfillment rate, cycletime, and/or net operating income? H_03 : The use of different managerial accounting systems has no effect on average demand fulfillment rate, cycle-time, and/or net operating income for a given level of manufacturing overhead.

 $MAS_a * MOH_o = 0$

 H_04 : Product mix complexity has no effect on average demand fulfillment rate, cycle-time, and/or net operating income.

 $MIX_m = 0$

RQ5: For a given level of product mix complexity does the use of different managerial accounting systems in production decisions result in differences in average demand fulfillment rate, cycletime, and/or net operating income?

RQ6: For a given level of product mix complexity does manufacturing overhead level affect result in differences in average demand fulfillment rate, cycle-time, and/or net operating income?

RQ7: For a given level of product mix complexity and a given level of manufacturing overhead level does the use of different managerial accounting systems in production decisions result in differences in average demand fulfillment rate, cycle-time, and/or net operating income? H_05 : The use of different managerial accounting systems has no effect on average demand fulfillment rate, cycle-time, and/or net operating income for a given level of product mix complexity.

 $MAS_a * MIX_m = 0$

 H_06 : Manufacturing overhead level has no effect on average demand fulfillment rate, cycle-time, and/or net operating income for a given product mix complexity.

 $MOH_0 * MIX_m = 0$

 H_07 : The use of different managerial accounting systems has no effect on average demand fulfillment rate, cycle-time, and/or net operating income for a given level of product mix complexity and a given manufacturing overhead level.

 $MAS_a * MOH_o * MIX_m = 0$

Experimental Factors

The three **managerial accounting system (MAS)** alternatives investigated in the simulation model are a traditional costing system (TCS), activity-based costing (ABC), and time-based accounting (TBA). Figure 3.2 below summarizes the product and period cost classifications under these various MAS alternatives:

Cost Classification		Amount			ABC	ТВА	TCS
Manufacturing Direct:							
Direct materials					P (actual cost)	P (actual cost)	P (actual cost
Direct labor			l with proc and collec		P (actual cost)	P (actual cost)	P (actual cost
Depreciation (machinery) Manufacturing Overhead Cost	s:	simulation LOW MED HIGH		P (actual cost)	P (actual cost)	P (actual cost	
Depreciation (other)		12,000	18,000	24,000	P [1]	throughput time) throughput	MOH (by labor hours) MOH (by
Data entry		2,200	4,400	8,800	P [1]	time) throughput	labor hours) MOH (by
Cost analysis		4,800	7,200	9,600	P [1]	time) throughput	labor hours) MOH (by
Production engineering		3,200	4,800	6,400	P [1]	time)	labor hours)
Scheduling		2,200	3,300	4,400	P [1]	Period cost throughput	Period cost MOH (by
Quality control		1,340	1,444	1,653	P [2]	time) throughput	labor hours) MOH (by
Production supervision		4,200	6,300	8,400	P (time/product)	time) throughput	labor hours) MOH (by
Utilities		4,500	6,750	9,000	P (actual usage)	time) throughput	labor hours) MOH (by
Miscellaneous		1,000	1,000	1,000	P (sales volume)	time)	labor hours)
Selling, General, & Adminsitra	tive						
R&D - Basic				1,200	P (time/product)	Period cost	Period cost
Customer support				7,400	P [3]	Period cost	Period cost
General administration			3,000	P (sales volume)	Period cost	Period cost	
Advertising costs - general				1,200	P (sales volume)	Period cost	Period cost
Advertising costs - product	Α			1	P (actual cost)	Period cost	Period cost
	В			2	P (actual cost)	Period cost	Period cost
	С			4	P (actual cost)	Period cost	Period cost
Commision	Α			5	P (actual cost)	Period cost	Period cost
	В			10	P (actual cost)	Period cost	Period cost
	С			20	P (actual cost)	Period cost	Period cost

Figure 3.2: Product and Period Cost Classifications by MAS

The first column identifies the common manufacturing and selling, general, and administrative (SG&A) activities. The second column shows the cost associated with each activity followed by the classification and basis for absorption under each of the

MAS alternatives. These classifications are consistent with prior research (Brimson 1991, O'Guin 1991, Low 1992, Lea & Fredendall 2002).

As discussed in the literature review in Chapter 2, manufacturing activities such as raw material purchases, direct labor, and direct manufacturing costs, i.e. machine depreciation, are all likely to vary with production volume and are therefore considered variable. These costs will be collected over the course of the simulation runs. Most of the other costs in manufacturing are generally considered fixed or semi-variable in nature, and these make up the classifications of MOH and SG&A. As seen in figure 12 above, the use of different MAS alternatives entails a different treatment of these costs, either as product or period costs. These activities listed are consistent with the activities studied in the literature (Low 1992, Brimson 1991, O'Guin 1991, Lea & Fredendall 2002).

As the main focus of this research is to make a direct comparison of the various MAS alternatives, budgeting and cost control is not of interest in this study. Therefore, in order to simplify the accounting complexity at the end of each period and avoid tracking variances and adjustments, an actual costing methodology is utilized in this research. The accounting period for this study will be set to one month, i.e. 4 weeks, as this is common practice in industry. All performance measures will be collected at the end of each period.

The direct materials, labor, and manufacturing, as well as the ordering costs, are treated as product costs under each MAS. The cost of raw materials is designed to reflect the greater percentage of standardized and non-standardized parts used in high-volume,

simple products and low-volume, complex products respectively. Figure 3.3 below outlines the costs for the individual parts used in this study.

Figure 3.3: Material Purchase Prices						
Associated with						
Item No.	Product(s)	Cost	t/Unit			
110	В & С	\$	20			
220	A & B	\$	10			
230	С	\$	25			
240	С	\$	25			
250	С	\$	25			
260	С	\$	25			

Brimson (1991) indicates that manufacturing overheads are frequently accumulated by department and then allocated to products using a predetermined allocation rate. In this study, TCS and TBA will allocate these costs based on the percentage of total direct labor hours and total cycle-time to each product class respectively. ABC, on the other hand, treats all costs as product costs, attempting to fully allocate all overhead costs by their individual actual activity drivers. Since it is rarely possible to accurately trace 100% of MOH to specific activity drivers and then allocate it to specific products by those drivers (Vokurka & Lummus 2001, Kaplan & Anderson 2004), miscellaneous MOH will be allocated by a single generic basis, the measure of an individual product class' percentage of total production volume.

Under TCS and TBA all SG&A are treated as period costs, i.e. expensed within the period the actually occur. Under ABC, these costs are also treated as product costs and are allocated to the product classes by their individual activity drivers. Again, because it is nearly impossible, in most cases, to accurately trace all overhead costs to

individual activity drivers, general administrative costs are allocated by a single generic basis, the measure of an individual product class' percentage of total production volume.

Under ABC, for the sake of simplicity and generalizability, it is necessary to make certain assumptions in the cost model. It is assumed in this experiment that all the activities shown in figure 12 are primary activities that already reflect all the costs of any secondary activities. Following a similar methodology as Lea & Fredendall (2002) and Lea & Min (2003), the following formula is used to absorb the manufacturing overhead costs to an individual product:

$$R_{k,i} = C_k \frac{Q_i * N_i}{\sum_{i=1}^m Q_i * N_i}$$
[P1]

Where: $R_{k,i}$ - amount of cost k allocated to product i, i = 1, 2, 3;

 $C_k - k = 1$ (finished goods storage), 2 (depreciation), 3 (data entry), 4 (cost analysis), 5 (production engineering), 6 (scheduling)

- Q_i production quantity of product i
- Ni total number of parts in product i
- m number of products, m = 3

Quality control costs per period include prevention, appraisal, and internal failure costs. For the purposes of this study, it is assumed that all products passing inspection are good products and therefore the external cost of failure is irrelevant. The activity driver associated with quality control under ABC is the actual number of occurrences weighted by a product's predetermined quality multiplier. The multiplier is selected to reflect the average time needed to inspect and either repair or reject the final product. The following formula is used to absorb the cost of quality control to an individual product:

$$X_{i} = Quality \ Cost * \frac{A_{i} * AQ_{i}}{\sum_{i=1}^{m} (A_{i} * AQ_{i})}$$
[P2]

Where:

Xi - quality control cost allocated to product i

 AQ_i - number of defects for product class i

 A_i - quality multiplier for product i

m - number of products, m = 3

Customer support is the general cost of providing service to customers after the sale, and this cost varies by product classification. Similar to the quality control costs, the activity driver associated with service under ABC is the actual number of occurrences weighted by a product's predetermined service multiplier. The multiplier is selected to reflect the average time needed to service a customer by product class. The following formula is used to absorb the service costs to an individual product:

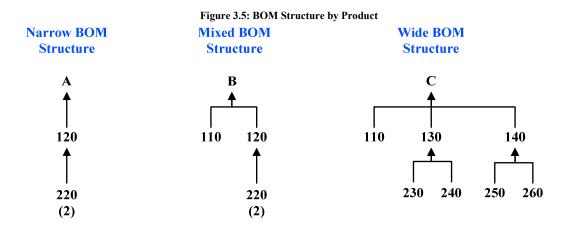
$$X_{i} = Service \ Cost * \frac{B_{i} * AQ_{i}}{\sum_{i=1}^{m} (B_{i} * AQ_{i})}$$
[P3]

Where:

Y_i - service cost allocated to product i
BQ_i - actual service calls for product class i
B_i - service multiplier for product i
m - number of products, m = 3

Ever rising **manufacturing overhead levels (MOH)** have long been considered the primary amplifier of cost distortion and have led to the development of ABC. If manufacturing overhead were a negligible portion of total product cost, misapplication of manufacturing overhead would not be a concern (Ruhl & Baily 1994). However, this does not reflect reality, as MOH has grown to become the single largest product cost component in most modern manufacturing plants. In general, the higher the overhead rate for a company, the greater the amplification of the difference in costs between TCS and ABC approaches. Likewise, the lower the overhead level, the smaller the cost difference between TCS and ABC. Vokurka & Lummus (2001) show an example where the same product manufactured in two different plants with differing levels of overhead burden is costed significantly different under TCS and ABC as the overhead burden increases from 6% to 40% of cost. The difference in product cost between the two MAS alternatives was only 4.1% in the former and 26.1% in the latter.

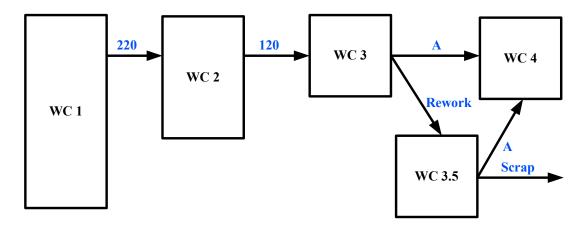
ABC has been purported to be an overall better manufacturing overhead allocation technique, but many management accounting researchers believe that this is largely contingent upon the percentage of MOH in total production costs and the percentage of that which can be allocated by specific activities or cost drivers. Per Vokurka & Lummus, companies above a certain ratio of overhead to total cost may benefit from adopting ABC; however, it may not be wise for a company with a low overhead burden or a single product line to adopt ABC because of the cost of implementation. The higher the percentage of MOH not allocated by assigned activities, the more the allocation will reflect what could have been calculated through an existing TCS. As a general guideline, the authors suggest that at least 70-75% of total overheads should be assigned by specific activities if ABC is to provide real value in decision making over TCS.

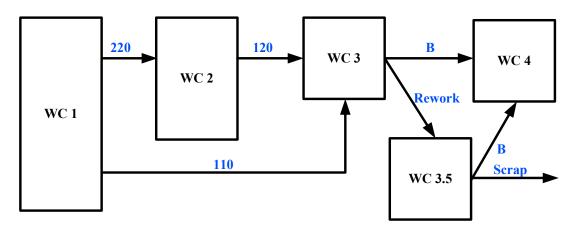

The Vokurka & Lummus study suggests that MOH begins to drive significantly different product costing under TCS and ABC at levels greater than 15%. Using a similar methodology, total MOH burden will be set at three levels – low (roughly 10%), medium (roughly 20%), and high (roughly 40%). As in the aforementioned study, any statistically significant trend towards greater cost distortions will be assumed to continue as MOH percentage increases.

Product mix complexity (MIX) is defined as the breadth of different products – with varying levels of width in the bill of materials (BOM) for each product – produced at one factory, i.e. narrow, medium, or wide. Product mix complexity has been generally acknowledged as one of the primary drivers of manufacturing cost and a primary cause of cost distortions (Kaplan 1983, Cooper 1988a). Product mix complexity will be examined via three different products under differing levels of demand variability. The three products examined are (A) a high volume product with a narrow BOM structure, (B) a mixed volume product with a mixed BOM structure, and (C) a low volume product with a wide BOM structure.

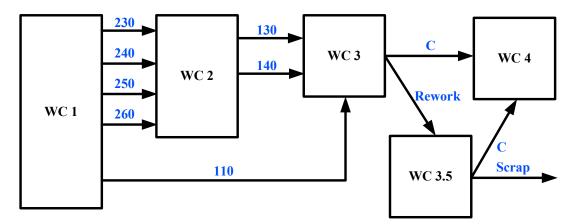
It is not uncommon in today's competitive environment for a firm's product line to contain a mix of both high and low volume products produced within a single facility. In most cases, the high volume products tend to have a steady demand, utilize cheaper standardized parts, require little marginal overhead support, and traditionally have had lower profit margins reported under TCS. Alternatively, low volume products tend to have higher demand variation, utilize more expensive and specialized parts, require a great deal of overhead support, and traditionally have had higher profit margins under TCS (Bakke and Hellberg 1991). The three products examined in this study are designed to reflect these characteristics in both their demand variability and BOM structures. Figure 3.4 below summarizes the characteristics of the products used in this study:

Figure 3.4: Product Characteristics						
	Α	В	С			
Volume	High	Medium	Low			
Demand variation	Low	Medium	High			
Overhead usage	Low	Medium	High			
Main type of parts used	Standard	Mixed	Non-Standard			
Profit margin under TCS	Low	Medium	High			


Based on the literature review in Chapter 2, the BOM levels in this study are set two levels. This treatment is consistent with the Lea and Fredendall (2002) study. The mix of differing levels of BOM structure is designed to examine the frequent claims in the management accounting literature that high-volume, simple products often subsidize low-volume, complex products under TCS. As discussed previously in the literature review in Chapter 2, traditionally, high-volume products typically are allocated a greater share of manufacturing overhead than what they marginally drive. This is due mainly to the use of volume measures such as direct labor hours or machine hours. Conversely, low-volume products often bear a share of manufacturing overhead burden considerably less than what they marginally contribute (Johnson 1991 & 1992, Chalos 1992). Figure 3.5 below shows the BOM structures of the product produced in this study:


For the purposes of this study, we assume that the market is nearly perfectly competitive, i.e. there are many producers and sellers and total industry capacity is roughly equal to total demand. In this scenario, prices are market driven and any individual firm cannot affect the overall market price. In economic terms, the firm is a 'price taker'. The selling price in this study is set at \$100 for product A, \$160 for product B, and \$360 for product C. However, at a micro level the individual firm operates in a constrained environment where it has insufficient production capacity to meet its individual market demand. Demand not satisfied by the individual firm is immediately lost to other firms in the market. In this environment variations in product cost caused by different MAS alternatives my result in different product mix decisions that in turn lead to different manufacturing performances (Bakke and Hellberg 1991).

The plant routings for the three products are can be seen in figure 3.6 below:


Figure 3.6: Product Routings Product A

Performance Measures

The impact of MAS alternatives on manufacturing performance is evaluated using both internal and external criteria. The internal system performance measurement is the average throughput time and capacity utilization rate. The primary external system performance measure is net operating income.

Demand Fulfillment Rate is the primary customer service measure used in this study. It is defined as the percentage of demand for the three individual products that is accepted for production. It has been used in similar simulation studies (Lea & Min 2003, Lea & Fredendall 2002). This represents one of two non-financial measures for manufacturing performance and the primary market measure used in this study.

Cycle-Time is the primary measure of success for a time-based competitor (Koufteros 1998). In the case of a time-based competitor, the resource usage to be minimized is time itself – throughput time in manufacturing terms. Throughput time is the ultimate measure of performance for the time-based competitor, and that is determined by how well an organization is able to move materials to, through, and off the shop floor into finished goods inventory and how well that organization is able to minimize finished goods (Fry et al. 1993). Time-based manufacturing is an externally focused production system that emphasizes quick response to changing customer needs. Its primary purpose is to reduce end-to-end time in manufacturing (Stalk & Hout 1990, Blackburn 1991, Koufteros 1998).

Net operating income (NOI) is utilized often in the accounting literature to measure performance (Bakke & Hellberg 1991, Low 1992, Dugdale & Jones 1996, Lea & Fredendall 2002, Lea & Min 2003). Regardless of industry type or manufacturing

environment, NOI is the bottom line for most organizations and certainly for publiclyheld companies. For the purposes of this study, regardless of MAS alternative, NOI is defined as revenues or sales from operations for the accounting period less all operating expenses, including CGS and SG&A. As this study will simulate a make-to-order shop, i.e. with no stocking on finished goods inventory, there is no concern for short-term timing differences between the various MAS alternatives under examination.

Chapter Four

Simulation Design

This study will utilize a modified version of ARENA's existing "Electronic Assembly and Test System with Part Transfers" as a baseline model. The final model used for data generation is shown in figure 4.1 below. This system represents the final operations of the production of different sealed electronic units. The arriving parts are cast metal cases that have already been machined to accept the electronic parts. In the prep area, the cases are machined to ensure a good seal, after which they are deburred, cleaned, and transferred to the sealer. At the sealer operation the electronic components are inserted, the case is assembled and sealed, and the sealed unit is then sent to bet quality control tested. At quality control testing the finished part either passes directly to finished goods to be shipped or is rejected and rerouted to the rework station. After rework, the part is again tested to ensure quality and is either passed, routed to finished goods inventory, and shipped or rejected for a second time and scraped.

Figure 4.1: Simulation Model

The decision logic sub model in ARENA will utilize the following maximization formulation, which includes all constraints for the resources and market demand, in order to determine optimal product mix for the master production schedule:

$$\begin{split} &\text{Maximize } Z = \sum_{j=1}^{n} c_j^{1, k} x_j \\ &Z = \sum_{j=1}^{n} a_{ij} x_j \le b_i \quad i = 1, 2, 3, ..., m \qquad (\text{Resource/ Capacity Constraint}) \\ &x_j \le d_j \qquad \text{For every } j, j = 1, 2, 3, ..., n \quad (\text{Market Demand Constraint}) \\ &x_j \ge 0 \end{split}$$

Where:

 x_j - is the number of product j produced

b_i - is the maximum amount of resource i available

d_j - is the market demand for product j

a_{ij} is the amount of resource i required to produce product j

 $c_{j}{}^{l,\,k}$. is the contribution margin of product j, with complexity k, under MAS l

With m + n constraints for this model

Model Assumptions

Based on other simulation studies discussed in Chapter 2, and specifically on the

Krawjewski and others (1987) study, the following assumptions are necessary:

- 1. No preemption of jobs once work has begun
- 2. No alternative routings
- 3. Zero setup times
- 4. Jobs are not split in the shop. All jobs are moved to the next work center or buffer area when the current work center operation is complete.
- 5. No backorders. Demand that cannot be filled is lost to the perfectly competitive market.
- 6. The first work center is never starved for work because raw material supply is not constrained.

Technical Details of Simulation Model

Most simulation models can be classified as either terminating or steady state. This is primarily a methodological issue of intent or goal of the study rather than and issue of internal model logic or construction. Kelton and others (2002) define these two classifications of simulation models according to its fitness for purpose. A terminating simulation is one in which the model dictates specific starting and stopping conditions as a natural reflection of how the target system actually operates.

For the purposes of this study, on the other hand, steady-state determination is used for analyzing the results. A steady-state simulation is one in which the quantities to be estimated are defined in the long-run, i.e. over a theoretically infinite time frame. People often assume that a long-run, steady-state simulation is the thing to do. This largely depends on whether the starting and stopping conditions are part of the essence of the research model, in which case a terminating analysis is probably more appropriate.

In principle, the initial conditions of the simulation are not of interest to this research, but even a steady-state simulation has to stop at some point. Each simulation run is in fact truncated, i.e. the simulation run does end. N.B., there is no 'natural' event that occurs within the simulation model to signal the end of one run and the beginning of another. Rather each simulation run has been programmed to end after 3 years. Buffer size between stations is unbounded, i.e. there is no blocking or balking within the system that may cause bias in certain performance measures.

Steady-state determination addresses one weakness, from an analytical perspective. This is the fact that each simulation run begins in the 'empty' or 'idle' state and this may cause statistical bias especially during the transient priming process. From

an analytical perspective, it is preferable to initiate the collection of statistical data only after the transition from the priming process to a steady state has been accomplished. According to Pritsker (1986), unless the startup behavior is a focus of the research, the analysis of data under a steady state determination leads to an improved mean estimate for performance measures.

According to Kelton and others (2002), there are several ways to achieve a steady-state determination. One cumbersome method would be to place entities in the system at time 0 and start the model. Another, maybe unrealistic, method would be to run the model for sol long that any bias at the beginning is overwhelmed by the amount of later data. However, a more commonly used procedure for steady state determination of a stochastic process is observing the behavior of the system and only begin statistical accumulation of data after a certain warm-up period. Work center queue lengths are often used as an indicator of steady-state operation, because queue lengths will continue to increase or decrease before reaching a steady state. Several pilot runs may be executed to establish the steady state for each experimental combination. Fortunately, ARENA has a built-in option for steady-state analysis using a specified warm-up period. Every replication of the model starts as it did before – independent and identical, all statistical accumulators are cleared, and the performance metrics only reflect what happened after the warm-up period ended.

Replications and Variance Reduction

One of the key advantages of simulation modeling is the ease with which experimental conditions may be repeated or reproduced. Replication of the simulation model run is

used to capture the variance of dependent variable means. The number of replications can be estimated via a formula provided by Pritsker (1986) based on a 90% confidence interval for the variance of sample means.

$$I = [(t_{\alpha/2, I-1} S_x)/g]$$

Where:

I - number of independent replications $t_{\alpha/2, I-1} - t$ value with I-1 degrees of freedom S_x - sample standard deviation of the dependent variable g - half-width confidence interval for the sample mean The g can be specified in relative terms of σ_x , that is, let $g = v\sigma_x$ for any v>0. In this case, I can be computed with knowledge of σ_x (Pritsker 1986: 754). A 90% confidence interval is desired such that μ_x is within ($\overline{X}_I - 0.8\sigma_X$, $\overline{X}_I + 0.8\sigma_X$). Thus, the above equation requires that at least 6 replications be performed, when in fact this study

performs 60 replications.

Verification and Validation

Simulation remains a relatively new field for researchers, and unfortunately standards and consensus amongst researchers on the question of verification and validation (V&V) of simulation models remains a fundamental, albeit emergent aspect. In the words of Elmaghraby (1968), "It is well to remember the dictum that nobody solves the problem. Rather, everybody solves the model that she [or she] has constructed of the problem".

According to Law and Kelton (2000: 265,275), one must always keep in mind with any simulation study that the simulation model itself can only be an approximation to an actual system, no matter how much effort is spent on model building. In fact, Increasing the validity of a model beyond a certain level might be quite expensive, since extensive data collection may be required, but might not lead to significantly better insight or decisions... There are several techniques for increasing a simulation model's validity and credibility, which include building the model based on existing theory, relevant results from similar simulation studies, and the experience and intuition of the simulation modeler.

Regarding the experience and intuition of the modeler, as Law and Kelton point

out, the United States Department of Defense was an early adopter and innovator of

simulation techniques. This included strategic analyses of the complex interactions of

men, technologies, and tactics in future battles against enemies with technologies and

tactics yet to be developed. It is therefore often necessary to build hypotheses based on

the researchers experience or intuition, to be substantiated later in a simulation study.

The whole process of simulation modeling research has elements of art as well as

science, as articulated by the title of one of the first published text books on simulation

The Art of Simulation (Tocher 1963). According to Balci (1989),

Simulation modeling is an art. Give a set of objectives, if ten economists are asked to build a simulation model of the U.S. economy, each one will come up with a model which will produce a different set of results. The differences in the results are considered normal and as expected under the paradigm of the art of modeling... Modeling is an artful balancing of opposites. On the one hand, a model should not exclude the essential elements of the system, and on the other hand, it should not include unnecessary details. Missing an essential element may invalidate model representation. Inclusion of unnecessary details would only make the model unnecessarily complex and difficult to analyze. A model is an abstraction of the reality and it is built for a specific purpose. The level of representativeness of a model must be judged with respect to that purpose.

While there are no perfect solutions to V&V, there is increasing agreement on the

broader terminology. V&V in the operations research literature has come to be defined

by one of the classic simulation textbooks by Law and Kelton (2000:299) now in its third

edition since 1983: "Verification is determining that a simulation computer program

performs as intended, i.e. debugging the computer program... Validation is concerned

with determining whether the conceptual simulation model (as opposed to the computer

program) is an accurate representation of the system under study." Validation determines

whether the conceptual simulation model, as opposed to the computer program, is an

accurate representation of the system under study. Model formulation is the process by

which a conceptual model is envisioned to represent the system under study (Balci 1989).

The conceptual model is the model which is formulated in the mind of the modeler

(Nance 1981). In a similar vein, Sargent (1991:38) states that:

The conceptual model is the mathematical/logical/verbal representation (mimic) of the problem entity developed for a particular study, and the computerized model is the conceptual model implemented on a computer. The conceptual model is developed through analysis and modeling phase, the computerized model is developed through a computer programming and implementation phase and inferences about the problem entity are obtained by conducting computer experiments on the computerized model in the experimentation phases.

Kelton and others (2002: 42-43) point out that while no simulation study will

follow a cut-and-dried formula, there are few key aspects that need to be addressed:

- *Understand the system.* Whether it exists or not, the simulation analyst must have a down-to-earth feel for what is going on.
- *Be clear about your goals.* Understand what can be learned from the study and expect no more.
- *Formulate the model representation*. What level of detail is appropriate to the goals of the study.
- *Verify the model.* A faithful representation of the conceptual model.
- *Validate the model.* While statistical tests can be carried out here, a good dose of common sense is also valuable.
- Document what you have done.

Kleijnen (1995) surveys the literature from several fields using simulation

methodologies in research in order to document various approaches to V&V. There are

several techniques commonly used in verification of simulation models, and - while

individually none is perfect – the author points out that general good programming

practice can go a long way in verifying the computer model performs as intended. Borrowing largely from software engineering research, the author suggests: (1) modular programming, (2) checking intermediate simulation outputs through tracing and statistical testing, (3) comparing final simulation results with analytical results, (4) animation.

Assessment of accuracy (i.e. verification and validation) must be done right after completing each phase of a simulation study (Balci 1989). One of the powers of ARENA is that it has the built-in diagnostic capability for verification that can be applied at each stage of the model development. Through this capability, this study applies several of the verification techniques described above to ensure the simulation program performs as intended. Modular programming is used to model this research, utilizing an existing ARENA model as the baseline for this study. In addition, ARENA has the built-in diagnostic capability to self-check intermediate simulation outputs ensuring that all modules are performing as intended.

According to Kelton and others (2002), one easy verification method using ARENA is to allow only a single entity to enter the system and follow that entity to be sure that the model logic and data are correct. This is easily accomplished using the 'step' feature found as a 'run' option on the tool bar. This allows the simulation analyst to advance step-by-step through the simulation modules. The authors also suggest what they term 'performance estimation'. Borrowing the logic of the engineering slide rule, which in an era before calculators and computers represented a relatively quick way for the engineer to check the reasonability of estimates, performance estimation essentially entails logically predicting what the model will do and comparing this to how one entity advances through the system.

100

Multifaceted and multidisciplinary knowledge and experience are required for a successful simulation study (Balci 1989). Kleijnen makes special note of the power of animation in debugging the program. Face validation is useful as a preliminary approach to validation (Baci 1989). The simulation analyst is most familiar with the corresponding conceptual model, which means they can often easily detect programming errors through dynamic displays. Because ARENA has a very powerful and easy to use animation capability, animation is use to debug the simulation module by module and throughout the simulation assuring face validation. Intermediate simulation outputs are also checked through computer tracing, manual calculation, and statistical testing, module by module, to ensure that orders are created exactly as planned, and that the flow of orders through the shop is correct. When this is done, actual utilization rates are equal to the calculated utilization rates.

Validation of a simulation model posses a unique problem for many researcher. Since a model is an abstraction of reality, we cannot talk about absolute accuracy (Balci 1989). Validation can never be assumed to result in a perfect model, since the perfect model would be the real system itself and, by definition, any model is a simplification of reality (Kleijnen 1995). Kelton and others (2002:119) emphasize that this may be nearly impossible even in instances where a real system exists for comparison.

Although verification can be very difficult, complete validation (the next activity) can sometimes be almost impossible. That's because validation implies that the simulation is behaving just like the real-world system, which may not even exist. And even if the system does exist, you have to have output performance data from it, as well as convince yourself and other nonbelievers that your model can really capture and predict the events of the real system.

The clear advantages of using a simulation model are that the normal transience present in a real manufacturing environment can be eliminated along with exogenous events and that the same data collection and analysis procedures can be used for each replication. Holding all exogenous inputs constant, several replications of a stochastic model are made to determine the amount of stochastic variability in the model. The unexplained variance between these replications would provide a measure of internal validity (Hermann 1967, Balci 1989). Therefore the internal validity of the simulation model can be assured without further testing.

Hypothesis and construct validation is achieved through careful literature review and analysis to ensure that the treatment effect being measured is caused by experimental factors. Kleijnen (1991) reminds the simulation analyst that the model need only be 'good enough' as determined by the goals of the model. "For example," the author states, "some applications need only relative, not absolute, simulation responses corresponding to different scenarios." Again, based on the goals of this research to directly compare different MAS treatments in the same manufacturing environment, a relatively simple simulation model will be adequate for obtaining meaningful data.

According to Balci (1989) sometimes due to the lack of data, we may not be albe to characterize and input variable or parameter. In this case, a heuristic procedure such as one based on a triangular or beta probability distribution (Law & Kelton 2000) may be used. Kleijnen (1991) agrees, as the system concept implies that the analyst must subjectively decided on the boundary of that system and the attributes to be quantified in the model. He points out that sometimes it is difficult, impossible, or simply undesirable to obtain relevant data, such as in simulation studies of nuclear war, quite fortunately. In such cases, the analyst may show logically that that exact values of input data are not

102

critical. Moreover, in some cases the marginal value of available 'real world' data is *de minimus* in terms of the goals of the study.

Borrowing from all fields of scientific research, Karplus (1983) classifies mathematical models (including simulation models) as ranging from black box (noncausal) model in the social sciences through grey box models in ecology to white box (causal) models in physical sciences. Balci (1989) classifies simulations models broadly as either self-driven or trace-driven. A self-driven (distribution-driven or probabilistic) simulation model is the one which is driven by input values obtained via sampling from probability distributions using random numbers. A trace-driven (or retrospective) simulation model, on the other hand, is driven by input sequences derived from trace data obtained through measurement of the real system.

Again, the uniqueness of this study is that it takes a causal (normative) approach in proposing and testing the impact of a new time-based MAS alternative and then tests the hypothesized relationships with a self-driven simulation model. The author points out that a typical aspect of many white box simulation studies is that the conceptual models are based on common sense and understand of real systems. Two additional techniques proposed by Kleijnen (1991) in validating causal simulation models are animation for face validity (discussed earlier also as a model verification technique) and sensitivity analysis for construct validity.

Models and sub models with unobservable inputs can be subjected to sensitivity analysis in order to determine whether the model's behavior agrees with the judgment and knowledge of the simulation analyst (Kleijnen 1991). Unexpected effects may reveal invalidity (Balci 1989). Sensitivity analysis is a systematic investigation of the reaction

103

of model outputs to drastic changes in model inputs and model structure. An often ignore aspect of simulation studies, the magnitudes of the sensitivity estimates show which inputs are important (Law & Kelton 2000:144). The input/output behavior of the model may be approximated through the meta model:

$$y_i = \beta_0 + \sum_{k=i}^{K} \beta_k \, x_{ik} + \sum_{k=1}^{K-1} \sum_{k'=k+1}^{K} \beta_{kk'} \, x_{ik} \, x_{ik'+} e_i$$

Where:

 $\begin{array}{lll} y_i & - \mbox{ denotes the simulation response in replication i} \\ i & - \mbox{ the number of simulation replications, } i = 1, \hdots, n \\ k & - \mbox{ simulation input, } k = 1, \hdots, K. \mbox{ of the K simulation} \\ x_{ik} & - \mbox{ the value of simulation input k in combination with i} \\ \beta_k & - \mbox{ the main or first order effect of input k} \\ \beta_{kk'} & - \mbox{ the interaction between inputs k and k'} \\ e_i & - \mbox{ the approximation error in run i} \\ So this simulation model is valid within a certain area of its inputs only; the area \\ \end{array}$

defined as a K-dimensional hypercube formed by the K input ranges. Within that area the simulation model's input/output behavior may vary. The first order meta model presented above is a good approximation of the input/output behavior.

Statistical conclusion validity determines whether the sample size is large enough to detect a treatment effect, and whether a desired alpha level is obtained (Cook & Campbell 1979). As discussed earlier, if the simulation model is carefully programmed and controlled, all treatments and replications are implemented in the same way and independently, the sample size is computed to be large enough to detect treatment effect, then the statistical conclusion validity of the simulation model can be obtained. As concluded by Kleijnen (1991), regardless of developments vis-à-vis V&V techniques, simulation will remains both an art as well as a science.

Chapter Five

Results

This chapter presents the results and statistical analyses of the data collected in the ARENA simulation experiment described previously in Chapter 3. The initial data were downloaded into Excel and then uploaded into SPSS for statistical analysis. After screening the data for missing data and outliers, Multivariate Analysis of Variance (MANOVA) was performed to determine whether or not a factor and/or its interaction is statistically significant in determining overall performance. The results were further analyzed using a more detailed Univariate Analysis of Variance (ANOVA) post-hoc tests. The remainder of this chapter is organized as follows: the first section presents the raw data collection and descriptive statistics, the second section presents the assumption testing for MANOVA, the third section presents the results of MANOVA and individual ANOVOA, the fourth section presents a discussion of the hypothesis testing, and the fifth section discusses the results by experimental factor and its implications for management accounting research and practice.

Raw Data and Descriptive Statistics

As demonstrated in Appendix B, the product costs were first determined in the simulation model by using different management accounting alternatives: traditional costing

systems, activities-based costing, and throughput accounting. The product cost data were then input into the integer linear programming (ILP) model to determine the optimal product mix, which was then input into the simulation model for use in the product mix decision. Average performance data were collected for 60 replications of 30 days each for 27 experimental condition groups, representing three different management accounting systems (traditional costing systems, activities-based costing, and time-based accounting), three levels of manufacturing overhead (low, medium, high), and three levels of product mix complexity (low, medium, high) for a total of 1620 data points. Figure 5.1 below show the number of observations by experimental factor.

		Ν
MAS	1	540
	2	540
	3	540
MOH	1	540
	2	540
	3	540
MIX	1	540
	2	540
	3	540

Figure 5.1: Total Number Between-Subjects Factors

Data Screening and Assumption Tests

Prior to the actual multivariate statistical analysis, the data were screened and its quality assessed. According to Mertler and Vannatta (2002: 25), there are four main purposes for screening data prior to conducting a multivariate analysis. The first of these deals with the accuracy of the data collected, the second deals with missing data and the pattern of missing data, the third deals with assessing the effect of extreme values, i.e. outliers, and

finally the fit between the data and the assumptions of the specific procedure must be assessed. Because the data were generated through an ARENA simulation model and manually entered into an Excel spreadsheet for sorting and financial calculations uploading into SPSS, the possibility of researcher error in transferring the data exists. The raw data uploaded into SPSS can be seen in Appendix C. Figure 5.2 below shows that there were in fact no missing data at the time of the initial upload into SPSS. For each dependent variable there are exactly 1620 observations.

	Cases						
	Va	Valid Missing			То	tal	
	N Percent		Ν	Percent	Ν	Percent	
DFR_2	1620	100.0%	0	.0%	1620	100.0%	
CT_2	1620	100.0%	0	.0%	1620	100.0%	
NOI_2	1620	100.0%	0	.0%	1620	100.0%	

Figure 5.2: Case Processing Summary

A visual review of the data prior to uploading into SPSS revealed no missing data, and any unrealistic values were checked against the original ARENA data reports and corrected as necessary. With regards to the accounting calculation for net operating income (NOI), there were occasional offsetting extreme values between replications (accounting periods) due simply to timing differences. In these instances, which numbered no more than three instances per experimental condition group, the extreme values were replaced with the average net value of the two points.

Multivariate outliers consist of unusual combinations of scores on two or more variables and are often subtle and more difficult to detect than univariate outliers. Therefore, the univariate outliers were identified for each group using box plots and stem and leaf plots. Univariate outliers are defined as cases with unusual or extreme values one or both ends of the a sample distribution. There are three fundamental causes for outliers: 1) data entry errors were made by the research, 2) the subject is not a member of the population for which the sample is intended, or 3) the subject is simply different from the remainder of the sample (Tabachnick & Fidell 1996).

It is important to note that both ANOVA and MANOVA are robust to moderate violations of normality, provided the violation is created by skewness and not by outliers (Tabachnick & Fidell 1996). The real danger of outliers is that they can significantly distort the results of statistical tests, due to the fact that many statistical procedures rely on squared deviations from the mean (Aron & Aron 1997). Therefore, an observation falling far from the rest of the distribution mean could potentially exert a great deal of influence on the results of the statistical test. A single outlier, if extreme enough, according to Mertler and Vannatta (2002: 27), could influence a false significance or insignificance as well as seriously affect the values of correlation coefficients.

Appendix B presents the results of the univariate outlier screening for each dependent variable within each group. Univariate outliers can be detected by means of graphical methods (Tabachnick & Fidell 1996). Since the number of outlying cases for each variable in each group was fairly small, i.e. less than 5 in all groups, and the sample size is relatively large, i.e. 60 replications, the outliers can either be deleted or altered to a value that is within the extreme value of the tail of the accepted distribution (Mertler & Vannatta 2002: 40). In order to ensure the equality of sample size between experimental condition groups, and robustness to minor violations of normality and homoscedasticity, the latter option was chosen.

There are three general assumptions of multivariate statistical testing. The first of these assumptions is that of a normal sample distribution. Prior to examining

108

multivariate normality, one should first assess univariate normality (Mertler & Vannatta 2002: 30). Multivariate normality is a difficult concept to describe, much less to test. Suffice to say, normality on each of the variable separately is a necessary condition for multivariate normality to hold (Stevens 1996: 245). According to Mertler & Vannatta (2002: 31) characteristics of multivariate normality include:

- 1. Each of the individual variables is normally distributed;
- 2. Any linear combination of the variables is normally distributed; and
- 3. All subsets of the set of variables, i.e. every pairwise combination, have a multivariate normal distribution (bivariate normality).

Moreover, because data were collected for 60 replications for each of the 27 experimental groups (3 experiment factors with 3 levels each), there are a total of 1,620 data points utilized for this analysis. With equal or unequal samples sizes and only a few DVs, a sample size of 20 in the smallest cell should be sufficient to ensure robustness to violations of univariate and multivariate normality (Mertler & Vannatta 2002: 124) Therefore, given equal sample sizes of 60 in each group, normality may be assumed under the central limit theorem.

Univariate normality refers to the extent to which all observations in the sample for a given variable in a given group are distributed normally. Among the non-graphical test that can be used are the chi-square goodness of fit and the Kolmogorov-Smirnov test. The chi-square test suffers from the defect of depending on the number of intervals used for the grouping. Therefore, the Kolmogorov-Smirnov statistic with Lilliefos significance level was utilized to test univariate normality for each dependent variable in each group. The Kolmogorov-Smirnov statistic tests the null hypothesis the population is normally distributed and an associated significance level serves as an indication that the variable is not normally distributed (Mertler & Vannatta 2002: 30). Appendix C presents the Kolmogorov-Smirnov test statistics for each variable in each experimental condition group, with insignificance in all cases indicating normality of distributions.

The second assumption, linearity, presupposes that there is a straight line relationship between any two variables. It is a critical assumption in multivariate analyses due to the fact that many of the techniques are based on linear combinations of the variables. The Pearson correlation coefficient (r) is the most commonly used bivariate correlation technique, measuring the association between two quantitative variables. Figure 5.3 below shows significance of this measure for all bivariate combinations of the dependent variables, indicating a significant linear relationship.

		DFR 2	CT 2	NOI 2
DFR_2	Pearson Correlation	1	578**	406**
	Sig. (2-tailed)		.000	.000
	Ν	1620	1620	1620
CT_2	Pearson Correlation	578**	1	.590**
	Sig. (2-tailed)	.000		.000
	Ν	1620	1620	1620
NOI_2	Pearson Correlation	406**	.590**	1
	Sig. (2-tailed)	.000	.000	
	Ν	1620	1620	1620

**. Correlation is significant at the 0.01 level (2-tailed).

The final assumption of homoscedasticity is that the variability in scores for one continuous variable will be roughly the same across all values of another continuous variable. This concept is analogous to the univariate assumption of homogeneity of variance. Homoscedasticity is closely related to the assumption of normality, because if the assumption of multivariate normality is met, two variables must be homoscedastic (Tabachnic & Fidell 1996). Although subjective in nature, homoscedasticity is sometimes best assessed through the examination of bivariate scatterplots.

Figure 5.4 below presents the bivariate scatterplots for the three dependent variables. The output four the three dependent variables indicates a non-elliptical shapes between DFR_2 and the other two variables CT_2 and NOI_2. The bivariate scatterplots between CT_2 and NOI_2, on the other hand, show a somewhat elliptical pattern. Sine the use of bivariate scatterplots is fairly subjective in examining linearity (Mertler & Vannatta 2002: 55), we will not place reliance on this test. However, reliance can be placed on the Pearson's correlation coefficients above, indicating that a linear relationship does indeed exist.

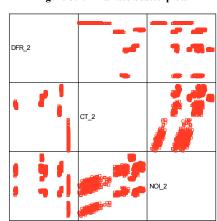


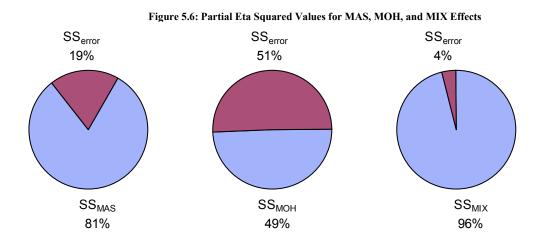
Figure 5.4: Bivariate Scatterplots

In multivariate cases, homoscedasticity may be assessed statistically using Box's M test for equality of variance-covariance matrices. This test evaluates the hypothesis that covariance matrices are equal, and if the observed significance level for the Box's M test is small, i.e. p<.05, one should reject H₀. Highly sensitive to violations of normality, Box's Test should be interpreted with caution (Mertler & Vannatta 2002: 125).

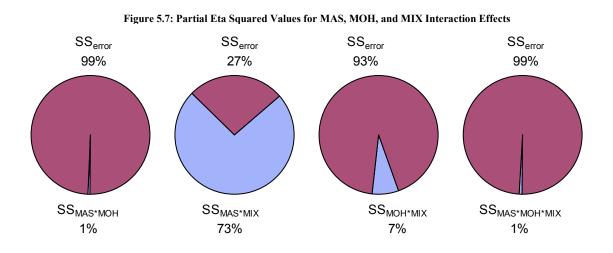
It is important to note that violations of homoscedasticity, similar to a violation of homogeneity in univariate analysis, will not prove fatal to the analysis so long as the linear relationship between the variables can still be established (Tabachnick & Fidell 1996, Kennedy & Bush 1985). Wilk's Lamda is the most commonly reported MANOVA statistic; however, Pillai's Trace statistic is most often used in instances where homogeneity of variance-covariance is in question (Mertler & Vannatta 2002: 125).
Box's test in figure 5.5 below is significant, so Pillai's Trace statistic will be used in evaluating the multivariate tests.

Figure 5.5: Box's Test of Equality of Covariance Matrices BOX'S M 5136.282

Box's M	5136.282	
F	32.294	
df1	156	
df2	1173890	
Sig.	.000	


Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

a. Design: Intercept+MAS+MOH+MIX+MAS * MOH+MAS * MIX+MOH * MIX+MAS * MOH * MIX


MANOVA Results

The collected experimental data were first analyzed using a factorial MANOVA procedure. This analysis is meant to determine if the combination of dependent variables – the performance measures discussed in Chapter 3: demand fulfillment rate (DFR_2), average cycle time (CT_2), and net operating income (NOI_2) – is significantly effected by the independent variables. The experimental factors, discussed in Chapter 3, include management accounting system (MAS), product mix complexity (MIX), and manufacturing overhead levels (MOH). As shown in figure 24 below, the treatment effects are all significant as are all the bivariate interactions. Moreover, the effect sizes are generally very high. Measures of effect size in MANOVA and ANOVA are measures of the degree of association between the effect, either the main effect or any interactions, and the dependent variable(s). It is the proportion of variance in the dependent variable that is attributable to each effect. There are several commonly used measures for effect size, the most common being Eta Squared ($\dot{\eta}^2$) and Partial Eta Squared ($\dot{\eta}_p^2$). One of the problems with $\dot{\eta}^2$ is that the values of each effect are dependent upon the number of other effects an the magnitude of those effects. Partial Eta Squared presents an alternative computation of Eta Squared for each individual effect (Tabachnick & Fidell 1989). Partial Eta Squared is defined as: $\dot{\eta}_p^2 = SS_{effect} / (SS_{effect} + SS_{error})$, and is a standard output in SPSS.

It should be noted that sums are $\dot{\eta}_p^2$ values are not additive, i.e. they do not sum the amount of dependent variable variance accounted for by the independent variables, and therefore it is possible for the sum of $\dot{\eta}_p^2$ values to be greater than zero. The $\dot{\eta}_p^2$ values presented below in figure 5.6 clearly show high effect size for all three experimental factors (main effects), especially for management accounting system and product mix complexity, which explains 81% and 96% of the variability in the dependent variable combination respectively. Manufacturing overhead level was associated with 49% of the variability in the dependent variable combination. Although it is low when compared with the other two main effects, it still shows a high relationship.

The $\dot{\eta}_p^2$ values presented below in figure 5.7 clearly show high effect size for the two-way interaction of management accounting system and product mix complexity and a significant, albeit it rather low, effect size for manufacturing overhead level and product mix complexity. The amount of variance in the dependent variable combination explained by these interactions was 73% and 7% respectively. The two-way combination of management accounting system and manufacturing overhead level as well as the three-way interaction of management accounting system, manufacturing overhead level, and product mix complexity was insignificant with less than 1% in effect size.

MANOVA results in figure 5.8 below indicate that management accounting system (Pillai's Trace=1.62, F(6, 3184)=2268.712, p=.000, $\dot{\eta}_p^2$ =.810), manufacturing overhead level (Pillai's Trace=.984, F(6, 3184)=514.306, p=.000, $\dot{\eta}_p^2=.492$), and product mix complexity (Pillai's Trace=1.925, $F(6, 3184)=13603.070, p=.000, \dot{\eta}_p^2=.962$) significantly affect the combined DV of demand fulfillment rate, average cycle time, and net operating income. In addition, the bivariate combinations of management accounting system and manufacturing overhead levels (Pillai's Trace=0.019, F(12, 4779)=2.52, p=.000, $\dot{\eta}_p^2=.006$), management accounting system and product mix complexity (Pillai's Trace=2.20, F(12, 4779)=1095.489, p=.000, $\dot{\eta}_p^2=.733$), and manufacturing overhead level and product mix complexity (Pillai's Trace=0.220, *F*(12, 4779)=31.495, *p*=.000, $\dot{\eta}_p^2$ =.073) are all found to significantly affect the combined DV of demand fulfillment rate, average cycle time, and net operating income. However, multivariate effect sizes are small for the combinations of management accounting system and manufacturing overhead level as well as the combination of manufacturing overhead level and product mix complexity. The three-way interaction of management accounting system, manufacturing overhead level, and product mix complexity were not found to have a significant affect on the combined DV of demand fulfillment rate, average cycle time, and net operating income.

			_			<u>c</u> i	Partial Eta
Effect		Value	F	Hypothesis df	Error df	Sig.	Squared
Intercept	Pillai's Trace	1.000	23118783.276 ^a	3.000	1591.000	.000	1.000
	Wilks' Lambda	.000	23118783.276 ^a	3.000	1591.000	.000	1.000
	Hotelling's Trace	43592.929	23118783.276 ^a	3.000	1591.000	.000	1.000
	Roy's Largest Root	43592.929	23118783.276 ^a	3.000	1591.000	.000	1.000
MAS	Pillai's Trace	1.621	2268.712	6.000	3184.000	.000	.810
	Wilks' Lambda	.001	16101.286 ^a	6.000	3182.000	.000	.968
	Hotelling's Trace	370.873	98281.457	6.000	3180.000	.000	.995
	Roy's Largest Root	369.217	195931.096 ^b	3.000	1592.000	.000	.997
MOH	Pillai's Trace	.984	514.306	6.000	3184.000	.000	.492
	Wilks' Lambda	.016	3703.096 ^a	6.000	3182.000	.000	.875
	Hotelling's Trace	62.719	16620.609	6.000	3180.000	.000	.969
	Roy's Largest Root	62.719	33283.011 ^b	3.000	1592.000	.000	.984
MIX	Pillai's Trace	1.925	13603.070	6.000	3184.000	.000	.962
	Wilks' Lambda	.000	83260.044 ^a	6.000	3182.000	.000	.994
	Hotelling's Trace	1872.499	496212.261	6.000	3180.000	.000	.999
	Roy's Largest Root	1860.086	987085.721 ^b	3.000	1592.000	.000	.999
MAS * MOH	Pillai's Trace	.019	2.552	12.000	4779.000	.002	.006
	Wilks' Lambda	.981	2.566	12.000	4209.682	.002	.006
	Hotelling's Trace	.019	2.579	12.000	4769.000	.002	.006
	Roy's Largest Root	.019	7.702 ^b	4.000	1593.000	.000	.019
MAS * MIX	Pillai's Trace	2.200	1095.489	12.000	4779.000	.000	.733
	Wilks' Lambda	.001	5231.569	12.000	4209.682	.000	.913
	Hotelling's Trace	213.949	28342.331	12.000	4769.000	.000	.986
	Roy's Largest Root	210.259	83735.577 ^b	4.000	1593.000	.000	.995
MOH * MIX	Pillai's Trace	.220	31.495	12.000	4779.000	.000	.073
	Wilks' Lambda	.780	34.513	12.000	4209.682	.000	.079
	Hotelling's Trace	.282	37.330	12.000	4769.000	.000	.086
	Roy's Largest Root	.282	112.208 ^b	4.000	1593.000	.000	.220
MAS * MOH * MIX	, ,	.020	1.343	24.000	4779.000	.122	.007
	Wilks' Lambda	.980	1.350	24.000	4614.985	.118	.007
	Hotelling's Trace	.021	1.358	24.000	4769.000	.114	.007
	Roy's Largest Root	.020	4.049 ^b	8.000	1593.000	.000	.020

Figure 5.8: Multivariate Tests

a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

c. Design: Intercept+MAS+MOH+MIX+MAS * MOH+MAS * MIX+MOH * MIX+MAS * MOH * MIX

Univariate ANOVA and Scheffé post hoc tests were conducted as follow-up tests. ANOVA results indicate that demand fulfillment rate differs significantly for management accounting system (F(2, 1593)=290159.67, p=.000, $\dot{\eta}_p^2=.997$), product mix complexity (F(2, 1593)=1471806.2, p=.000, $\dot{\eta}_p^2=.999$), and the two-way interaction of management accounting system and product mix complexity (F(2, 1593)=82837.12, p=.000, $\dot{\eta}_p^2=.995$). Average cycle-time differs significantly for management accounting system (F(2, 1593)=960.591, p=.000, $\dot{\eta}_p^2=.547$), product mix complexity (F(2, 1593)=82837.12, 1593)=20756.710, *p*=.000, $\dot{\eta}_p^2$ =.963), and the two-way interaction of management accounting system and product mix complexity (*F*(2, 1593)=591.132, *p*=.000, $\dot{\eta}_p^2$ =.597).

Net operating income differs significantly for management accounting system $(F(2, 1593)=1704.381, p=.000, \dot{\eta}_p^2=.682)$, manufacturing overhead level $(F(2, 1593)=31768.716, p=.000, \dot{\eta}_p^2=.976)$, and product mix complexity $(F(2, 1593)=20449.024, p=.000, \dot{\eta}_p^2=.963)$; the two-way interactions of management accounting system and manufacturing overhead level $(F(2, 1593)=5.061, p=.000, \dot{\eta}_p^2=.013)$, management accounting system and product mix complexity $(F(2, 1593)=679.384, p=.000, \dot{\eta}_p^2=.630)$, and manufacturing overhead level and product mix complexity $(F(2, 1593)=71.264, p=.000, \dot{\eta}_p^2=.152)$; and moderately in the three-way interaction of management accounting system, manufacturing overhead level, and product mix complexity $(F(2, 1593)=71.264, p=.000, \dot{\eta}_p^2=.152)$; and moderately in the three-way interaction of management accounting system, manufacturing overhead level, and product mix complexity $(F(2, 1593)=71.264, p=.000, \dot{\eta}_p^2=.152)$; and moderately in the three-way interaction of management accounting system, manufacturing overhead level, and product mix complexity $(F(2, 1593)=71.264, p=.000, \dot{\eta}_p^2=.011, \dot{\eta}_p^2=.012)$.

As expected, manufacturing overhead level had an amplification effect and only significantly affected the performance measure of net operating income. As shown in figure 5.9 below, post-hoc Scheffé tests show significant differences between the three levels of manufacturing overhead and net operating income. This effect presents some interesting implications for management accounting practice, which will be discussed in greater detail in the final section of this chapter. As well, the amplification effect of manufacturing overhead level can be seen on the charts of cumulative net operating income at the very end of this chapter.

_	Scheffe ^{a,b,c}							
			Subset					
	МОН	Ν	1	2	3			
	3	540	68.81071					
	2	540		92.52141				
	1	540			98.55130			
	Sig.		1.000	1.000	1.000			

Figure 5.9: Net Operating Income Post-Hoc Test

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square(Error) = 4.201.

a. Uses Harmonic Mean Sample Size = 540.000.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

C. Alpha = .05.

Manufacturing overhead level did not have a significant impact on demand fulfillment rate (F(2, 1593)=.038, p=.962, η_p^2 =.000) or average cycle-time (F(2, 1593)=.038, P=.038, P=.0 1593)=.014, p=.986, $\dot{\eta}_{p}^{2}$ =.000), nor do any of its interactions significantly affect demand fulfillment rate or average cycle-time. The two-way interactions of management accounting system and manufacturing overhead level have an insignificant impact on demand fulfillment rate (F(2, 1593)=.056, p=.994, η_p^2 =.000) and average cycle-time $(F(2, 1593)=.006, p=1.000, \dot{\eta}_p^2=.000)$. The interactions of manufacturing overhead level and product mix complexity also have an insignificant effect on demand fulfillment rate $(F(2, 1593)=.012, p=1.00, \dot{\eta}_p^2=.000)$ and average cycle-time (F(2, 1593)=.005, p=1.000, p=1.000) $\dot{\eta}_p^2$ =.000). Finally, the three-way interactions of management accounting system, manufacturing overhead level, and product mix complexity had an insignificant affect on demand fulfillment rate ($F(2, 1593)=.057, p=1.00, \dot{\eta}_p^2=.000$) and average cycle-time $(F(2, 1593)=.008, p=1.000, \dot{\eta}_p^2=.000)$. Figure 5.10 below presents the summary of the between-subjects effects for this model.

		Type III Sum					Partial Eta
Source	Dependent Variable	of Squares	df	Mean Square	F	Sig.	Squared
Corrected Model	DFR_2	62.838 ^a	26	2.417	148280.04	.000	1.000
	CT_2	45262856.302 ^b	26	1740879.089	1761.510	.000	.966
	NOI_2	465888.411 ^c	26	17918.785	4264.884	.000	.986
Intercept	DFR_2	1053.052	1	1053.052	64607878	.000	1.000
	CT_2	466080178.4	1	466080178.361	471603.69	.000	.997
	NOI_2	12157090.348	1	12157090.348	2893532.4	.000	.999
MAS	DFR_2	9.459	2	4.729	290159.66	.000	.997
	CT_2	1898679.810	2	949339.905	960.591	.000	.547
	NOI_2	14321.816	2	7160.908	1704.381	.000	.682
MOH	DFR_2	1.254E-06	2	6.272E-07	.038	.962	.000
	CT_2	27.157	2	13.578	.014	.986	.000
	NOI_2	266950.628	2	133475.314	31768.716	.000	.976
MIX	DFR_2	47.978	2	23.989	1471806.2	.000	.999
	CT_2	41027206.507	2	20513603.254	20756.710	.000	.963
	NOI_2	171831.926	2	85915.963	20449.024	.000	.963
MAS * MOH	DFR_2	3.661E-06	4	9.152E-07	.056	.994	.000
	CT_2	23.795	4	5.949	.006	1.000	.000
	NOI_2	85.047	4	21.262	5.061	.000	.013
MAS * MIX	DFR_2	5.401	4	1.350	82837.117	.000	.995
	CT_2	2336834.240	4	584208.560	591.132	.000	.597
	NOI_2	11417.652	4	2854.413	679.384	.000	.630
MOH * MIX	DFR_2	7.801E-07	4	1.950E-07	.012	1.000	.000
	CT_2	21.054	4	5.264	.005	1.000	.000
	NOI_2	1197.652	4	299.413	71.264	.000	.152
MAS * MOH * MIX	DFR 2	7.380E-06	8	9.225E-07	.057	1.000	.000
	CT_2	63.738	8	7.967	.008	1.000	.000
	NOI 2	83.690	8	10.461	2.490	.011	.012
Error	DFR_2	2.596E-02	1593	1.630E-05			
	CT 2	1574342.494	1593	988.288			
	NOI 2	6692.942	1593	4.201			
Total	DFR 2	1115.916	1620				
	CT_2	512917377.2	1620				
	NOI 2	12629671.701	1620				
Corrected Total	DFR 2	62.864	1619				
	CT_2	46837198.796	1619				
	NOI 2	472581.353	1619				

Figure 5.10: Test of Between Subjects Effects

a. R Squared = 1.000 (Adjusted R Squared = 1.000)

b. R Squared = .966 (Adjusted R Squared = .966)

c. R Squared = .986 (Adjusted R Squared = .986)

Hypothesis Testing

The specific research questions and corresponding statistical hypotheses were posited previously in Chapter 3. In this section, the results of the univariate testing above are further summarized in relation to these statistical hypotheses. These hypotheses along were as follows:

 H_01 : The use of different managerial accounting systems has no effect on average throughput-time, demand fill rate, and/or net operating income.

$MAS_a = 0$

As shown in figure 5.10 above, the main factor for the management accounting system was fond to significantly affect all three manufacturing performance measures. Therefore it is necessary to reject H_01 .

 H_02 : Manufacturing overhead level has no effect on average throughput-time, demand fill rate, and/or net operating.

$MOH_0 = 0$

As shown in figure 5.10 above, the main factor for the manufacturing overhead level was fond to significantly affect net operating income, but not the other two manufacturing performance measures. Therefore it is necessary to accept H_01 as it relates to demand fulfillment rate and average cycle time and to reject H_01 in regards to net operating income.

 H_03 : The use of different managerial accounting systems has no effect on average throughput-time, demand fill rate, and/or net operating income for a given level of manufacturing overhead.

$MAS_a * MOH_o = 0$

As shown in figure 5.10 above, the interaction for the management accounting systems and manufacturing overhead level was fond to significantly affect net operating income, but not the other two manufacturing performance measures. Therefore it is necessary to accept H_01 as it relates to demand fulfillment rate and average cycle time and to reject H_01 in regards to net operating income.

 H_04 : Product mix complexity has no effect on average throughput-time, demand fill rate, and/or net operating income.

$MIX_m = 0$

As shown in figure 5.10 above, the main factor for product mix complexity was fond to significantly affect all three manufacturing performance measures. Therefore it is

necessary to reject H_01 .

 H_05 : The use of different managerial accounting systems has no effect on average throughput-times, demand fill rates, and/or net operating income for a given level of product mix complexity.

$MAS_a * MIX_m = 0$

As shown in figure 5.10 above, the interaction for the management accounting systems

and product mix complexity was fond to significantly affect all three manufacturing

performance measures. Therefore it is necessary to reject H_01 .

 H_06 : Manufacturing overhead level has no effect on average throughput-time, demand fill rate, and/or net operating income for a given product mix complexity.

$MOH_0 * MIX_m = 0$

As shown in figure 5.10 above, the interaction for the manufacturing overhead level and product mix complexity was fond to significantly affect net operating income, but not the

other two manufacturing performance measures. Therefore it is necessary to accept H_01 as it relates to demand fulfillment rate and average cycle time and to reject H_01 in regards to net operating income.

 H_07 : The use of different managerial accounting systems has no effect on average throughput- time, demand fill rate, and/or net operating income for a given level of product mix complexity and a given manufacturing overhead level.

$MAS_a * MOH_o * MIX_m = 0$

As shown in figure 5.10 above, the interaction for the management accounting system, manufacturing overhead level, and product mix complexity was fond to significantly affect net operating income, but not the other two manufacturing performance measures. Therefore it is necessary to accept H_01 as it relates to demand fulfillment rate and average cycle time and to reject H_01 in regards to net operating income.

Practical Implications

Because the primary focus of this study is to examine the impact of different management accounting systems – traditional costing systems (TCS), activities-based costing (ABC), and time-based accounting (TBA) – on manufacturing performance in the context of a time-based competitive environment, it is necessary to take a more detailed look at this impact on each individual performance measure. The three performance measures were chosen because they represent both internal and external and financial and non-financial measures of performance. Figure 5.11 below presents a summary of the results in performance measures by management accounting system alternative.

Figure 5.11: Multiple Comparison	s by MAS
----------------------------------	----------

Schelle							
			Mean Difference			95% Confide	ence Interval
Dependent Variable	(I) MAS	(J) MAS	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
DFR_2	1	2	16799907*	.000245697	.000	16860104	16739710
		3	15545861*	.000245697	.000	15606058	15485664
	2	1	.16799907*	.000245697	.000	.16739710	.16860104
		3	.01254046*	.000245697	.000	.01193849	.01314244
	3	1	.15545861*	.000245697	.000	.15485664	.15606058
		2	01254046*	.000245697	.000	01314244	01193849
CT_2	1	2	-29.211410*	1.91319765	.000	-33.89883996	-24.52397938
		3	53.468745*	1.91319765	.000	48.78131487	58.15617545
	2	1	29.211410*	1.91319765	.000	24.52397938	33.89883996
		3	82.680155*	1.91319765	.000	77.99272454	87.36758512
	3	1	-53.468745*	1.91319765	.000	-58.15617545	-48.78131487
		2	-82.680155*	1.91319765	.000	-87.36758512	-77.99272454
NOI_2	1	2	-6.3592155*	.124743740	.000	-6.66484388	-6.05358703
		3	10501750	.124743740	.702	41064593	.20061092
	2	1	6.35921545*	.124743740	.000	6.05358703	6.66484388
		3	6.25419795*	.124743740	.000	5.94856952	6.55982637
	3	1	.10501750	.124743740	.702	20061092	.41064593
		2	-6.2541979*	.124743740	.000	-6.55982637	-5.94856952

Based on observed means.

Scheffe

 $^{*}\cdot$ The mean difference is significant at the .05 level.

Demand fulfillment rate represents an external (market) non-financial measure of manufacturing performance. It represents the percentage of demand that is ultimately fulfilled by the production system. As presented in figure 5.12 below, the highest performance in terms of this measure was activities-based costing (MAS_2) with a rate of 86.6% of demand filled and time-based accounting (MAS_3) with 85.4% of demand filled. The worst performance was traditional costing systems (MAS_1) with 69.8% of demand filled. Although the difference between ABC and TBA in terms of demand fulfillment rate was statistically significant, from a practical perspective, this difference may not justify the high cost of implementing an ABC system.

123

Scheffe ^{a,b,c}							
		Subset					
MAS	Ν	1	2	3			
1	540	.69842651					
3	540		.85388512				
2	540			.86642558			
Sig.		1.000	1.000	1.000			

Figure 5.12: Demand Fulfillment Rate by MAS

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares The error term is Mean Square(Error) = 1.630E-05.

- a. Uses Harmonic Mean Sample Size = 540.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- ^{c.} Alpha = .05.

As discussed at length in Chapters 1 and 2, the primary non-financial measure of success for a time-based manufacturer is cycle-time, or the total time from receipt of an order to the shipment of the product to the customer. Reducing cycle-time is the primary focus of time-based competition, and is therefore a key internal measure of success. As presented in figure 5.13 below, the best performance was TBA with an average cycle time of 491.00 minute. The second best performance along this key measure was TCS with an average cycle-time of 544.47 minutes, followed by ABC with an average cycle-time of 573.68 minutes.

Scheffe ^{a,b,c}						
		Subset				
MAS	N	1	2	3		
3	540	490.9973				
1	540		544.4661			
2	540			573.6775		
Sig.		1.000	1.000	1.000		

Figure 5.13: Cycle-Time by MAS

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares The error term is Mean Square(Error) = 988.288.

- a. Uses Harmonic Mean Sample Size = 540.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- ^{C.} Alpha = .05.

Net operating income represents the primary internal measure of financial

performance. As presented in Figure 5.14 below, the best performance in terms of this

performance measure was ABC with an average net operating income of 90.83

(thousands) per accounting period (replication). It should be noted that TBA performed

slightly better than TCS over the long run, 84.58 and 84.47 respectively, but the

difference was not statistically significant.

Scheffe)						
		Subset					
MAS	N	1	2				
1	540	84.47306					
3	540	84.57808					
2	540		90.83228				
Sig.		.702	1.000				

Figure 5.14: Net Operating Income by MAS

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square(Error) = 4.201.

- a. Uses Harmonic Mean Sample Size = 540.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.

As shown in the figure 5.15 (Tests of Between-Subjects Effects) above, product mix complexity and its combination with management accounting system has a significant affect on all three of the performance measures. As summarized below in figure 31, product mix complexity has a significant impact on all three performance measures.

Ochene				i		i		
			Mean Difference			95% Confide	ence Interval	
Dependent Variable	(I) MIX	(J) MIX	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
DFR 2	1	2	.15082359*	.000245697	.000	.15022161	.15142556	
		3	.41631103*	.000245697	.000	.41570906	.41691300	
	2	1	15082359*	.000245697	.000	15142556	15022161	
		3	.26548745*	.000245697	.000	.26488548	.26608942	
	3	1	41631103*	.000245697	.000	41691300	41570906	
		2	26548745*	.000245697	.000	26608942	26488548	
CT_2	1 2 -352		-352.30321*	1.9131977	.000	-356.990639	-347.615779	
		3	-320.63793*	1.9131977	.000	-325.325364	-315.950503	
	2	1	352.30321*	1.9131977	.000	347.6157787	356.9906393	
		3	31.665276*	1.9131977	.000	26.97784547	36.35270605	
	3 1		320.63793*	1.9131977	.000	315.9505030	325.3253636	
		2	-31.665276*	1.9131977	.000	-36.35270605	-26.97784547	
NOI_2	1	2	-18.783746*	.124743740	.000	-19.08937396	-18.47811711	
		3	-23.975737*	.124743740	.000	-24.28136503	-23.67010817	
	2	1	18.783746*	.124743740	.000	18.47811711	19.08937396	
		3	-5.1919911*	.124743740	.000	-5.49761949	-4.88636264	
	3	1	23.975737*	.124743740	.000	23.67010817	24.28136503	
		2	5.19199106*	.124743740	.000	4.88636264	5.49761949	

Figure 5.15: Multiple Comparisons by Product Mix Complexity

Based on observed means.

Scheffe

*. The mean difference is significant at the .05 level.

As presented in figure 5.16 below, product mix complexity has a significant affect on the demand fulfillment rate measure. Average demand fulfillment rate was 99.5% under a love level of product mix complexity and drops to 84.5% under medium level and 57.9% under a high level of product mix complexity.

Scheffe										
		Subset								
MIX	Ν	1	2	3						
3	540	.57897957								
2	540		.84446702							
1	540			.99529061						
Sig.		1.000	1.000	1.000						

Figure 5.16: Demand Fulfillment Rate by MIX Level Scheffe^{a,b,c}

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square(Error) = 1.630E-05.

- a. Uses Harmonic Mean Sample Size = 540.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.

As presented in figure 5.17 below, product mix complexity has a significant affect

on the average cycle-time measure. Average cycle-time was 312.1 minutes under a low

level of product mix complexity and increases to 632.7 minutes under medium level and

664.4 minutes under a high level of product mix complexity.

Figure 5.17: Cycle-Time by MIX Level

Scheffe^{a,b,c}

MIX	N	1	2	3
1	540	312.0666		
3	540		632.7045	
2	540			664.3698
Sig.		1.000	1.000	1.000

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square(Error) = 988.288.

- a. Uses Harmonic Mean Sample Size = 540.000.
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- C. Alpha = .05.

As presented in figure 5.18 below, product mix complexity has a significant affect on net operating income. Average net operating income was 72.37 (thousands) under a low level of product mix complexity and increases to 91.16 under medium level and 96.35 under a high level of product mix complexity.

Figure 5.18: Net Operating Income by MIX Level

Scheffe^{a,b,c}

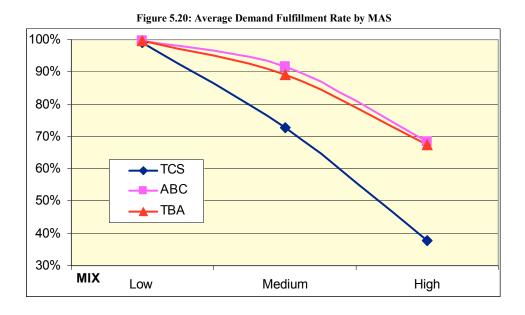
1			Subset								
	MIX	N	1	2							
	MIX	IN		Ζ	3						
	1	540	72.37465								
	2	540		91.15839							
	3	540			96.35038						
	Sig.		1.000	1.000	1.000						

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares The error term is Mean Square(Error) = 4.201.

a. Uses Harmonic Mean Sample Size = 540.000.

- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
- c. Alpha = .05.

Summary of Research Results


This study applied a simulation modeling methodology to examine the impact of different management accounting system alternatives, manufacturing overhead levels, and product mix complexity levels on manufacturing performance measures. The manufacturing performance measures examined included both internal and external as well as financial and non-financial measures of success. These measures were demand fulfillment rate, cycle time, and net operating income. Figure 5.19 below summarizes the results of this study in terms of these three manufacturing performance measures by management accounting system alternative and combined weighted score.

	1	Fenomia												
							Combined			ined				
МОН	MIX	IX Demand							Weighted					
Level	Level	Fulfillment Rate						Net Operating			Score			
						Cycle	Time	Income			(Maxium 6)			
		1	ABC	99.8%	1	TBA	304.91	1	ABC	86.188	1	ABC	5	
	Low	2	ТВА	99.6%	2	ABC	305.13	2	TCS	85.660	2	ТВА	3	
		3	TCS	99.2%	3	TCS	326.38	3	ТВА	85.603	3	TCS	2	
-		1	ABC	91.6%	1	TBA	549.88	1	ABC	105.922	1	ABC	4	
Low	Medium	2	ТВА	89.1%	2	TCS	698.46	2	TCS	101.416	2	TBA	3	
		3	TCS	72.6%	3	ABC	745.55	3	ТВА	101.405	3	TCS	2	
		1	ABC	68.5%	1	TCS	608.89	1	ABC	115.412	1	ABC	4	
	High			67.5%			619.20	2		103.579			3	
		3	TCS	37.7%	3	ABC	670.13	3	TCS	101.771	3	TCS	2	
		1	ABC	99.8%	1	ТВА	304.91	1	ABC	78.087	1	ABC	5	
	Low	2	ТВА	99.6%	2	ABC	305.13	2	TCS	77.803	2	TBA	3	
		3	TCS	99.2%	3	TCS	325.38	3	TBA	77.480	3	TCS	1	
		1	ABC	91.6%		TBA	548.21	1	ABC	100.462	1	ABC	4	
Medium	Medium	2	ТВА	89.1%	2	TCS	698.46	2	TCS	95.799	2	TBA	3	
		3	TCS	72.6%	-		745.55	3	ТВА	95.319	3	TCS	2	
		1		68.5%	1	TCS	608.89	1	ABC	112.319	1	ABC	4	
	High			67.5%			619.15	2		98.462			3	
		3	TCS	37.7%			670.13	3	TCS	96.620	3	TCS	2	
		1	ABC	99.8%		TBA	304.91	1	ABC	53.781	1	ABC	5	
	Low	2	ТВА	99.6%	2	ABC	305.46	2	TCS	53.507		TBA	3	
		3	TCS	99.2%		TCS	326.38	3	TBA	53.258	3	TCS	1	
		1	ABC	91.6%		ТВА	548.88	1	-	76.283		ABC	4	
High	Medium			89.1%			698.46	2		72.467			3	
.		3		72.6%	-		745.89	_	TBA	71.352	_		2	
		1	ABC	68.5%		TCS	608.89	1	-	89.038		ABC	4	
	High			67.5%			618.94	2		74.866			3	
		3	TCS	37.7%	3	ABC	670.13	3	TBA	74.744	3	TBA	2	

Figure 5.19: Summary of MAS Performance by Experimental Condition Group Performance Measure

The combined weighted score is a composite measure of the three primary manufacturing performance measures, whereby two points are assigned to the best performing management accounting system, one point to the second best performance, no points to the worst performance. Therefore a perfect score of 6 would indicate that the management accounting system scored the highest along all three manufacturing performance measures. As can be seen in figure 5.19 above, no single management accounting system excelled across all three measures, indicating that each alternative has its own limitations in terms of performance that must be considered in decision making. This is an important point to note, especially for management accounting practitioners.

As can be seen in figure 5.20 below, all three management accounting alternatives performed nearly equally well when the product mix complexity (MIX) was low. As product mix complexity increased, all three saw a decrease in demand fulfillment rate. However, the falloff in demand fulfillment rate occurred at a far greater rate under traditional costing systems as compared to the two other management accounting system alternatives. Although activities-based costing performed the best across all levels of product mix complexity, time-based accounting performed nearly as well along this crucial customer service measure.

Because a major focus of this study was to examine the impact of management accounting system alternatives within the context of today's increasingly time-based competitive environment, the internal manufacturing performance measure of cycle time is of primary importance. As discussed in previous chapters, cycle-time is the primary success measure for a time-based competitor. In terms of this strategic measure, timebased accounting performed the best at nearly all setting of product mix complexity.

Time-based accounting drove a product mix decision that better balanced the manufacturing line and resulted in the lowest average cycle-times for all products. It is interesting to note that activities-based costing, which generally outperformed vis-à-vis the other two manufacturing performance measures, was least effective in terms of cycle-times. It is important to note that the variability of cycle-times across the various levels of product mix complexity was much less than the variability under the traditional costing and activities-based costing systems. This may have important implications for the time-based manufacturer that is concerned with consistently delivering faster cycle-times under varying levels of product mix complexity demanded by the market.

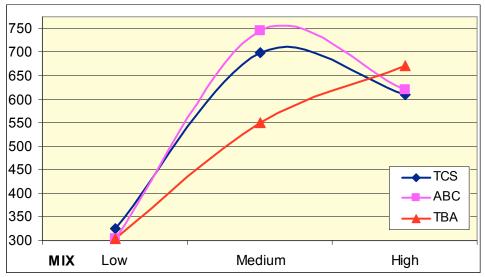


Figure 5.21: Average Cycle-Time (Minutes) by MAS

Net operating income is the only financial measure of manufacturing success included in this study, and an argument could certainly be made that it is the bottom line and the most important measure. Figures 5.22 through 5.24 present the average net operating income measures for the various management accounting system alternatives

under differing levels of product mix complexity demand and differing levels of manufacturing overhead. Activities-based costing clearly outperformed the two other management accounting system alternatives along this measure. Traditional costing systems and time-based accounting performed nearly equally well under low and medium demand settings for product mix complexity. As the product mix complexity increases; however, traditional costing systems begin to fall behind time-based accounting.

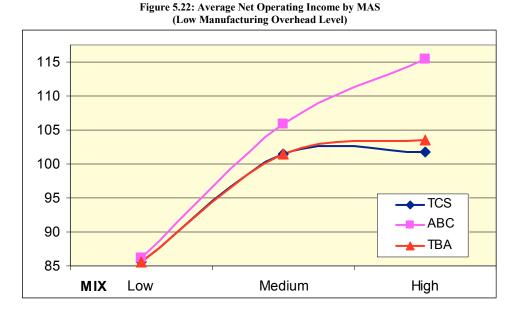


Figure 5.23 below shows essentially the same results, with activities-based costing clearly outperforming the other two management accounting system alternatives. The difference between traditional costing systems and time-based accounting again is not as great under medium levels of product mix complexity but increases with high levels of product mix complexity.

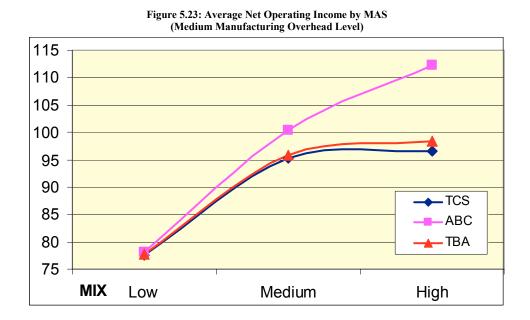
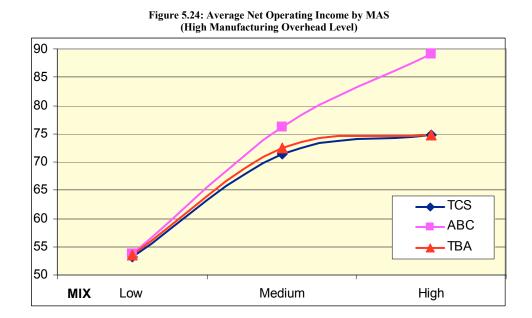



Figure 5.24 again shows very similar results, with activities-based costing clearly outperforming the other two management accounting system alternatives. Overall, average net operating income is at its lowest given the higher levels of manufacturing overhead. The difference between traditional costing systems and time-based accounting again is not as great under medium levels of product mix complexity but increases with high levels of product mix complexity.

The results in the figures above present particularly interesting implications for management accounting practice. The increase of demand for more complex and higher priced products presents an opportunity for increased revenues. However, as discussed in Chapter 2, it often presents the paradox as these products may also drive higher overall manufacturing costs. Higher levels of manufacturing overhead had no significant effect on the product mix decision; however, total costs and differences between the various management accounting system alternatives are amplified. As the manufacturing overhead level setting increases, the slope of the cumulative net operating income curve decreases. The implication for both management accounting researchers and practitioners is that the choice of management accounting system alternative becomes increasingly important as product mix complexity increases and may be amplified as manufacturing overhead levels increase.

As can be seen in the following figures (D.1-D.9) in Appendix D, higher levels of product mix complexity drive increasing long-term variances in cumulative net operating income. Review of management accounting system performance under the nine experimental conditions (three levels of manufacturing overhead by three levels of product mix complexity) shows no significant difference in cumulative net operating income when product mix complexity is low. Activities-based costing begins to significantly outperform the other two management accounting system alternatives at a medium demand setting for product mix complexity. This difference becomes more pronounced as product mix complexity is set at a high level. At this high setting, time-based accounting begins to slowly outperform traditional costing systems.

134

Chapter Six

Conclusions

The primary focus of this study was to evaluate the direct impact of different managerial accounting system alternatives on product mix decisions and ultimately on different manufacturing performance measures under differing levels of manufacturing overhead with differing levels of product mix complexity. The first chapter had posed the research questions and presented an experimental research framework in which to answer these questions. In the second chapter, the relevant literature on managerial accounting and operations management was reviewed as well as a select group of simulation studies that had included managerial accounting as a variable of interest. The third chapter provided the justification for utilizing a simulation research methodology and further developed the variables to be used in the research model. The fourth chapter outlined the specific details of the simulation model itself, while the fifth chapter provided the statistical analyses (MANOVA) of the simulation data as well as a summary of the research findings. This is followed by a discussion of implications for both managerial accounting research and practice. This chapter will conclude by illuminating some of the limitations of this particular study and how these can be addressed in future studies. The final section presents several opportunities to both to advance and extend the findings of this study in future research.

Limitations of Current Study

It is important to remember that every research methodology has its own unique set of strengths and corresponding limitations, and simulation modeling is no exception to this rule. Probably the greatest strength of simulation modeling is the model itself is virtually endlessly reconfigurable and therefore may be relatively easily extended and improved to incorporate more detail. The principal limitation is that no simulation model can possibly capture the infinite number of extraneous variables that exist within any real system.

This study represents an initial step towards better understanding the impact and interactions of different managerial accounting system alternatives, manufacturing overhead levels, and product mix complexity on manufacturing performance. Although it provides a number of interesting results for managerial accounting researchers to consider, it is important to remember that this study presents only a single operating environment. Therefore, the results of the study may not necessarily be generalizable across all manufacturing environments. As has been stated before in the Chapter 3 discussion of methodologies, the results of any simulation study are greatly impacted by the assumptions built into the model and must be interpreted with caution. However, the benefit of being able to observe the behavior of the performance measures under the same environmental settings is the major benefit of simulation modeling, and may provide insight and guidance for future research.

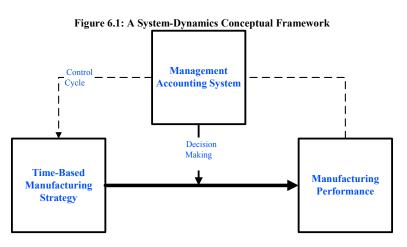
As mentioned above, one specific limitation of this study was that it considered only one particular simulated manufacturing environment, albeit under differing manufacturing overhead levels and with differing demand levels of product mix complexity. Traditional costing systems were used initially in the experiment. Given the

three product structures used in this study, the average percentage of each product's cost content varied by product and experimental condition group. Product A had direct material of between 20% and 60%, direct labor from 16% to 26%, and manufacturing overhead from 15% to 63% of total product cost. Product B had direct material of between 60% and 78%, direct labor from 16% to 24%, and manufacturing overhead from 6% to 15% of total product cost. Product C had direct material of between 28% and 71%, direct labor from 16% to 24%, and manufacturing overhead from 6% to 56% of total product cost. Different industries will have differing cost structures that may have a significant impact on performance measures and the selection of managerial accounting system alternative. Future experiments should be conducted in a variety of operating environments to enhance the generalizability of the findings.

Any form of analytical modeling, be it mathematical or simulation, must make assumptions in order to arrive at a solution. This particular study assumed that there were no changes in products demand over the entire five year period. Another assumption, with great implications for competitive markets, is that lost demand had no effect on future demand distributions. Future studies may address this issue by building in feedback loops and dynamic learning of the market, i.e. the inability to fulfill a given market demand for a particular product will affect the future market demand for that same product. This is a particularly important point for the time-based manufacturer and the proposed time-based accounting system as the literature suggests that delivering products with greater speed presents opportunities for premium pricing and with increased demands (Blackburn 1991).

This study had only one external measure of manufacturing performance in terms of customer service levels defined as demand fulfillment rate. In reality this is certainly not the only measure of customer service typically used, and future studies may consider using measures of on-time delivery as well as other quantifiable factors such as contract commitments. It is possible that a particular manufacturing firm may have vastly different performance results for the various managerial accounting system alternatives when different measures of customer service are used. Future studies may want to incorporate multiple measures for customer service as well as differing levels of customer sensitivity to these various measures.

One particularly important limitation for practice is the lack of a measure of return-on-investment. While this study utilized net operating income (NOI) as the primary financial measure of performance, an established practice in the managerial accounting literature, this measure only makes sense under the assumption that all three managerial accounting alternatives require the same initial and ongoing cost of investment. This is particularly an important point when comparing existing traditional costing systems (TCS) to time-based accounting (TBA) and particularly to activitiesbased-costing (ABC). Many of the failures of ABC in the literature are linked to the high cost of implementation and ongoing costs of maintaining such a detailed accounting system. While ABC was shown to outperform TCS and TBA in many cases and along several of the performance measures, any rational manager would need to weigh the potential benefits against the potentially higher cost of implementation and maintenance.


Suggestions for Future Research

This research represents a first step towards integrating managerial accounting and operations management research. Because the scope of this study is somewhat limited, as outlined in the preceding discussion, further research will be needed to develop a complete understanding of the impact of managerial accounting systems on manufacturing performance. The following discussion proposes some possibilities for both advancing and extending this research.

As was mentioned above, one of the greatest strengths of simulation modeling is the malleability of the model itself, especially with newer software packages such as ARENA. The simulation model can be endlessly reconfigured to increase complexity and to incorporate additional realism. One suggestion is to take a systems dynamic approach building learning into the simulation model itself over the length of the simulation run. System dynamics is an approach to understanding the behavior of complex systems over time, and is increasingly finding application in management disciplines. System dynamics deals with internal feedback loops and time delays that affect the behavior of the entire system, and computer software is often used to simulate system dynamics models. System dynamics is very similar to systems thinking and constructs the same causal loop diagrams of systems with feedback. However, system dynamics typically goes further and utilizes simulation to study the behavior of systems and the impact of alternative policies. This type of systems dynamic model learning could be incorporated both on the supply process and demand sides.

Based on this literary evidence, a conceptual framework is presented in figure 6.1 to better illustrate the problem (Hutchinson 2007). In this framework, the MAS has a

moderating effect, via the decision making process, on the relationship between timebased strategy and manufacturing performance. Manufacturing managers, knowing the accounting measures by which their performance is evaluated, quite rationally game the system in order to maximize their personal utility, i.e. maximize their personal performance reward or to consolidate their power through obtaining greater allocations of corporate capital. Legacy cost systems have the tendency to encourage behavior that is incongruent with TBM strategy, e.g. manufacturing managers frequently attempt to lower average costs through longer production runs and producing to stock. A strategically congruent MAS, with a clear linkage between throughput time and product cost, will create incentive for manufacturing managers to focus on time compression in production, e.g. produce to market demands only.

This is a system-dynamics framework, with a feedback loop from manufacturing performance to TBM strategy. System dynamics is an approach to studying complex systems, through the use of feedback loops (Forrester 1961). Stocks and flows are the basic building blocks, connected by feedback loops which create the nonlinearity found so frequently in modern day problems. In this example, manufacturing performance impacts time-based manufacturing strategy through the MAS, i.e. the control cycle. The

use of an appropriate MAS, which best reflects the time-based competitive reality, will reinforce the practices of TBM strategy over time. Conversely, the choice of inappropriate MAS, which does not reflect the importance of throughput-time, will undermine TBM strategy and may prove a fetter to its advancement.

On the supply side, it would be interesting to develop a product mix determination using dynamic integer goal programming as opposed to simply integer linear programming in a static environment. Manufacturing performance measures as driven by the various managerial accounting system alternatives can be fed into the goal program through a feedback look, thereby continually driving change in product cost and product mix decision. The choice of managerial accounting system affects the product cost, which in turn affects the product mix decision, which affect manufacturing performance measures, which is fed back into the managerial accounting system itself.

From a demand perspective, incorporating learning into the different product demand distributions would add an additional level of realism. Given a competitive market, it is quite likely that any demand lost to the market may be permanently lost, i.e. a particular customer may never order again from a particular supplier. Breaking down product demands into individual customer demands, with differing levels of customer service requirements and differing sensitivities to stock outs and price increases would add a great deal of complexity and realism to the simulation model.

Future studies may also look at additional measures of financial and operational performance, such as return-on-investment capacity utilization rate. As mentioned above in the limitations, the decision to implement an alternative managerial accounting system will certainly be weighed against the cost of implementation and maintenance. Therefore

measures of return-on-investment become increasingly important as the fixed costs of implementing such control systems increases.

In terms of operational performance measures, capacity utilization has become increasingly important in industries with a heavy overhead burden. As is often said in industries with high fixed investments, such as automotive or aircraft, "capacity utilization is king". This performance metric is easily calculated within ARENA and other simulation software programs as well.

For each resource, ARENA reports two utilization statistics, called scheduled utilization and simply utilization. To understand what these are and how they differ requires some mathematical notation. Let B(t) be the number of units of a particular resource that are available at time t, and let M(t) be the number of units of that resource that are available (busy or not) at time t. If the resource has a fixed capacity, then M(t) is a fixed constant for all t, but if the resource capacity follows a variable schedule, then M (t) will vary with t. Of course, $0 \le B(t) \le M(t)$ at all times t. If the resource is not available at time t, e.g. it has failed, then M(t) = 0, which then forces B(t) = 0. Let U(t) = B(t)/M(t) whenever M(t) > 0; thus $0 \le U(t) \le 1$, and U(t) represents what might be called instantaneous utilization of the resource.

What ARENA calls simply utilization of the resource is jut the (time) average of this instantaneous utilization over the simulation where T is the length of the simulation:

Utilization U(t) =
$$\frac{\int_0^T U(t) dt}{T} = \frac{1}{T} \int_0^T \frac{B(t)}{M(t)} dt$$

In words, utilization is the time average of the ratio of the number busy to the number available. ARENA also reports scheduled utilization, which is a ratio of the average number busy to the average number available:

Scheduled Utilization =
$$\frac{\int_0^T B(t) dt/T}{\int_0^T M(t) dt/T} = \frac{\int_0^T B(t) dt}{\int_0^T M(t) dt}$$

While the preceding suggestions could rather easily be built into any simulation modeling study, another interesting extension of this research would be to model an actual manufacturing facility and apply the findings *post hoc* to the actual manufacturing system. This would provide a unique opportunity to combine positivist and normative research techniques within a single study, something that is rarely, if ever, seen within managerial accounting research. This would give the opportunity not only to collect real data for developing demand and process distributions, but would also add a new dimension to the kind of case study methodology often employed in managerial accounting research. The ability to suggest normal solutions to real accounting issues through simulation modeling would also help to increase the standing of managerial accounting research and further the development and dissemination of innovative managerial accounting practices. Of course crossing roles between managerial accounting research and consultant has the potential to bring up a unique host of issues to be addressed, but would still present an excellent opportunity if an actual company were willing to participate in such a project.

In the interest of furthering normative accounting research, there are many possibilities for incorporating other managerial accounting alternatives into future studies. With increasing recognition of the deficiencies of traditional costing systems,

and newly emerging competitive pressures from the market, new managerial accounting system alternatives are being proposed on many fronts. The focus of some industries on capacity utilization has driven many companies to adopt Resource Consumption Accounting, which has proven popular in Germany. Environmental pressures may drive the need to develop environmentally focused systems such as life-cycle costing. The growth and proliferation of enterprise information systems has brought the practice of back-flush costing into discussion as well. Regardless of what is driving changes in the market, this research has shown that managerial accounting systems can play a significant role in manufacturing success. However, this research has only partially addressed the knowledge gap at the interface of managerial accounting and manufacturing management; continued research is needed.

###

Literature Cited

- 1. Abegglen, J. C. & Stalk, G., 1985, Kaisha: The Japanese Corporation, Basic Books, Inc., New York, NY
- Ali, S. A., Seifoddini, H., & Sun, H., 2005, Intelligent modeling and simulation of flexible assembly systems, *Proceedings of the Winter Simulation Conference*, pp. 1350-58
- 3. Anderson, S. W., 1995, Measuring the impact of product mix heterogeneity on manufacturing overhead cost, *The Accounting Review*, Vol. 70, No. 3, pp. 363-387
- Andrade, M., Filho, R., Espozel. A., Maia, L. & Quassim. R., 1999, Activity-based costing for production learning, *International Journal of Production Economics*, Vol. 62, pp. 175-80
- 5. Anthony, R., 1989, Reminiscences about management accounting, *Journal of Management Accounting Research*, Vol. 1, No. 1, pp. 1-20
- 6. Argyris, C., Putnam, R., & Smith, D., 1985, Action Science, Jossey-Bass, San Francisco, CA
- 7. Argyris, C., 1993, Knowledge for Action, Jossey-Bass, San Francisco
- 8. Argyris, C. & Kaplan, R., 1994, Implementing new knowledge: the case of activity based costing, *Accounting Horizons*, Vol. 8, No. 3, pp. 83-105
- 9. Baker, W. M., 1989, Why traditional standard cost systems are not effective in today's manufacturing environment, *Industrial Management*, July-August, pp. 22-24
- Balakrishnan, R. & Sivaramakrishnan, K., 2002, A critical overview of the use of full-cost data for planning and pricing, *Journal of Management Accounting Research*, Vol. 14, pp. 3-31
- 11. Balci, O., 1989, How to assess the acceptability and credibility of simulation results, *Proceedings of the Winter Simulation Conference*, pp. 62-71

- Banker, R. D., Datar, S., & Kekre, S., 1988, Relevant costs, congestion and stochasticity in production environments, *Journal of Accounting and Economics*, Vol. 10, pp. 171-198
- 13. Banker, R. D. & Hansen, S. C., 2002, The adequacy of full-cost-based pricing heuristics, *Journal of Management Accounting Research*, Vol. 14, pp. 33-58
- Banker, R. D., Hwang, I., & Mshra, B. K., 2002, Product costing and pricing under long-term capacity commitment, *Journal of Management Accounting Research*, Vol. 14, pp. 81-97
- 15. Benton, W. & Srivastava, R., 1985, Product structure complexity and multi-level lotsizing using alternative costing policies, *Decision Sciences*, Vol. 16, pp. 357-369
- Bishop, A. C., 1995, Accounting History from the Renaissance to the Present: a Remembrance of Luca Pacioli, Rutledge New Works in Accounting History, Garland Publishing, New York, NY & London, England
- 17. Blackburn, J. & Millen, R., 1980, Heuristic lot-sizing performance in a rolling schedule environment, *Decision Sciences*, Vol. 11, No. 4, pp. 691-701
- 18. Blackburn, J. & Millen, R. 1982a, Improved heuristics for multi-echelon requirements planning systems, *Management Science*, Vol. 28, No. 1, pp. 44-56
- 19. Blackburn, J. & Millen, R., 1982b, The impact of a rolling schedule in a multi-level MRP system, *Journal of Operations Management*, Vol. 2, No. 2, pp. 125-135
- 20. Blackburn, J., Kropp, D., and Millen R., 1986, A comparison of strategies to dampen nervousness in MRP systems, *Management Science*, Vol. 32, No. 4, pp. 413-429
- 21. Blackburn, J., 1991, Time-based competition: the next battleground in American manufacturing, Business One Irwin, Homewood, Il
- Boyd, L. H. and Cox, J. F., 2002, Optimal decision making using cost accounting information, *International Journal of Production Research*, Vol. 40, No. 8, pp. 1879-1898
- 23. Brimson, J., 1991, Activity Accounting: An Activity-Based Approach, Wiley, New York, NY
- Burrows, G., Brown, C. A., Thom, T. W., King, J. M. C., & Frearson, J., 2001, Realtime cost management of aircraft operations, *Management Accounting Research*, Vol. 12, pp. 281-298
- 25. Cooper, R., 1988, The rise of activity-based costing: what is an activity-based cost system?, *Cost Management*, Summer

- 26. Cooper, R. & Kaplan, R., 1988, Measure costs right: make the right decisions, *Harvard Business Review*, Vol. 65, No. 5, pp. 96-103
- 27. Cooper, R. & Kaplan, R., 1998, How cost accounting distorts product cost, *Management Accounting*, April
- 28. Chandler, A.D., 1966, Strategy and Structure, The NUT Press, Cambridge, Mass
- 29. Chandler, A.D., 1977, The Visible Hand, Harvard University Press, Cambridge, Mass
- Chenhall, R.H., 1997, Reliance on manufacturing performance measures, total quality management and organizational performance, 1997, *Management Accounting Research*, Vol. 8, No. 2, pp. 187-206
- Chalos, P., 1992, Managing Cost in Today's Manufacturing Environment, Prentice Hall
- 32. Doll, W. J. & Vondermbse, M. A., 1991, The evolution of manufacturing systems: towards the post-industrial enterprise, *OMEGA: International Journal of Management Science*, Vol. 19, pp. 401-411
- 33. Drucker, P. E., 1990, The emerging theory of manufacturing, *Harvard Business Review*, Vol. 68, No. 3, pp.94-102
- 34. Drugdale, D. & Jones, C., 1996, Accounting for throughput, *Management Accounting*, Vol. 74, No. 4, pp. 24 27
- 35. Drury, C. & Tayles, M., 1997, Evidence on the financial accounting mentality debate: a research note, *British Accounting Review*, Vol. 29, pp. 262-276
- Edwards, J. B., 1985, Are management accountants marching toward inevitable decline because of outmoded techniques?, *Management Accounting*, September, pp. 45-50
- 37. Edwards, J. B., 1984, Is cost accounting the No. 1 enemy of productivity?, *Management Accounting*, June, pp. 44-49
- Elmaghraby, S. E., 1968, The role of modeling in IE design, *Industrial Engineering*, Vol. 19, No. 6, pp. 292-305
- Fisher, M. L, & Ittner, C. D., 1999, The impact of product variety on automobile assembly operations: empirical evidence and simulation analysis, *Management Science*, Vol. 45, No. 6, pp. 771-786

- 40. Fleischman, R., 2000, Completing the triangle: Taylorism and the paradigms, *Accounting, Auditing, and Accountability Journal*, Vol. 13, No. 5, pp. 597-623
- Flynn, B., Sakakibara, S., & Schroeder, R., 1995, Relationships between JIT and TQM: practices and performance, *Academy of Management Journal*, Vol. 38, No. 5, pp. 1325-1360
- 42. Fry, T. D. & Cox, J., 1989, Manufacturing performance: local versus global measures, *Production & Inventory Management Journal*, Vol. 30, No. 2
- 43. Fry, T. D., 1990, Controlling input the real key to shorter lead times, *International Journal of Logistics*, Vol. 1, No. 1, pp. 7-12
- Fry, T. D., Karwan, K., & Baker, W., 1993, Performance measurement systems and time-based manufacturing, *Production Planning & Control*, Vol. 4., No.2, pp. 102-111
- 45. Fry, T. D., Steele, D. C., & Saladin, B. A., 1998, The use of management accounting systems in manufacturing, *International Journal of Production Research*, Vol. 36, No. 2, pp. 503 525
- Fullerton, R. R. & McWatters, C. S., 2002, The role of performance measures and incentives in relation to the degree of JIT implementation, *Accounting, Organizations and Society*, Vol. 27, pp. 711 - 735
- 47. Galloway, D. & Waldron, D., 1988a, Throughput accounting part 1: the need for a new language for manufacturing, *Management Accounting*, November, pp. 34 35
- 48. Galloway, D. & Waldron, D., 1988b, Throughput accounting part 2: ranking products profitably, *Management Accounting*, December, pp. 34 35
- 49. Galloway, D. & Waldron, D., 1989a, Throughput accounting part 3: a better way to control labor costs, *Management Accounting*, January, pp. 32 -33
- 50. Galloway, D. & Waldron, D., 1989b, Throughput accounting part 4: moving on to complex products, *Management Accounting*, February, pp. 40 41
- 51. Garcke, E. & Fells, I.M., 1887, Factory Accounts, Crosby Lockwood, London, England
- Garg, A., Ghosh, D., Hudick, J., & Nowacki, C., 2003, Roles and practices in management accounting today: result form the 2003 IMA – E&Y Survey, *Strategic Finance*, July, pp. 30-35
- 53. Garner, S. P., 1954, Evolution of Cost Accounting to 1925, University of Alabama Press, Tuscaloosa, Alabama

- 54. Goldratt, E. M. & Fox, R. E., 1986, The Race, North River Press, Croton-On-Hudson, NY
- 55. Goldratt, E. M. & Cox J., 1992, The Goal: a Process of Ongoing Improvement, 2nd Edition, North River Press, Croton-On-Hudson, NY
- 56. Goldratt, E. M., 2002, Where did product cost and profit come from a discussion on cost accounting, Late night discussion number 12, Goldratt UK
- Gupta, U. G., 1997, Using citation analysis to explore intellectual base, knowledge dissemination, and research impact of *Interfaces* (1970-1992), *Interfaces*, Vol. 27, pp. 85-105
- 58. Gutzmann, K. & Wysk, R., 1986, Capacity control policies for MRP systems, *International Journal of Production Research*, Vol. 24, No. 2, pp. 359-374
- 59. Hayes, R. & Wheelwright, S., 1984, Restoring Our Competitive Edge, John Wiley & Sons, New York, NY
- 60. Hayes, R., Wheelwright, S., & Clark, K., 1988, Dynamic Manufacturing, The Free Press, New York, NY
- 61. Hayes, R., Pisano, G., Upton, D., & Wheelwright, S., 2005, Pursuing the Competitive Edge, John Wiley & Sons, New York, NY
- 62. Hiromoto, T., 1988, Another hidden edge Japanese management accounting, *Harvard Business Review*, Vol. 66, No. 4, pp. 22-26
- 63. Hoque, Z., 2002, Total quality management and the balanced scorecard approach: a critical analysis of their potential relationships and directions for research, *Critical Perspectives on Accounting*, Vol. 14, No. 5, pp. 553-566
- 64. Hout, T. M. & Stalk, G. S., 1993, Time-based results, *Boston Consulting Group White Paper*, No. 356
- 65. Hughes, S. B. & Paulson Gjerde, K. A., 2003, Do different cost systems make a difference?, *Management Accounting Quarterly*, Vol. 5, No. 1, pp. 45-55
- Hutchinson, R., 2007, Linking Manufacturing Strategy to Product Cost: Towards Time-Based Accounting, forthcoming in *Management Accounting Quarterly*, Vol. 8, No. 4
- 67. Ittner, C. D. & Larcker, D. F., 2002, Empirical managerial accounting research: are we just describing management consulting practice?, *The European Accounting Review*, Vol. 11, No. 4, pp. 787-794

- 68. Ittner, C. D. & Larcker, D. F., 2003, Assessing empirical research in managerial accounting: a value-based management perspective, *Journal of Accounting and Economics*, Vol. 32, No. 13, pp. 349-410
- 69. Johnson, H. T., 1972, Early cost accounting for internal management control: Lyman mills in the 1850s, *Business History Review*, Vol. 4, Winter, pp. 466-474
- 70. Johnson, H. T., 1981, Toward a new understanding of nineteenth-century cost accounting, *The Accounting Review*, Vol. 3, pp. 510-518
- 71. Johnson, H. T., 1983, The search for gain in markets and firms: a review of the historical emergence of management accounting systems, *Accounting Organizations and Society*, Vol. 8, pp. 139-146
- 72. Johnson, H. T. & Kaplan, R. S., 1987, Relevance Lost: The Rise and Fall of Management Accounting, Harvard Business School Press, Cambridge, Mass
- 73. Johnson, H. T., 1991, Activity-based management: past, present, and future, *The Engineering Economist*, Vol. 36, No. 3, pp. 219-238
- 74. Johnson, H.T., 1992a, Relevance Regained: From Top-Down Control to Bottom-Up Empowerment, Free Press, New York, NY
- 75. Johnson, H.T., 1992b, It's time to stop overselling activity-based concepts, *Management Accounting*, September, pp. 26-35
- 76. Kaplan, R. S., 1983, Measuring manufacturing performance: a new challenge for managerial accounting research, *The Accounting Review*, Vol. 58, No. 4, pp. 686-705
- 77. Kaplan, R. S., 1984a, The evolution of management accounting, *The Accounting Review*, July, pp. 390-418
- 78. Kaplan, R. S., 1984b, Yesterday's accounting undermines production, *Harvard Business Review*, July-August, pp. 95-101
- 79. Kaplan, R. S. & Norton, D.P., 1992, The balanced scorecard measures that drive performance, *Harvard Business Review*, Vol. 70, No. 1, pp. 71-79
- 80. Kaplan, R. S., 1993, Research opportunities in management accounting, Invited Editorial, *Journal of Management Accounting Research*, Vol. 5 (fall), pp. 1 14
- 81. Kaplan, R. S. & Anderson, S. R., 2004, Time-driven activity-based costing, *Harvard Business Review*, Vol. 82, No. 11, pp. 131-138
- 82. Karplus, W. J., 1983, The spectrum of mathematical models, *Perspectives in Computing*, Vol. 3, No. 2, pp. 4-13

- Kee, R. & Schmidt, C., 2000, Integrating activity-based costing with the theory of constraints to enhance production-related decision making, *Accounting Horizons*, Vol. 9, No. 4, pp. 48-61
- Kelton, W. D., Sadowski, R. P., & D. A., 2002, Simulation with ARENA, 2nd Edition, McGraw-Hill, New York
- 85. Klejnen, J. P. C., 1995, Verification and validation of simulation models, *European Journal of Operational Research*, Vol. 82, pp. 145-162
- 86. Koufteros, X., Vonderembse, M., Doll, W., 1998, Developing measures of timebased manufacturing, *Journal of Operations Management*, Vol. 16, No. 1, pp. 21-41
- 87. LaForge, R., 1985, A decision rule for creating planned orders in MRP, *Journal of production and Inventory Management*, Q4, pp. 115-125
- 88. Lane, M. S., Mansour, A. H., & Harpell, J. L., 1993, Operations research techniques: a longitudinal update 1973-1988, *Interfaces*, Volume 23, pp. 63-68
- Law, A. M. & Kelton, W. D., 2000, Simulation Modeling and Analysis: 3rd Edition, McGraw-Hill, New York, NY
- Lea, B. & Fredendall, L. D., 2002, The impact of management accounting, product structure, product mix algorithm, and planning horizon on manufacturing performance, International *Journal of Production Economics*, Vol. 79, pp. 279-299
- Lea, B. & Min, H., 2003, Selection of management accounting systems in Just-In-Time and Theory of Constraints-based manufacturing, *International Journal of Production Research*, Vol. 41, No. 13, pp. 2879-2910
- 92. Leitch, R. A., 2001, Effect of stochasticity, capacity and lead time cost drivers on WIP and throughput in a pull production environment, *Management Accounting Research*, Vol. 12 pp. 167-196
- 93. Leitch, R. A., Philipoom, P. R., & Fry, T. D., 2005, Opportunity costing decision heuristics for product acceptance decisions, *Journal of Management Accounting Research*, Vol. 17, pp. 95-117
- 94. Littleton, A. C., 1933, Evolution of Accounting to 1900, American Institute Publishing Company, Lot A., New York, NY
- 95. MacDonald, L. D. & Richardson, A. J., 2002, Alternative perspectives on the development of American management accounting: relevance lost induces a renaissance, *Journal of Accounting Literature*, Volume 21, pp.120-156.

- Malmi, T., 1997, Towards explaining activity-based costing failure: accounting and control in a decentralized organization, *Management Accounting Research*, Vol. 8, No. 4, pp. 459-480
- 97. Metters, R., King-Metters, K., Pullman, M., & Walton, S., 2006, Successful Service Operations Management, 2nd Edition, Thompson South-Western, Mason, Ohio
- Miller, J. G. & Vollmann, T. E., 1985, The hidden factory, *Harvard Business Review*, Vol. 63, No. 5, pp. 142-150
- Nance, R. E., 1981, Model representation in discrete event simulation: the conical methodology, Technical Report CS81003-R, Department of Computer Science, VPI&SU, Blacksburg, VA
- 100.Nanni, A., Dixon, J.R., & Vollmann, T.E., 1992, Integrated performance measurement: management accounting to support the new manufacturing realities, *Journal of Management Accounting Research*, Vol. 4, Fall, pp. 1 - 19
- 101. Neely, A., 1999, The performance measurement revolution: why now and what next?, *International Journal of Production and Operations Management*, Vol. 19, No. 2, pp. 205 228
- 102.O'Brien, J. & Sivaramakrishnan, K., 1996, Coordinating order processing and production scheduling in order initiated production environments, *Journal of Management Accounting Research*, Vol. 8, pp. 151-170
- 103.O'Guinn, M. C., 1991, The Complete Guide to Activity-Based Costing, Prentice Hall
- 104. Özbayrak, M. Akgün, M, & Türker, A. K., 2004, Activity-based cost estimation in a push/pull advanced manufacturing system, *International Journal of Production Economics*, Vol. 87, pp. 49-65
- 105.Peacock, E., 2005, Cost management by customer choice, *Management Accounting Quarterly*, Vol. 6, No. 3, pp. 28-36
- 106.Pil, F. K. & Holweg, M., 2004, Linking product variety to order-fulfillment strategies, *Interfaces*, Vol. 34, No. 5, pp. 394-403
- 107.Price Waterhouse, 1989, Security of the Cost Management Practices of Selected Midwestern Manufacturers, *Internal White Paper*, New York
- 108.Randall, T. & Ulrich, K., 2001, Product variety, supply chain structure, and firm performance: analysis of the U.S. bicycle industry, *Management Science*, Vol. 47, No. 12, pp. 1588-1604

- 109.Ruhl, J. M. & Bailey, T. A., Activity Based Costing for the Total Business, *The CPA Journal*, February 1994, pp. 34-38
- 110. Ruhl, J. M., 1997, Managing constraints, The CPA Journal, Vol. 67, No. 1
- 111.Schafrik, R., 2005, Address to the International Workshop on Accelerated Radical Innovation, Sponsored by The University of Toledo, College of Engineering
- 112.Seed, A., 1984, Cost accounting in the age of robotics, *Management Accounting*, October, pp. 39-43
- 113.Schields, M., 1995, An empirical analysis of firms' implementation experiences with activity-based costing, *Journal of Management Accounting Research*, Vol. 7 (fall), pp. 148-166
- 114.Sim, K.L. & Killough, L.N., 1998, The performance effects of complementarities between manufacturing practices and management accounting systems, *Journal of Management Accounting Research*, Vol. 10 (fall), pp. 325-346
- 115.Skinner, W., 1974, The focused factory, *Harvard Business Review*, Vol. 52, No. 3, pp. 113-121
- 116.Skinner, W., 1986, The productivity paradox, *Harvard Business Review*, Vol. 64, No. 4, pp. 55 59
- 117. Stalk, G., 1988, Time the next source of competitive advantage, *Harvard Business Review*, Vol. 66, No. 4, pp. 41-51
- 118. Stalk, G. & Hout, T., 1990, Competing Against Time, Free Press, New York, NY
- 119.Sum, C., Png, D., & Yang, K., 1993, Effects of product structure complexity on multi-level lot sizing, *Decision Sciences*, Vol. 24, No. 6, pp. 1135-1156
- 120. Turk, W., 1990, Management accounting revitalized: the Harley Davidson experience, *Journal of Cost Management*, Winter, pp. 28-39
- 121. Veen-Dirks, P. V., 2006, Complementary choices and management control: field research in a flexible-production environment, *Management Accounting Research*, Vol. 17, No. 1, pp. 72-105
- 122. Veral, E. A. & LaForge, R. L., 1985, The performance of a simple incremental lotsizing rule in a multilevel inventory environment, *Decision Sciences*, Vol. 16, No. 1, pp. 57-72
- 123. Vokurka, R. & Lummus R., 2001, At what overhead level does activity-based costing pay off?, *Production and Inventory Management Journal*, 1st Quarter, pp. 40-47

- 124. Waldron, D., 1988, Accounting for CIM: the new yardsticks, EMAP Business and Computing Supplement, February, pp. 1 2
- 125. Waldron, D., 1994, In an interview with David Drugdale and Colwyn Jones, reported in Accounting for Throughput, *Management Accounting*, April 1996, Vol. 74, No. 4, pp. 24 -27
- 126. Wemmerlow, U., 1979, Design factors in MRP systems: a limited survey, *Journal of Production and Inventory Management*, Q4, pp. 15-35
- 127. Willet, P. F., 1989, Nothing new in throughput accounting?, *Management Accounting*, February, p. 6
- 128. Womack, J. P., Jones, D. T., & Roos, D., 1990, The Machine that Changed the World: the Story of Lean Production, Rawson Associates, New York, NY
- 129.Womack, J. P. & Jones, D. T., 1996, Lean Thinking, Simon & Schuster, New York, NY
- 130.Zimmerman, J. L., 2001, Conjectures regarding empirical management accounting research, *Journal of Accounting and Economics*, Vol. 32, No. 13, pp. 411-427
- 131.Zimmerman, J. L., 2003, Accounting for Decision Making and Control, 4th Edition, McGraw-Hill Irwin, New York, NY

Appendix A

Direct and Variable Costing Example

Example 1 Assume the following (per unit)

Direct Materials	2.5 lbs @ \$4.00	\$10.00
Direct Labor	.5 hr @ \$16.00	\$ 8.00
VOH	.5 hr @ \$4.00	\$ 2.00
FOH	\$40,000	\$ 2.50
Actual Output	16,000 units	
Variable S&A	\$6.00 per unit	
Fixed S&A	\$60,000	
Selling price	\$40	

What do the income statements look like if actual sales equal 16,000 units?

<u>A</u>	bsorption Costing	<u> </u>	Direct Costing
Revenue (40)(16000)	640,000	Revenue (40)(16000)	640,000
Cogs (22.50)(16000)	<u>360,000</u>	Vbl Mfg (20)(16000)	320,000
GM (17.50)(16000)	280,000	Vbl S+A (6)(16000)	<u>96,000</u>
Vbl S+A (6)(16000)	96,000	СМ	224,000
Fx S+A	<u>60,000</u>	Fx Mfg	40,000
Profit	<u>124,000</u>	Fx S+A	<u>60,000</u>
		Profit	<u>124,000</u>

- <u>Note</u>: When sales equals production, profit under absorption costing and direct costing are equal.

Example 2

Assume sales of 12,000 units. What is the profit under each costing method?

	Absorption Costing	<u> </u>	Direct Costing
Revenue (40)(1200	0) 480,000	Revenue (40)(12000)	480,000
Cogs (22.50)(12000	D) <u>270,000</u>	Vbl Mfg (20)(12000)	240,000
GM (17.50)(1200	0) 210,000	Vbl S+A (6)(12000)	72,000
Vbl S+A (6)(1200	0) 72,000	CM (14)(12000)	168,000
Fx S+A	<u>60,000</u>	Fx Mfg	40,000
Profit	<u>78,000</u>	Fx S+A	<u>60,000</u>
		Profit	<u>68,000</u>

- Note: When production exceeds sales, absorption profit exceeds direct profit.

Example 3

Assume sales of 18,000 units. What is the profit under each costing method?

Absorption Costing		Direct	Costing
Revenue (40)(18000)	720,000	Revenue (40)(18000)	720,000
Cogs (22.50)(18000)	405,000	Vbl Mfg (20)(18000)	360,000
GM (17.50)(18000)	315,000	Vbl S+A (6)(18000)	<u>108,000</u>
Vbl S+A (6)(18000)	108,000	CM (14)(18000)	252,000
Fx S+A	<u>60,000</u>	Fx Mfg	40,000
Profit	<u>147,000</u>	Fx S+A	<u>60,000</u>
		Profit	<u>152,000</u>

- Note: When sales exceed production, direct profit exceeds absorption profit.

Appendix B

Time-Based Accounting Overhead Allocation Example

This appendix presents a simple deterministic example of the application of a time-based accounting system for allocating manufacturing overheads (MOH). Based on the actual production data, total cycle time units are calculated for all products.

Product	Α	В	С	All Products
Standard Production	1,400	300	100	1,800
Average Cycle Time (minutes)	300	500	800	361
Total Cycle Time Units	420,000	150,000	80,000	650,000

The total cycle time units will then be used to calculate the manufacturing overhead burden per cycle time unit. The total budgeted manufacturing overhead burden used in this study, along with the MOH/Cycle-Time Unit calculation, is as follows:

Depreciation	\$ 24,000	
Data Entry	8,800	
Cost Analysis	9,600	
Production Engineering	6,400	
Scheduling	4,400	
Quality Control	1,653	
Production Supervision	8,400	
General Utilities	9,000	
Miscellaneous	1,000	
Total MOH		\$73,253
MOH/Cycle-Time Unit		\$ 0.113

With the cost of direct material and direct labor given, the allocation of

manufacturing overhead burden is calculated by simply multiplying the average cycle

times of the individual products by the MOH/Cycle Time Unit (\$0.113). The following is a breakdown of total product cost by product under the time-based accounting system:

Product		A	В	С
Direct Material	\$	20	\$ 40	\$ 120
Direct Labor		15	20	60
Manufacturing Overhead Allocation	_	34	56	90
Manufacturing Cost/Unit	\$	69	\$ 116	\$ 270
Sales Price/Unit	\$	100	\$ 160	\$ 360
Gross Margin		31	44	90
Gross Margin Percentage		31%	27%	25%

As shown below, the time-based accounting system, in keeping with US Generally Accepted Accounting Principles (US GAAP), fully absorbs all manufacturing overheads into finished goods inventory. The total manufacturing overhead burden allocated to all three products is \$73,253.

Product	Α	В	С	All Products
Standard Production	1,400	300	100	1,800
Total MOH Allocated	47,333	16,905	9,016	73,253

Appendix C

SIMAN Code

This appendix presents the actual SIMAN language code for the simulation model used in this experiment.

Model statements for module: Create 1 94\$ CREATE, 1,HoursToBaseTime(0.0),Part A:HoursToBaseTime(EXPO(.5)):NEXT(95\$); 95\$ ASSIGN: Part A Order Arrival.NumberOut=Part A Order Arrival.NumberOut + 1:NEXT(88\$); Model statements for module: Record 29 Record Total Part A Demand, 1:NEXT(0\$); 88\$ COUNT: Model statements for module: Assign 1 0\$ Rework Time=TRIA(20,60,80): ASSIGN: Unload Time=TRIA(0.5,1.5,1.75): Load Time=TRIA(1.5,2,2.5): Transport Velocity=UNIF(25,35): Picture=Picture.Blue Ball: Sealer Time=TRIA(16, 18, 20): Prep Time=TRIA(14,18,22):NEXT(Part A);

Part A QUEUE, Part A Order.Queue,16,21\$:MARK(Arrive Time):DETACH; Model statements for module: Record 7 21\$ COUNT: Record Part A Demand Unfilled, 1:NEXT(91\$); Model statements for module: Record 32 91\$ TALLY: Record DFR Part A,1 - (NC(Record Part A Demand Unfilled) / NC(Record Total Part A Demand)),1 :NEXT(22\$); Model statements for module: Dispose 6 22\$ ASSIGN: Part A Demand Unfilled.NumberOut=Part A Demand Unfilled.NumberOut + 1; 98\$ DISPOSE: Yes; Model statements for module: Create 2 99\$ CREATE, 1,HoursToBaseTime(0.0),Part B:HoursToBaseTime(EXPO(2)):NEXT(100\$); 100\$ ASSIGN: Part B Order Arrival.NumberOut=Part B Order Arrival.NumberOut + 1:NEXT(89\$); Model statements for module: Record 30 89\$ COUNT: Record Total Part B Demand, 1:NEXT(1\$);

; Model statements for module: Assign 2
; 1\$ ASSIGN: Rework Time=TRIA(40,80,100): Unload Time=TRIA(0.5,1.5,2): Load Time=TRIA(1.5,2,3): Transport Velocity=UNIF(20,30): Picture=Picture.Yellow Ball: Prep Time=TRIA(12,18,24): Sealer Time=TRIA(18,20,22):NEXT(Part B);
Part B QUEUE, Part B Order.Queue,5,23\$:DETACH;
, Model statements for module: Record 8
, 23\$ COUNT: Record Part B Demand Unfilled,1:NEXT(92\$);
 Model statements for module: Record 33 792\$ TALLY: Record DFR Part B,1 - (NC(Record Part B Demand Unfilled) / NC(Record Total Part B Demand)),1 :NEXT(24\$);
; Model statements for module: Dispose 7 ; 24\$ ASSIGN: Part B Demand Unfilled.NumberOut=Part B Demand Unfilled.NumberOut + 1; 103\$ DISPOSE: Yes;
; Model statements for module: Create 4

104\$ CREATE, 1,HoursToBaseTime(0.0),Part C:HoursToBaseTime(EXPO(8)):NEXT(105\$);

105\$ ASSIGN: Part C Order Arrival.NumberOut=Part C Order Arrival.NumberOut + 1:NEXT(90\$);

Model statements for module: Record 31 90\$ Record Total Part C Demand, 1:NEXT(10\$); COUNT: Model statements for module: Assign 4 10\$ Rework Time=TRIA(120,180,300): ASSIGN: Unload Time=TRIA(1,2.5,5): Load Time=TRIA(2,3,5): Transport Velocity=UNIF(10,30): Picture=Picture.Green Ball: Sealer Time=TRIA(68,72,78): Prep Time=TRIA(64,90,124):NEXT(Part C); Part C QUEUE, Part C Order.Queue,1,25\$:DETACH; Model statements for module: Record 9 25\$ Record Part C Demand Unfilled, 1:NEXT(93\$); COUNT: Model statements for module: Record 34 93\$ Record DFR Part C,1 - (NC(Record Part C Demand TALLY: Unfilled) / NC(Record Total Part C Demand)),1 :NEXT(26\$);

;

Model statements for module: Dispose 8 26\$ ASSIGN: Part C Demand Unfilled.NumberOut=Part C Demand Unfilled.NumberOut + 1; 108\$ DISPOSE: Yes; Model statements for module: Enter 1 11\$ STATION, Prep Arrival.Station; 109\$ DELAY: Unload Time,,Transfer:NEXT(111\$); 111\$ FREE: Prep Cart:NEXT(2\$); Model statements for module: Process 2 2\$ ASSIGN: Prep Process.NumberIn=Prep Process.NumberIn + 1: Prep Process.WIP=Prep Process.WIP+1; 149\$ STACK, 1:Save:NEXT(123\$); 123\$ QUEUE, Prep Process.Queue; 122\$ SEIZE, 1,VA: Part Prep,1:NEXT(121\$); 121\$ DELAY: Prep Time, VA:NEXT(164\$); ASSIGN: Prep Process.WaitTime=Prep Process.WaitTime + 164\$ Diff.WaitTime; 128\$ TALLY: Prep Process.WaitTimePerEntity,Diff.WaitTime,1; Prep Process.TotalTimePerEntity,Diff.StartTime,1; 130\$ TALLY: 154\$ Prep Process.VATime=Prep Process.VATime + ASSIGN: Diff.VATime; 155\$ TALLY: Prep Process.VATimePerEntity,Diff.VATime,1; 120\$ Part Prep,1; **RELEASE:** 169\$ 1:Destroy:NEXT(168\$); STACK, 168\$ ASSIGN: Prep Process.NumberOut=Prep Process.NumberOut + 1: Prep Process.WIP=Prep Process.WIP-1:NEXT(27\$);

; ; Moc	lel statements f	or module: Station 12
27\$ 173\$	STATION, DELAY:	Prep Station; 0.0,,VA:NEXT(41\$);
; ; ; Mod	lel statements f	or module: Request 1
; 41\$	QUEUE, REQUEST,	Request Cart 1 to Prep Station.Queue; 1:Sealer Cart(SDS),50:NEXT(44\$);
;		for module: Delay 2
44\$;	DELAY:	Load Time,,,Transfer:NEXT(43\$);
; ; Mod	lel statements f	or module: Transport 2
43\$	TRANSPOR	T: Sealer Cart, Sealer Arrival. Station, Transport Velocity;
; ; Moc	lel statements f	or module: Enter 2
12\$ 175\$	STATION, DELAY:	Sealer Arrival.Station; Unload Time,,Transfer:NEXT(177\$);
177\$	FREE:	Sealer Cart:NEXT(3\$);
; ; Mod	lel statements f	for module: Process 3

3\$	ASSIGN:	Sealer Process.NumberIn=Sealer Process.NumberIn + 1:
	Sealer	Process.WIP=Sealer Process.WIP+1;
215\$	STACK,	1:Save:NEXT(189\$);
189\$	QUEUE,	Sealer Process.Queue;
188\$	SEIZE,	1,VA:
	Sealer	r,1:NEXT(187\$);
187\$	DELAY:	Sealer Time,,,VA:NEXT(230\$);
230\$	ASSIGN:	Sealer Process.WaitTime=Sealer Process.WaitTime +
Diff.Wa	utTime;	
194\$	TALLY:	Sealer Process.WaitTimePerEntity,Diff.WaitTime,1;
196\$	TALLY:	Sealer Process.TotalTimePerEntity,Diff.StartTime,1;
220\$	ASSIGN:	Sealer Process.VATime=Sealer Process.VATime +
Diff.VA	Time;	
221\$	TALLY:	Sealer Process.VATimePerEntity,Diff.VATime,1;
186\$	RELEASE :	Sealer,1;
235\$	STACK,	1:Destroy:NEXT(234\$);
234\$	ASSIGN:	Sealer Process.NumberOut=Sealer Process.NumberOut + 1:
	Sealer	Process.WIP=Sealer Process.WIP-1:NEXT(4\$);

Model statements for module: Decide 1 , 4\$ BRANCH, 1: If,Entity.Type==Part A,13\$,Yes: If,Entity.Type==Part B,14\$,Yes: If,Entity.Type==Part C,15\$,Yes: Else,20\$,Yes; Model statements for module: Dispose 5 Dispose of Sealer Exceptions.NumberOut=Dispose of 20\$ ASSIGN: Sealer Exceptions.NumberOut + 1; 239\$ DISPOSE: Yes; ; ; Model statements for module: Decide 3 ;

;		
13\$	BRANCH,	1:
	With,	4/100,240\$,Yes:
	Else,2	41\$,Yes;
240\$	ASSIGN:	Failed Sealer Inspection Part A.NumberOut True=Failed
Sealer I	nspection Part A	NumberOut True + 1
	:NEX	T(28\$);

241\$ ASSIGN: Failed Sealer Inspection Part A.NumberOut False=Failed Sealer Inspection Part A.NumberOut False + 1 :NEXT(29\$);

; ; Moo ;	lel statements fo	r module: Station 13
28\$	STATION,	Failed Parts Station;
244\$	DELAY:	0.0,,VA:NEXT(47\$);

;

;

;

., ,

., .,

;	Model statements fo	or module: Request 2
,	QUEUE,	Request Cart to Failed Parts.Queue;
47\$	REQUEST,	1:Cart 2(SDS),50:NEXT(45\$);

Model statements for module: Delay 3

,		
45\$	DELAY:	Load Time,,Transfer:NEXT(46\$);

Model statements for module: Transport 3
 TRANSPORT: Cart 2, Rework Arrival. Station, Transport Velocity;

; Model statements for module: Station 14
29\$STATION, DELAY:Good Parts Station; 0.0,,VA:NEXT(50\$);
; Model statements for module: Request 3 ; 50\$ QUEUE, Request Cart to Good Parts.Queue; REQUEST, 1:Cart 2(SDS),50:NEXT(52\$);
; ; Model statements for module: Delay 4 ; 52\$ DELAY: Load Time,,Transfer:NEXT(49\$);
 Model statements for module: Transport 4 TRANSPORT: Cart 2, Shipped Parts Arrival. Station, Transport Velocity;
 Model statements for module: Decide 4 14\$ BRANCH, 1: With,6/100,250\$,Yes: Else,251\$,Yes; 250\$ ASSIGN: Failed Sealer Inspection Part B.NumberOut True=Failed Sealer Inspection Part B.NumberOut True + 1 :NEXT(28\$);
251\$ ASSIGN: Failed Sealer Inspection Part B.NumberOut False=Failed Sealer Inspection Part B.NumberOut False + 1

:NEXT(29\$);

;

 Model statements for module: Decide 5
 BRANCH, 1: With,10/100,252\$,Yes: Else,253\$,Yes;
 ASSIGN: Failed Sealer Inspection Part C.NumberOut True=Failed Sealer Inspection Part C.NumberOut True + 1 :NEXT(28\$);

253\$ ASSIGN: Failed Sealer Inspection Part C.NumberOut False=Failed Sealer Inspection Part C.NumberOut False + 1 :NEXT(29\$);

QPICK, POR:

\$TCS\$

\$ABC\$

;

Part	B:
Part	A:
Part	C;

;

\$TBA\$

Part A	
Part B:	
Part C;	

36\$ ALLOCATE, 1:Prep Cart,Order Release Station:MARK(Arrive Time):NEXT(37\$);

., ,

; Model statements for module: Transport 1

, 39\$ TRANSPORT: Prep Cart, Prep Arrival. Station, Transport Velocity;

Model statements for module: Delay 7

;

., ,

;

63\$ DELAY: EXPO(.5),,Wait:NEXT(64\$);

Model statements for module: Enter 4

30\$	STATION,	Rework Arrival.Station;
259\$	DELAY:	Unload Time,,Transfer:NEXT(261\$);

261\$ FREE: Cart 2:NEXT(5\$);

; ; ; Mode	el statements f	for module: Process 4
;		
5\$	ASSIGN:	Rework Process.NumberIn=Rework Process.NumberIn + 1:
	Rew	ork Process.WIP=Rework Process.WIP+1;
299\$	STACK,	1:Save:NEXT(273\$);
273\$	QUEUE,	Rework Process.Queue;
272\$	SEIZE,	1,Other:
	Rew	ork,1:NEXT(271\$);
271\$	DELAY:	Rework Time,,Other:NEXT(314\$);
314\$	ASSIGN:	Rework Process.WaitTime=Rework Process.WaitTime +
Diff.Wai	tTime;	
278\$	TALLY:	Rework Process.WaitTimePerEntity,Diff.WaitTime,1;
280\$	TALLY:	Rework Process.TotalTimePerEntity,Diff.StartTime,1;
304\$	ASSIGN:	Rework Process.OtherTime=Rework Process.OtherTime +
Diff.Othe	erTime;	

305\$	TALLY:	Rework Process.OtherTimePerEntity,Diff.OtherTime,1;
270\$	RELEASE :	Rework,1;
319\$	STACK,	1:Destroy:NEXT(318\$);
318\$	ASSIGN:	Rework Process.NumberOut=Rework Process.NumberOut
+ 1:		
	Rewo	rk Process.WIP=Rework Process.WIP-1:NEXT(16\$);

Model statements for module: Decide 6 16\$ BRANCH, 1: If,Entity.Type==Part A,6\$,Yes: If, Entity. Type==Part B, 17\$, Yes: If,Entity.Type==Part C,18\$,Yes: Else,19\$,Yes; Model statements for module: Dispose 4 19\$ ASSIGN: Dispose of Rework Exceptions.NumberOut=Dispose of Rework Exceptions.NumberOut + 1; **DISPOSE:** 323\$ Yes; Model statements for module: Decide 2 6\$ BRANCH, 1: With, 19/100, 324\$, Yes: Else,325\$,Yes; ASSIGN: Failed Rework Inspection Part A.NumberOut True=Failed 324\$ Rework Inspection Part A.NumberOut True + 1 :NEXT(32\$); 325\$ Failed Rework Inspection Part A.NumberOut False=Failed ASSIGN: Rework Inspection Part A.NumberOut False + 1

:NEXT(34\$);

;

; Model statements for module: Station 15
32\$STATION, DELAY:Failed Rework Parts Station; 0.0,,VA:NEXT(53\$);
; ; ; 53\$ QUEUE, Request Cart to Scrapped Parts.Queue; ALLOCATE, 2:Cart 2(SDS):NEXT(55\$);
 Model statements for module: Move 2 55\$ MOVE: Cart 2, Failed Rework Parts Station, 50:NEXT(56\$);
; ; Model statements for module: Delay 5 ; 56\$ DELAY: Load Time,,Transfer:NEXT(57\$);
; ; ; Model statements for module: Transport 5 ; 57\$ TRANSPORT: Cart 2,Scrapped Parts Arrival.Station,Transport Velocity;
; Model statements for module: Station 16
34\$STATION,Salvaged Parts Station;332\$DELAY:0.0,,VA:NEXT(58\$);

; Model statements for module: Request 4
, 58\$ QUEUE, Request Cart to Salvaged Parts.Queue; REQUEST, 1:Cart 2(SDS),50:NEXT(60\$);
Model statements for module: Move 3
60\$MOVE:Cart 2, Salvaged Parts Station, 50:NEXT(62\$);
; ; Model statements for module: Delay 6 ; 62\$ DELAY: Load Time,,Transfer:NEXT(61\$);
; ; ; Model statements for module: Transport 6 ; 61\$ TRANSPORT: Cart 2,Salvaged Parts Arrival.Station,Transport Velocity;
; ; Model statements for module: Decide 7
, 17\$ BRANCH, 1: With,27/100,334\$,Yes: Else,335\$,Yes; 334\$ ASSIGN: Failed Rework Inspection Part B.NumberOut True=Failed Rework Inspection Part B.NumberOut True + 1
:NEXT(32\$); 335\$ ASSIGN: Failed Rework Inspection Part B.NumberOut False=Failed Rework Inspection Part B.NumberOut False + 1 :NEXT(34\$);

Model statements for module: Decide 8 18\$ BRANCH, 1: With,40/100,336\$,Yes: Else,337\$,Yes; 336\$ ASSIGN: Failed Rework Inspection Part C.NumberOut True=Failed Rework Inspection Part C.NumberOut True + 1 :NEXT(32\$); 337\$ ASSIGN: Failed Rework Inspection Part C.NumberOut False=Failed Rework Inspection Part C.NumberOut False + 1 :NEXT(34\$); Model statements for module: Enter 5 31\$ Shipped Parts Arrival. Station; STATION, 338\$ DELAY: Unload Time,,Transfer:NEXT(340\$); 340\$ FREE: Cart 2:NEXT(70\$); Model statements for module: Decide 11

70\$

;

BRANCH,

1:

Else,74\$,Yes;

If,Entity.Type==Part A,72\$,Yes: If,Entity.Type==Part B,71\$,Yes: If,Entity.Type==Part C,73\$,Yes:

; ; Model statements for module: Dispose 10 ; 74\$ ASSIGN: Dispose 10.NumberOut=Dispose 10.NumberOut + 1; 351\$ DISPOSE: Yes; Model statements for module: Record 16

72\$ TALLY: Record Part A Shipped Time,INT(Arrival Time),1:NEXT(75\$);

, Model statements for module: Record 18
, 75\$ COUNT: Record Part A Shipped,1:NEXT(78\$);

; ; Model statements for module: Record 21 ; 78\$ COUNT: Record Total Shipped,1:NEXT(9\$);

; ; Model statements for module: Dispose 3 ; 9\$ ASSIGN: Shipped.NumberOut=Shipped.NumberOut + 1; 352\$ DISPOSE: Yes;

; ; Model statements for module: Record 15 ; 71\$ TALLY: Record Part B Shipped Time,INT(Arrive Time),1:NEXT(76\$);

; ; Model statements for module: Record 19 ; 76\$ COUNT: Record Part B Shipped,1:NEXT(78\$);

, , ,

Model statements for module: Record 17 73\$ Record Part C Shipped Time, INT (Arrival TALLY: Time),1:NEXT(77\$); Model statements for module: Record 20 77\$ Record Part C Shipped, 1:NEXT(78\$); COUNT: Model statements for module: Enter 6 33\$ Scrapped Parts Arrival.Station; STATION, 353\$ DELAY: Unload Time,,Transfer:NEXT(355\$); 355\$ FREE: Cart 2:NEXT(79\$); Model statements for module: Decide 12 79\$ BRANCH, 1: If,Entity.Type==Part A,81\$,Yes: If,Entity.Type==Part B,80\$,Yes: If,Entity.Type==Part C,82\$,Yes: Else,83\$,Yes; Model statements for module: Dispose 11 83\$ Dispose 11.NumberOut=Dispose 11.NumberOut + 1; ASSIGN: 366\$ DISPOSE: Yes; Model statements for module: Record 23

81\$ Time)	TALLY: ,1:NEXT(84\$);	Record Part A Scrapped Time, INT (Arrival
; ; M ; 84\$	odel statements fo COUNT:	r module: Record 25 Record Part A Scrapped,1:NEXT(87\$);
; ; M ; 87\$	odel statements fo COUNT:	r module: Record 28 Record Total Scrapped,1:NEXT(8\$);
; ; M ; 8\$ 367\$	odel statements fo ASSIGN: DISPOSE:	r module: Dispose 1 Scrapped.NumberOut=Scrapped.NumberOut + 1; Yes;
; 80\$	odel statements fo TALLY: ,1:NEXT(85\$);	r module: Record 22 Record Part B Scrapped Time,INT(Arrive
; ; M ; 85\$	odel statements fo COUNT:	r module: Record 26 Record Part B Scrapped,1:NEXT(87\$);
; ; ; M	odel statements fo	r module: Record 24

82\$ TALLY: Record Part C Scrapped Time, INT (Arrival Time),1:NEXT(86\$); Model statements for module: Record 27 86\$ COUNT: Record Part C Scrapped, 1:NEXT(87\$); Model statements for module: Enter 7 35\$ STATION, Salvaged Parts Arrival.Station; 368\$ DELAY: Unload Time,,Transfer:NEXT(370\$); 370\$ FREE: Cart 2:NEXT(66\$); Model statements for module: Decide 10 66\$ BRANCH, 1: If,Entity.Type==Part A,68\$,Yes: If,Entity.Type==Part B,7\$,Yes: If, Entity. Type==Part C, 69\$, Yes: Else,67\$,Yes; Model statements for module: Dispose 9 Dispose 9.NumberOut=Dispose 9.NumberOut + 1; 67\$ ASSIGN: 381\$ DISPOSE: Yes; Model statements for module: Record 12 68\$ TALLY: Record Part A Salvaged Time, INT (Arrival Time),1:NEXT(75\$);

; Model statements for module: Record 2 ; 7\$ TALLY: Record Part B Salvaged Time,INT(Arrive Time),1:NEXT(76\$);

; Model statements for module: Record 14 ; 69\$ TALLY: Record Part C Salvaged Time,INT(Arrival Time),1:NEXT(77\$);

Appendix D

Cumulative NOI

This appendix presents the cumulative NOI under the various experimental conditions. Review of management accounting system performance under the nine experimental conditions (three levels of manufacturing overhead by three levels of product mix complexity) shows no significant difference in cumulative net operating income when product mix complexity is low. Activities-based costing begins to significantly outperform the other two management accounting system alternatives at a medium demand setting for product mix complexity. This difference becomes more pronounced as product mix complexity is set at a high level. At this high setting, time-based accounting begins to slowly outperform traditional costing systems.

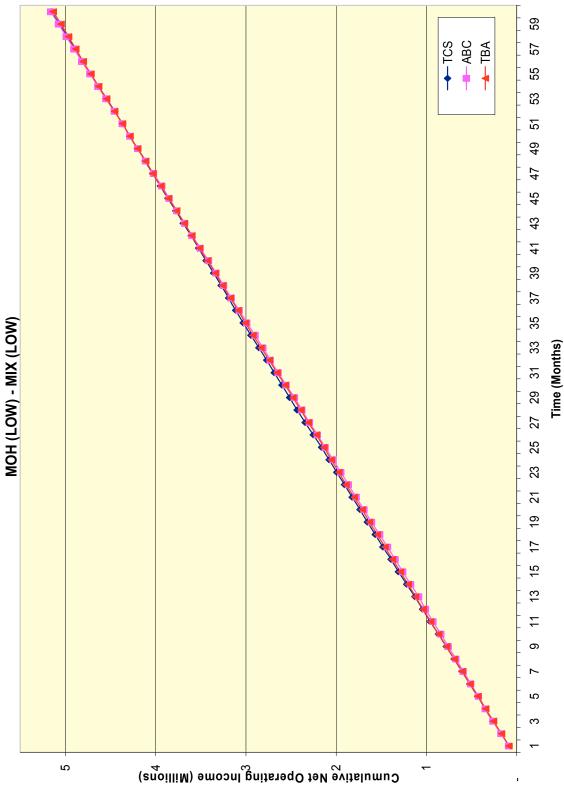


Figure D.1: Cumulative Net Operating Income by MAS (Experimental Condition Group 1)

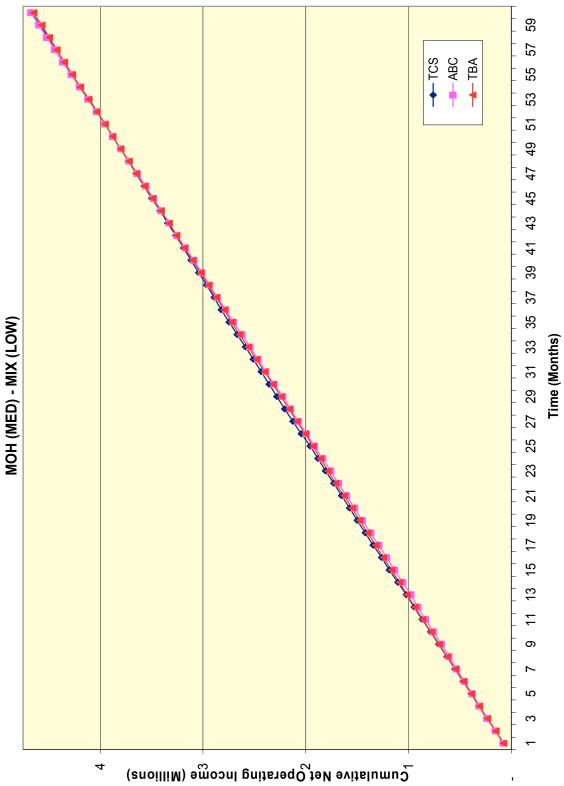


Figure D.2: Cumulative Net Operating Income by MAS (Experimental Condition Group 2)

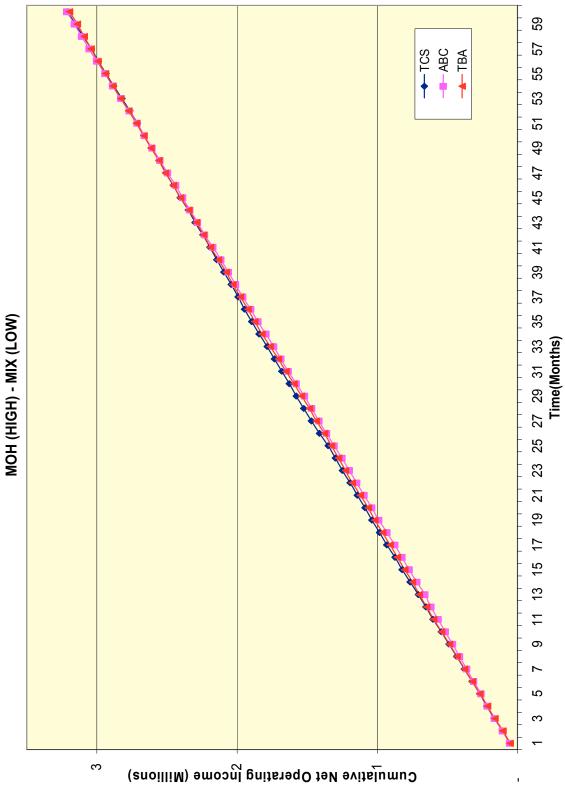


Figure D.3: Cumulative Net Operating Income by MAS (Experimental Condition Group 3)

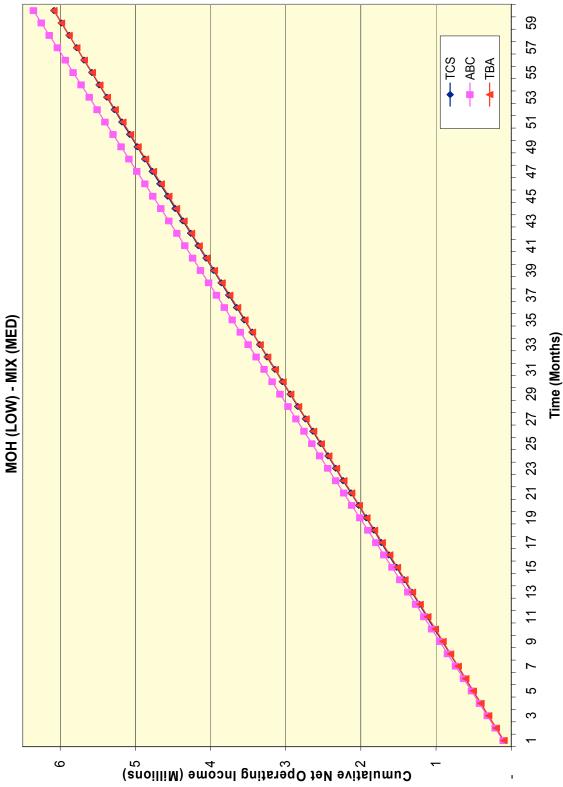


Figure D.4: Cumulative Net Operating Income by MAS (Experimental Condition Group 4)

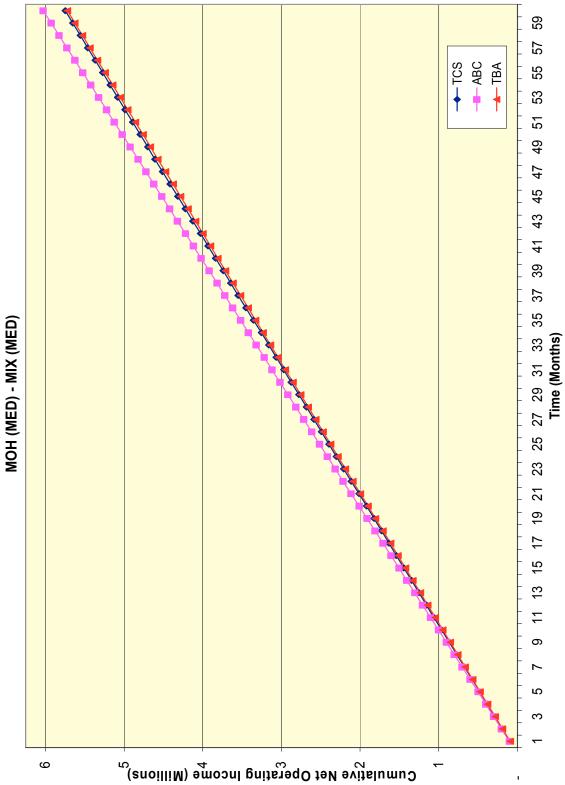


Figure D.5: Cumulative Net Operating Income by MAS (Experimental Condition Group 5)

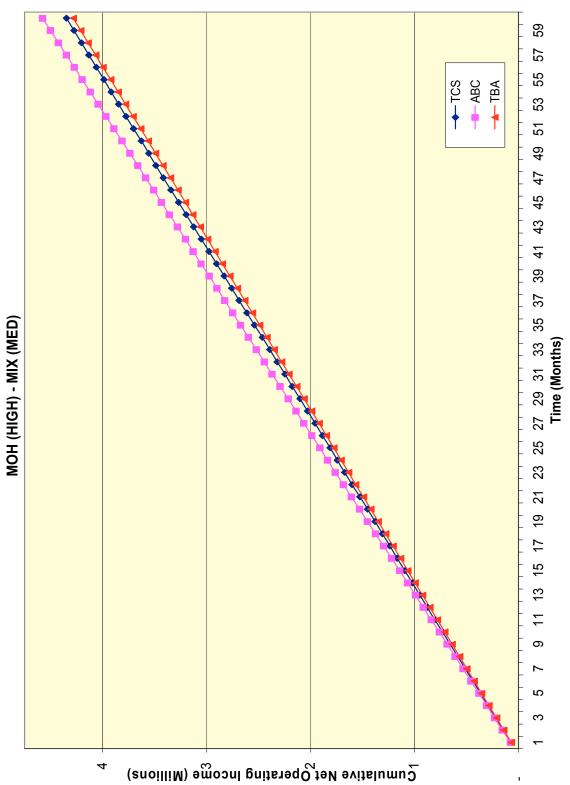


Figure D.6: Cumulative Net Operating Income by MAS (Experimental Condition Group 6)

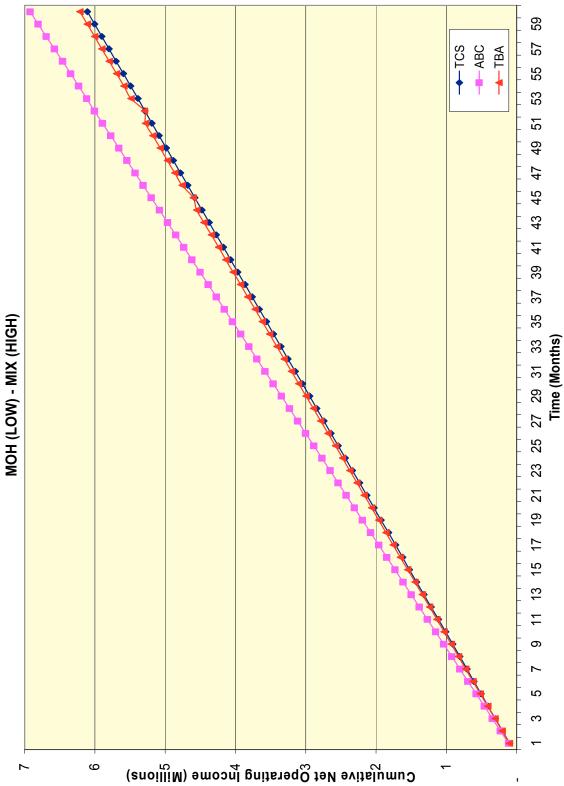


Figure D.7: Cumulative Net Operating Income by MAS (Experimental Condition Group 7)

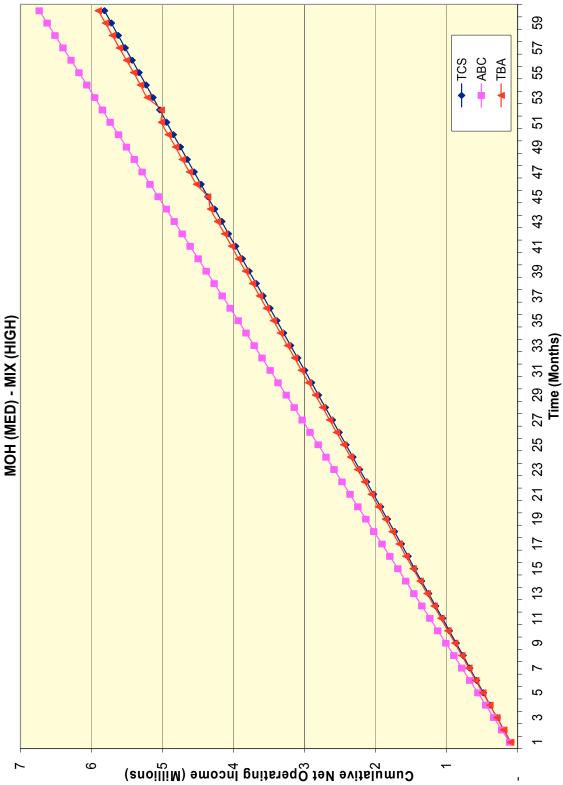


Figure D.8: Cumulative Net Operating Income by MAS (Experimental Condition Group 8)

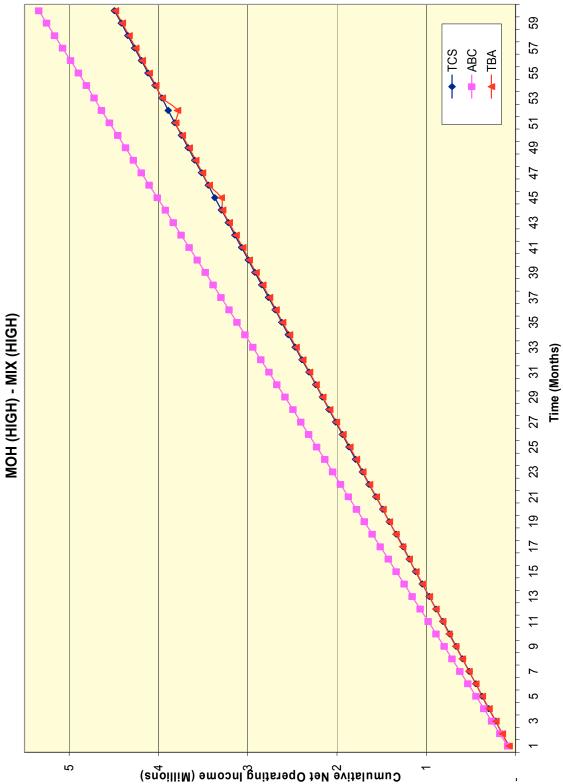


Figure D.9: Cumulative Net Operating Income by MAS (Experimental Condition Group 9)

Appendix E

Raw Data

This appendix presents the raw data generated from the ARENA simulation model. These data were then loaded into an Excel spreadsheet and sorted for uploading into SPSS for further statistical analyses. What is shown in the following 18 pages are the data in the Excel spreadsheet format.

	od Total Cycle	- I							47 389.70		33 394.90 of occod		. 10 380.80 .69 397.22																			61 392.22								00.282 80.00					26 394.54 50 394.09					
	eriod Dycle					90 300.00 95 421.44			95 384.47	95 383.14	95 449.33	90 400.97 36 405.97	50 369.69	95 404.60		95 401.17	50 3/4.08		96 337.	95 425.14			90 336 00 06 336 00	95 401.64		96 390.67	95 379.	95 441.47 25 245.00		95 433.82	95 400		40 38/.88 36 427.26	95 325.69	95 449.92	95 396.42 or 270.00	95 391.62	95 325.26	95 416.	90 384/08 06 466.26	95 367.42	95 390.83	95 412.18	95 432.81	95 407.26 95 374.50	90 3/4/00 96 461.64	95 364.26	95 412.06	95 333.40 or 333.40	120
	-	· -	96 0.96 097 0.97	0.91 0.95	95 0.95 or 0.95	0.95 0.95 0.96		0.95 0.95	0.95 0.9	0.95 0.9	0.95 0.9	910 900 910 910 910 910 910 910 910 910	0.95 0.9	0.95 0.9	0.95 0.95	0.95 0.9	0.00 U.U	2810 2810 2810 2810	95 0.9	0.95 0.9	0.95 0.9	0.95 0.95	80 900	50 0.0	0.95 0.95	95 0.9	0.95 0.9	-		98 070	95 0.9	95 0.95	80 980	0.95 0.9	0.95 0.9	0.95 0.9	0.05 0.0	0.95 0.9	0.95 0.9	80 90 90 0	6.0 0.00 0.06	0.95 0.9	0.95 0.9	0.95 0.9	0.95 0.9	0.05 0.0	0.95 0.9	0.95 0.9	0.95 0.9	
- - -		-																																													- 01	_	0	
Product C	Total	Shipp		236		9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	733		904		1133	1226	130	1385	14/	1638	173	1823	1884	1968	2112 2112				2463	266	40 C	2814	289	2962	505 212	900	3279	3372 24e0	3636	3621	3713	3875	3945	4028	4108	4186	4267	87 197 197	464	4624	470	
	Period	Shipped	88	12	£0 5	58	8	8	8	88	83	55	- 0	8	11	8	38	88 72	82	8	61	28	9 5	: 8	77	8	8	58	88	88	79	21	e 8	8	6	88	88	8	6	2 8	22	8	8	88	28	; 8	5	82	28	
riables	Total	Demand	88 <u>5</u>	268	362	9 8 9	627	719	810	100	101	1096	1257	1365	1436	1524	9191	1791	1885	1996	2059	2147	2300	2414	2496	2693	2688	2797	2882	3074	3154	3231	3399	3469	3569	3677	3862 3862	3940	4040	4120	4307	4397	4481	4667	4658 4766	4862	4957	5042	6122	
Dependent Variables	Period	Demand	88	67	28	88	5	91	91	5	110	8 8	22	8	8	8	3 5	78	8	111	89	85	76	50	82	97	8	<u>6</u> 2	2 2	56	8	1	28	2	ē	8 8	9 02	8	ē:	ŝĘ	78	8	84	83	19	38	8	8	8	
Depel	Cycle	Time	264.83 283 40	302.43	305.02	312.18 314.67	319.91	318.00	317.05	316.09 200 Tr	322.75	319.11	316.10 316.10	315.98	313.45	312.88	777115	309.34	306.77	310.43	305.80	305.42 205.42	303.46 303.46	306.19	304.27	306.70	305.45	308.53	308.80 311.34	313.14	313.34	311.83	312.79 312.79	311.18	312.73	313.32	312.30	310.75	312.24	313.13 314.66	313.46	313.19	312.68	313.37	313.60 313.66	314.66	314.65	314.75	313.62	
	Period Cycle	Time	264.83 303 33	336.43	312.98	328.01	361.15	304.70	309.44	307.53	391.41 211.01	70.772	246.31	314.36	275.99	303.90	/7:587	217.62	264,90	380.20	211.92	296.24 205 40	264.14	376.71	249.30	343.35	298.43	401.24	321.07	374.05	320.01	269.20	288.21 361.37	250.79	376.26	335.53	292.03	246.02	373.67	90702 582 08	266.61	300.82	289.50	349.98 201.00	325.03	371,05	314.09	320.27	246.02	
	Total	DFR	9 9 9 9	3 <u>9</u>	8 9	88.0 0.00	0.99	66.0	0.99	0.00	66.0	8.0	80	0.99	0.99	0.99		RR 0	0.99	0.99	0.99	0.00		800	0.99	0.99	0.99	0.00	88.0	660	0.99	0.99	800	0.99	0.99	8.0	RR 0	66:0	0.99		660	0.99	0.99	0.99	800	88°0	0.99	66.0	0.99	
		DFR	8 8	2 <u>2</u>	1.0	800	66'0	0.99	66'0	80	66.0	BB 0	80	0.99	0.99	0.99	0000 0000	800	66'0	0.99	66'0	80		660	0.99	0.99	0.99	800	68 C	80	66'0	000	68.0 68.0	66.0	0.99	80		0.99	0.99		66.0	0.99	0.99	0.00	80		660	0.99	0.99	
Product B	Total	Shipped	362	1075	1425	20/1	2428	2777	3125	3474	3811	4141	4812	5168	5517	5867	6129	5003 6902	7244	7624	8000	8331	1008	9362	9689	10067	10415	10761	11472	11811	12165	12514	13241	13594	13931	14301	14003	15352	16725	1907/	16768	17134	17511	17841	18200	18921	19261	19610	19933	
	Period		362	392	360	327	340	348	340	88 87 87 87 87 87 87 87 87 87 87 87 87 8	337	330	334	366	840	360	202	1976 1976	342	380	376	8	0.05 2019	366	327	368	358	978 979	88	88	354	340	809 809	363	337	370	- F98	359	373	202	978	366	377	330	320	905 302	940	340	323	
	Total	Ð	369	1104	1463	2143	2409	2855	3210	3566	3917	4263	4846 1004	5304	5657	6023	6780	67783 7083	7429	7819	8203	8542	0003 0731	9298	9931	10309	10688	11061	11769	12115	12479	12831	13/587	13948	14307	14693	15404	15772	16151	16871	17240	17622	18008	18364	18724	19481	19830	20183	20622	
	Period		369 342	66	369	338	356	356	356	368	361	346	346 346	358	363	366	/05 0	354 U	346	390	384	339	145	367	333	378	379	88	398 398	946 946	364	362	/89 998	361	369	386	360	368	379	262	360	382	386	346	370	376	340	363	339	
-	Total Cycle	+	266.95 27.4 06	290.83	290.50	301.37	305.88	304.63	304.00	303.37	308.79 006.04	306.04 206.64	802.07	302.30	300.72	300.22	19.967	18'887	293.46	295.62	291.68	291.62	04/182	291.53	289.96	290.73	291.16	293.98	18/18/	298.32	298.23	296.72	07.062	296.12	297.41	298.29	/R/R2	296.12	297.68	298.10	298.75	298.86	298.60	298.93	299.22	21.962	299.81	299.91	298.69	
	Period T Cycle D		266.96 2 283.06 2			323.18 3							244.12 3			-	2 11.0/2						240.00 Z					377.34 2 204 TE 2					2 92.785			334.14 2				367.00 2		304.11 2			313.59 2 203.66 2	,				
	Total	DFR	9 F	3 <u>8</u>	8 9	3 8	1.00	1.00	1.00	8	8,8	8.8	3 8	1.00	1.00	<u>6</u>	8,	3 8	1.00	1.00	1.00	8 9	3 8	3 <u>8</u>	1.00	1.00	1.0	8 9	3 5	<u>8</u>	1.00	910	3 8	8	1.0	9 9 9	3 8	1.0	<u>6</u>	3 8	3 8	1.0	1.00	001	8 8	3 8	8	1.00	0.1	
	Period	DFR	8 8	9 <u>6</u>	8 9	8	1.00	1.00	1.00	8 8	8.9	8.9	8 8	1.00	1.00	100	8,	8 8	1.00	1.00	1.00	8 9	8.8	8 8	1.00	1.00	1.00	8 9	3 5	9 9	1.00	9 9 8	3 5	6	100	8 8	8	1.00	01	8.8	8 6	1.00	1.00	0 1 0 0	8 8	3 8	6	1.00	1.0	
Product A	Total	Shipped	1419 2823	4311	6732	8701	10137	11573	13008	14444	15827	1/333	20233	21618	23072	24465	/158020	28667	30078	31478	32907	34292	37120	38556	39977	41401	42803	44261	40000	48644	50074	51460	54303	55729	67160	58553 #0022	61321	62702	64145	05050	68424	69858	71236	72683	74150	76940	78325	79762	81179	
	Period	Shipped	1419	1488	1421	1513	1436	1436	1436	1436	1483	1406	644	1385	1454	1383	1382	1382	1411	1400	1429	1385	1474	1427	1421	1424	1402	841	1472	1607	1430	1386	1380	1426	1421	1403	1398	1381	1443	194	1375	1434	1378	1447	1467	1432	1385	1437	1417	
	Total	Ð	1422 2843	4347	5778	F07 /	10224	11671	13118	14685	15053	174/0	20394	21791	23256	24670	78048	28893	30310	31720	33159	34683 24004	37410	38862	40292	41730	43138	44697 46076	40020	49015	50451	51850	54720 54720	56157	67586	58995 e0200	61790	63188	64647	60100 67560	68950	70384	71772	73229	74712 76080	77619	78911	80367	81793	
	Period		1422	1504	1431	1508	1447	1447	1447	1447	1488	1417	29 <u>1</u>	1397	1465	1414	13/9	1385	1417	1410	1439	1404	1424	4	1430	1438	1408	1469	1480	1609	1436	1389	14/4	1437	1429	1409	1400	1398	1469	1464	1381	1434	1388	1467	1483 1368	1439	1382	1446	1436	
¥	1	MIX					-	-	-					-	-		- ,		-	-	-				-	-	-				-			-	-			-				-	-	- •				-	-	
Independent Variables		HOM			- •		-	-	-					-	-				-	-	-				-	-	-			· -	-			-	-			-				-	-	- •			· -	-	-	
e V a		MAS	<u>е</u> е	0 ო	<i>с</i> (n n	m	м	м	<i>с</i> с	n d	m 0	n n	е	м	е 1		n m	m	e	м	<i>с</i> с	n e) M	м	m	м	<i>с</i> , с	n (1	ი ი	m	<i>с</i> (n 0	0	m	e e	n m	м	е 1	n ("	n n	e	m	<i>с</i> (<u>n</u> e	ი თ	n m	0	m	
	plication	Number	- 2	ŝ	4 4	9	7	~	6	2 ₽	= ;	4 00	4	15	9	2 ≎	<u>e</u> é	20	21	22	23	24	26	27	28	29	83	58	33	34	35	36 37	88	39	9 :	4 9	4 5	44	45	47	- 84	49	50	5 2	2 5	54	55	22	10	

Г	_	a a	211.38 193.88	8	5.21	4	9.0	<u>4</u> 8	190.83	0.87	9.52	188.71	190.04	190.27	990		.58	189.33	188.63	10.0	3 8	0.89	0.12	1.61	0.00	15	0.51	0.27	5 2	18,0	0.20	8.0	190.83	0.79	6.6	6	191.58	192.02	192.96	55	228	192.85	193.15	12	192.82	193.00	193.10	192.83 193.13
		-																																														
	Period	Cycle Time	211.38	183.1	203.14 199.86	176.06	189.30	182.44 187.69	186.80	191.38	170.8	179.01	203.35	193.14	195.50	178.14	184.42	184.9	174.18	BU:381	270.07	208.46	195.00	203.86	182 05	169.55	167.67	210.26	187.76	190.80	203.36	211.26	187.03	189.3	213.70	208.3	182.18	210.12	198.18	172.41	194.21	205.56	206.94	166.04	198.70	201.10	198.14	173.01 211.73
		DFR DFR	0.10	0.11	E 0	0.11	11 0 11 0 11 0	5 5	5 5	0.11	0.11		5 H 0	0.11	E 0	5	5 E 0	0.11		55	- H-0	0.11	0.11	E 5	5 5	5 E O	0.11	0.1	E 0	5 5	0.11	E 0	5 5	0.11	1. C	- H-0	0.11	E 0	5 5	0.11	0.11	5 G	5 F	0.11	0.11	0. 11.0	5 E 0	0.11
		Period DFR	0.10	0.11	E 0	0.11	0.11 1	E 0	- F	0.11	0.11	1. F	. H.O	0.11	1.0 1.1	5	- F-0	0.11		55	- H-0	0.11	0.11	E 5	5	- F-0	0.11	0.11	E 5	- H-0	0.11	E 0	- F-	0.11	1. C	- H-0	0.11	1.0 1.1	- F	0.11	0.11	5 G	- E	0.11	0.11	11 O	- F:0	0.11
	Lognet C	Total hipped	88	411	201 102	236	270	5 8	373	402	431	79 F	290	679	613 643	86	902	743	6//	112	f 8	830	973	1009		1126	1159	1203	1238	1318	1354	1406	£ ₹	1521	1564 1607	1646	1687	1728	1813	1840	1883	1923	2000	2033	2071	2117 2166	2202	2232 2268
'		ő	84	8	4 4	8	8.5	8 8	3 8	59	28	8 8	5 8	8	8 3	88	18	37	88	85	- 8	47	8	89	3 8	2 6	8	4	89	38	36	5 5	5 8	4	4 6	2 88	42	1 1	2 2	8	48	88	7 6	; 8	88	4 %	84	88
		Period Shipped																					•					•														•	,			• •		
riables		Total Demand	318 776	1094	1466	2182	2642	2082	3622	3945	4298	4680	5334 5334	6713	6069	R040	7120	7505	7894	2428	8972	9316	9687	10016	10201	11125	11530	11863	12227	12996	13348	13716	14431	14826	15165	15880	16265	16609	17318	17704	18040	18406	19095	19460	19815	20196	20954	21313 21635
Dependent Variables		Period Demand	318 408	368	372 363	363	360	098 990	360	323	353	382	321	379	346	274	337	385	389	275 275 275	374	344	371	329	204	371	405	333	364	367	362	368	360	395	339	325	385	344	349	386	336	366	357	365	365	381 267	391	369 322
Depe	Total	Cycle Time	444.11 446.24	448.72	464.69 446.62	446.82	447.81	448.8U 440 78	450.77	448.58	447.95	440.29 440.01	448.83	448.42	447.35	8 - 1944	448.39	448.64	448.90	448.77 440 15	449.68	449.59	448.97	449.00	400.28	461.29	451.14	461.37	450.68 454.0e	461.31	460.92	461.33 460.36	461.39	451.40	461.76 462 70	452.87	462.97	463.04 450.07	403.07 463.62	453.46	453.95	454.07 452.07	464.23	463.55	463.21	463.58 463.73	463.40	463.30 463.77
	Period	Cycle Time	444.11 448.38	464.00	471.53 413.56	448.27	463.61 457.50	400.08 457.56	469.53	424.91	441.05	464.36 442 72	449.11	442.60	429.43 470.64	10.8/4	450.80	463.50	454.22 445.00	440.92 467.60	463.30	447.36	432.37	449.80	462.01	473.68	446.55	458.76	428.37	403.04	436.13	466.39 400.30	475.72	451.80	466.59 402.22	466.31	467.46	456.04	404.41	445.42	476.34	460.08	461.61 461.61	414.80	433.61	473.22 461.72	434.19	447.65 478.89
		DFR DFR	64:0 84:0	9.0 84.0	87 19 19 19 19 19 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10	64.0	9 9 9		f 6	0.49	0.49	6 6 7 7	e 69-0	0.49	6 6 7	P 9	6	6.0	8 8 8	8-0 1-0-0	f 6	0.49	0.40	6 6 7	8	6	0.40	0.40	0.0 8.0	64.0	0.49	6 6 6	f 6	64.0	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 8 8 7 8	0.49	8 8 8		6.0	0.40	6,0	8 8 8	2 67 67	0.49	6 6 7	F 6	0 64:0 64:0
		· 1	0.50	0.48	0.63	67.0	0 97 97 97 97 97 97 97 97 97 97 97 97 97	19 19 19 19	f 6	0.40	0.49	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	64:0	0.49	6 6 7	P 9	6	0.40	6 6 7	R# 0	8-0 8-0	0.49	0.49	6 6 6	8 6 7	6	0.48	0.40	6 6 7	64:0	0.49	0 6 7	f 6	0.49	0 97 97 97 97 97 97 97 97 97 97 97 97 97	64:0	0.49	6 6 7	19 19 19	64:0	0.40	6 6 6	₽; 0 ₽; 0	0.40	0.49	0 67 67 67 67 67 67 67 67 67 67 67 67 67	F 67	0.40 0.40
	n	Shipped 1	692 1380	2028	2747 3428	4135	4839	59-00 57-47	6951	7594	8287	9024 0736	10419	11163	11819	12100	13910	14625	15340	16791	17396	18099	18776	19481 20261	20082	21683	22391	23088	23802	26224	25889	26694 2720e	28014	28709	29406	30876	31563	32300	33782	34464	35208	35911	37330	37985	38644	39372	40800	41522 42299
		Period 1 Shipped St	692 688	848 848	681 681	707	704	704	704	643	693	737	684	734	999	685 685	112	715	715	RRD 69	975 102	703	676	706	701	721	708	697	417	07./	665	705	718	695	697 760	702	687	737	22/	672	754	703	(ol c) 1737	855	659	728 730		722
		Total Pe Demand Shi	1444 2880	4250	5655 7119	8656	9989	1423 12866	4289	6732	17234	18693	21632	23146	4603 5005	1460	28925	0392	31840	1155	36093	7632	8008	0466	1903	44742	6220	47620	9179 0e10	2034	63466	54843 5000	7728	59174	60578 61057	53398	64796	66270 ettoe	07/20 89138	70673	72015	'3436 14070	48/U	7788	9227	30640 22000	3678	85077 86560
																																										-			-			
-		Period	1444		1405			1433				1469			1467				44 1 1 1 1 1 1					1447		1407			1559			1377		1446				1474				142	194 194	1478	1439	1413	f <u>4</u>	1489
	Total	Cycle Time	710.62	708.73	705.24	704.78	705.11	705.78	706.11	706.56	707.99	707.98	708.58	709.13	708.92	07'B0/	708.64	708.93	709.32	67.60/	709.32	709.26	709.39	709.34	00'BN/	709.92	709.85	709.71	709.92	710.02	710.11	710.19	710.05	710.32	710.83	711.08	710.97	710.94	710.92	711.09	711.09	711.10	711.32	711.32	711.34	711.38	711.38	711.47 711.49
	Period	Cycle Time	704.02 717.38	705.05	721.89 678.42	702.49	707.11	708 44	709.10	710.80	723.39	707.85	713.96	717.80	705.64	705.05	701.20	714.85	717.64	20/20/20/20/20/20/20/20/20/20/20/20/20/2	712.19	707.72	712.79	707.98	12:515	711.76	707.68	705.14	716.88	716.73	713.24	713.32	709.26	721.30	732.18	718.41	695.07	710.13	709.94	718.99	711.09	711.61	715.08	711.32	712.39	713.67 710.70	711.96	716.63 712.73
		DFR DFR	8 8	0,0	8 8	0,1	8 8	2 2	8 8	0.1	0.1	8 9	<u>8</u>	0; 10	8 9	3 8	8 8	00.1	8 9		<u>8</u> 8	1.00	100	8 9	3 8	8 8	1.00	9	8,8	3 8	0,1	8 9	8 8	6. 9	8 9	<u>8</u>	1.00	8 9	3 8	0.1	1.00	8 9	8 8	<u>8</u>	1.00	<u>6</u> 6	8 8	00.1
		Period DFR	9 F	0.1	8 8	1.0	<u>5</u>	2 2	8 8	1.0	1.00	8 9	8 8	1:00	8 9	8 8	8	1.00	89	8.8	8 8	1.00	1.00	8 9	3 8	8 8	1.00	6	8 8	3 8	1.00	8 9	8 8	6.1	8 9	8 8	1.00	8 9	8	0.1	1.00	8 9	3 8	6	1.00	<u>6</u> 6	3 <u>8</u>	0.1 0.1
	¢	Total Shipped	1466 2897	4385	5794 7239	8693	10142	13040	14489	16025	17513	18908 20262	21838	23223	24708	27854	29103	30529	31960	233383 24006	36354	37767	39210	40651	43412	44828	46273	47692	40132	51970	53465	64833 £e010	57695	59114	60526 61071	63305	63743	66112 e7 <i>4</i> 50	0/408 68831	70313	71715	73131	76981	77603	78982	80364 e1760	83174	84626 85987
		Period Shipped	1466 1431	1488	1409 1445	1464	1446		ŧ į	1536	1488	1395	1476	1385	1485	1500	644	1426	1431	1403	1468	1413	1443	144	132/	1416	1445	1419	044 044	1431	1495	1368	1417	1419	1412	1434	438	2369	1373	1482	1402	1416	1389	1622	1479	1382	1415	1461 1362
		Total Demand S	1463 2905	408	5845 7302	8772	10246	13190	14662	16192	17684	19904 20666	22048	23462	24968 26440	27082	29431	30874	32310	33/83 56/00	36774	38197	39647	41102	42802	46330	46794	48229	49682	52546	54063	66439 56047	58334	59769	61191 62662	63988	65437	66820 eo477	081// 69574	71064	72497	73911	76798	78336	79843	81212 92837	84067	85533 89906
		Period Demand D	1463 1462	1503	1456 1466	1470	1473	14/3	1473	1530	1482	2220	1403	1414	1506	1442	1469	545 845	1436	1600	1472	1423	1460	1465	7021	1438	1464	1435	1463	1463	1617	1376	1417	1435	1422 1382	1435	1449	1383	1397	1490	1433	1414	1404	1537	1508	1369	1430	1466 4373
		MIX	<i>м м</i>				<i>с</i> с			ю	м	<i>с</i> с		0		• •		m	<i>с</i> с			e	м		n (*		m	с			e	с с		m	<i>с</i> с	ი ო	e		" "	m	m	<i>с</i> с	• •				• m	
Independent		мон				-				-	-			-				-	- ,			-	-				-	-			-			-			-			-	-			-	-			
Indep		MAS	<u>м</u> м	(M) (m m	. ი	<i>с</i> (n 0	ο <i>ო</i>	ο	m	<i>с</i> с	ი ო	m		9 (°	0 00	m	<i>е</i> с	n 0	n ო	e	м		n (*	0 00	ο	е		n m	m	<u>е</u> с	n m	m	е е	0 00	en		n m	m	Μ	<i>с</i> с	<u>, </u>	. m	en		0 m	
			- ~	ε. Γ	+ 10	9	<u></u>	• •	9	7	2 9	2 7	15	99	18	<u>e</u>	20	21	38	24	25	26	27	87 DZ	30	31	32	33	35	36	37	8 g	40	4	43	4	45	8 £	7 84	49	50	5 62	53	54	55	96 26	28	59 60
		Replication Number																					н	ын	IM	ют	A	at BT																				

Dependent Variables	Period Total	Period Total Cycle Cycle Peric DFR DFR Time Time Dema	100 100 303.18 303.18 81 81 77 100 100 304.77 303.69 89 170 80	1.00 1.00 323.94 310.20	1.00 1.00 256.56 295.59 97 358 95 1.00 1.00 220.83 291.99 68 436 66	1.00 1.00 322.03 288.41 97 533 86	1.00 1.00 248.08 282.91 85 518 1.00 1.00 264.89 280.73 85 704	1.00 1.00 260.49 278.54 85 789 80	1.00 1.00 290.15 279.67 85 874 80	1.00 1.00 270.93 278.87 1.00 1.00 248.11 278.26	1.00 1.00 240.11 2/0.20 04 1040 01 01 040 01 01 040 01 01 01 040 01 01 01 01 01 01 01 01 01 01 01 01 01	1 1.00 332.18 276.36 96 1209 84 ·	1.00 1.00 299.57 277.95 79 79 79	1 1.00 1.00 308.12 279.71 93 1381 85 1292	1.00 1.00 203.67 279.08 93 1558 89	1.00 1.00 358.59 283.51 90 1648 81	1.00 1.00 229.30 280.93 84	1.00 1.00 320.17 283.44 100 1913 82	1.00 1.00 289.47 283.70 91 2004 84	1.00 1.00 267.04 282.97 86	1.00 1.00 309.13 289.81 101 2191 89 1.00 1.00 312.28 286.91 96 2287 89	1.00 1.00 405.20 291.33 97 2384 78	1.00 1.00 282.09 290.97 76 2460 70	1.00 1.00 306.85 291.51 84 2544 72 1.00 1.00 357.31 233.77 110 2654 95	1.00 1.00 278.75 293.25 87 2741 85	1.00 1.00 318.55 294.09 89 2830 4.00 4.00 202.40 204.07 00 204.0	1.00 1.00 295.70 294.74 88 3000 78	1.00 1.00 315.87 295.33 102 3102 96	1.00 1.00 335.46 296.30 99 3201 1.00 1.00 317.59 296.86 96 3297	1.00 1.00 261.63 296.97 86 3382 82	1.00 1.00 295.97 295.97 76 3458 72 1.00 1.00 272.70 205.43 85 35.43 83	1.00 1.00 315.10 295.88 104 3647 100	1.00 1.00 360.85 297.51 74447 78094 98	1.00 1.00 244.23 280.23 (/4259) 3835 7 7 1.01 1.00 363.96 297.81 92 3927 81	1.00 1.00 249.82 296.59 87 4014 79	1.00 1.00 260.54 295.33 1.00 1.00 396.79 298.37	1.00 1.00 294.27 298.28 87 4298 81	1.00 1.00 361.58 299.55 98 4396 86	1.00 1.00 290.31 299.36 91 4487 87 4121 1.00 1.00 200.31 299.36 91 4487 87 4121	1.00 1.00 293.81 298.83 101	1.00 1.00 375.49 300.38 101 4773 93	1.00 1.00 347.84 301.25 100 4873 83	1.00 1.00 319.07 301.56 105	1.00 1.00 319.07 1.00 1.00 314.04
Product R		Total Period Tota Demand Shipped Shipp	391 391 386 386 338 779 338 774	1083 343	1462 360 1797 343	2147 338	343 2490 338 2444 343 2833 337 2780	3175 337	3518 336	353 3871 348 3800 327 4200 220 4420	4666 357	4917 346	F 5281 355	329 5610 321 5503	6345 362	6724 376	7074 343	7827 357	8170 346	375 8545 358 8397	889/ 344 9286 379	9648 354	10041 384	10392 347 10763 363	11138 379	11525 376 -+087 326	12219	12572 345	12881 306 13234 342	13679 336	13965 385 14705 376	14631 329	376 15007 370 14748	15743 361	16111 362	344 16465 340 16174 401 16856 401 16575	372	17687 347	366 17953 363 17657	18671 359	379	19410 350	19755 338	19755 338 20139 381
	Period Total	Total Cycle Cycle DFR Time Time	1.00 1.00 311.75 311.75 1.00 1.00 288.22 305.52	1.00 325.06	1.00 248.16 1.00 233.22	1.00 319.80	1.00 1.00 226.91 281.24 1.00 1.00 266.12 278.08	0 1.00 249.80	302.88	1.00 1.00 251.97 275.38 1.00 1.00 237.51 272.10	1 100 237.01	0 1.00 332.22	1.00 290.50	1.00 1.00 297.77 275.14	1.00 306.14	0 1.00 340.28	0 1.00 224.33	1.00 1.00 293.34 2/753 1.00 1.00 323.42 279.63	1.00 303.68		1.00 308.67	8	1.00 281.07	0 1.00 290.98 1 1.00 367.88	1.00 269.68	1.00 1.00 313.11 290.96	329.70	1.00 298.17	1.00 1.00 315.48 293.08 1.00 1.00 318.56 293.79	1.00 278.10	1.00 298.91	329.68	8	1.00 265.45	249.21	1.00 1.00 266.10 294.38 1.00 1.00 427.56 297.20	0 1.00 300.55	377.07	1.00 1.00 275.36 298.47	1.00 288.98	1.00 391.21	1 1.00 357.05	1.00 329.82	329.82 319.00
e to boot		Total Period Total Demand Shipped Shipped	1464 1460 1460 2901 1435 2885	1441	5/13 1329 5555 7087 1378 7033	8507 1398	9931 141/ 9848 11366 1417 11265	1417	t 1417	15636 1415 15513 17076 1422 16046	1370	t 1484	2 1478 3	22892 1429 22706	1418	1480	t 1386	1436	1398	34399	30/08 1420 37143 1369		1407	41522 1469 41212 42963 1441 42663	1430	45817 1393 45476 4700 4470 46040	1480	1436	51687 1425 51289 53168 1470 52759	54596 1416	58002 1407 55582 57472 1454 57038	1432	60350 1414	63212 1466	1384	65004 1383 55505 67424 1417 66922	1429	1461	71780 1420 71232	74608 1389 74048	1466	77620 1503	1432	79047 1432 80502 1446
Independent Variables		Replication Replication Number MAS MOH MIX Demand	1 2 1 1 1484 2 2 1 1 1 1484	3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 2 1 1 1 1366 5 2 1 1 1 1374	6 2 1 1 1420	8 2 1 1 1424 8 2 1 1 1424	9 2 1 1 1424	10 2 1 1 1424	10 2 1 1 1432 10 2 1 1 1432	13 2 1 1 1387	14 2 1 1 1502	15 2 1 1 1478	16 2 1 1 1450 17 2 1 1 1 1450				22 2 1 1 1462			26 2 1 1 1 1309 26 2 1 1 1 1375		2 1 1	 		32 2 1 1 1407 33 2 1 1 1 1407	34 2 1 1 1 1490		37 2 1 1 1 140	2 1 1			42 2 1 1 1430	44 2 1 1 1410 44 2 1 1 1470	 	47 2 1 1 1387 47 2 1 1 1420			50 2 1 1 1 1434			2 1 1	2 F	

Г		Total Cycle Time	36.42	39.77	143.86 146.48	10.61	51.46 50 01	0.18	10.52	18:81 00 00	20.05	50.60	150.35	S 10	e 97 01	19.61	10.87	98.04 0.00	00.04	50.42	50.73	48.92 2 4 2	01.00	80.08	52.64	52.80	52.78	52.05 52.05	52.04	51.68	151.68 151.68	52.06	51.64	51.86	52.05 51.85	52.40	52.06	52.70 52.70	52.66	162.81	53.17	50.01	152.93 152.84	22.96	153.40	53.58 7 0 1	153.65 153.62	23.66	153.58 153.83	
					150.87 14 148.56 14					142.80 14			147.25 15		167.09 14			149.68 14			156.54 15			166.83 16							151.68 15											140.88 15					167.10 16 162.26 16		149.17 15 164.82 15	
		Period I Cycle R Time						0.05 145			0.05 157										0.05 156																									50 163 1	16 15 152	158	55 149 164 164	
		od Total			0.02 0.04 0.04 0.04		0.04 0.04	_	_	_		_	0.05 0.05		05 0.05			05 0.05	_	_	_		000 900 90	_				0.05		_	05 0.05		_	05 0.05		-	_	05 0.05	0.05 0.06	_	Ŭ	0.0	0.05 0.05	0.05 0.05	-	0.05 0.0	0.05 0.0	38	0.05 0.0	
	t C	Period DFR	Ί		00 88 88	_				 .		- 0	0 0 00 P) c > b	_																										_			-	_					
	Product	Total Shipped	-	0	<i>с</i> ю	00	ē į	E E	4	9 <u>0</u>	₫ ĝ	21	28	8.8	596	38	908	323	5 8	37	395	8 8	420 426	5 4	8 8	508	83	88	673	590	908 7.09	3 6	658	676	592	73	746	768	000	816	83	8 9 9		88	92C	637	966	; 8	1011	
		Period Shipped	₽	ιo ;	20 14	22	21 7	≥₽	9	₽ 9	⊇œ	ę	¢ (⊅ ç	2 2	17	20	¢ 9	; =	22	8 '	~ ș	₽₽	2 2	8	20	88	7 12	: =	17	₽ ¢	2 8	4	<u>۾</u>	₽ ₽	512	4	5 Ş	0 4	92	₽	Ξ;	24	; e	9	¢ ;	92	; P	3 9	
riables		Total Demand		741	1127 1497	1848	2191 2686	2940	3314	3688	4390	47.47	5117	0480	6241	6601	6956	7686	868	8406	8782	9140	2008 0647	10191	10521	10886	11256	12016	12356	12736	13097	13809	14169	14522	14849	15558	15921	16270	16981	17327	17667	17997	18362 18744	19116	19434	19765	20134 20522	20866	21247 21602	
Dependent Variables		Period Demand	356	385	386 370	361	88 270	374	374	374	8 8	357	370	20 00 20 00	373	360	366	8 5 5	362	358	376	895 995	80 C	8 8 4	330	365	370	8 1 8	65	380	361	362	360	363	327 367	347	363	9 4 8	360	346	330	68 g	365 382	372	318	331	69 88	845	381 365	
Depei		Total Cycle Time	570.92	564.85	570.08 576.67	670.72	672.17 672.42	672.68	672.94	673.19 673.10	673.43	572.93	673.12 574.54	0/1.04 671 22	672.24	672.41	672.95	671.97 672 42	572.06	671.70	671.99 571.00	671.09 574.00	0/1.32 671.42	672.33	672.33	672.48	572.50 £73.5e	573.73	673.64	673.72	673.68 673.06	673.09	672.95	673.68	673.37 673 74	573.74	673.86	673.78 672 o.4	673.76	674.07	673.89	673.47 570.40	673.13 672.99	572.55	672.43	672.67 770 44	672.44 672.82	672.92	672.66 572.96	
		Period Cycle Time	570.92	558.95	580.58 597.03	545.98	679.13 672.06	674.46	574.97	575.48 £70.60	569.57	567.06	575.59 5.40 57	049.0/	588.62	676.24	582.68	552.94 581.67	564.50	563.55	578.50 570.01	500.04	574.09	696.90	672.33	576.68	573.11 ene po	579.26	670.72	576.40	672.28 660.16	674.69	567.63	602.43	561.25 580.01	573.74	579.10	570.41 576.60	569.54	589.32	564.88	552.69 552.69	555.15 565.49	548.72	565.74	686.71 550.00	669.29 694.39	678.60	667.50 590.92	
		Total DFR	0.78	0.78	0.78	0.78	0.78	0.79	0.79	0.70	0.79	0.79	0.79	R/:0	0.79	0.79	0.79	67.0 02.0	0.79	0.79	0.79	B/ 0	B/:0	0.79	0.79	0.79	0.70	8/0	0.79	0.79	0.79	67.0	0.79	0.79	67.0	0.79	0.79	0.79	e/.0	0.79	0.79	0.70	0.79 0.79	0.79	0.79	0.79	0.79	0.79	0.79 0.79	
		Period DFR	0.78	0.78	0.78	0.78	0.78	0.86	0.79	0.79	0.79	0.79	0.79	R/:0	e7.0	0.79	0.79	0.70	0.79	0.79	0.79	B/ 0	B/'O	0.79	0.79	0.79	0.79	6/:0	0.79	0.79	0.79	6/10	0.79	0.79	0.70	0.79	0.79	0.79	6/10	0.79	0.79	0.79	67.0 6.79	0.79	0.79	0.79	97.0 9.79	0.79	0.79 0.79	
	Product B	Total Shipped	1116	2264	3392 4490	5670	6730 70££	8979	10104	11228	13469	14616	15739	17001	19111	20267	21381	22482 22676	24699	25790	26938	28090	ALZEZ	31440	32616	33676	34786	37017	38157	39297	40416	42639	43761	44872	46020	48236	40340	50510 51640	52746	53852	54928	56038	57160 58227	59302	60365	61476	62661 63663	64794	65905 67006	
		Period Shipped	I 1	1148	1128 1098	1080	1160	1125	1125	1125	1119	1147	1123	113/	1120	1146	1124	1101	1123	1091	1148	1162	8711	1123	1076	1160	1110	1104	1140	1140	1119	1111	1122	111	1148	1101	1104	1170	1106	1107	1076	1110	1122	1075	1063	1111	1075	1141	1111	
		Total P lemand St	1464	2964	4378 5746	7213	8678	11545	12978	14411	17274	18747	20164	21080	24627	25968	27408	28882 30263	31707	33134	34611	36162	30060	40382	41795	43287	44691 260£7	47448	48928	50386	51844 50001	64766	56209	57544	59044 60430	61857	63261	64768 eeooo	67627	69011	70399	71861	73336 74720	76178	77569	78961	80376 81721	83183	84636 86006	
		Period] Demand De	1464	1510	1414 1368	1467	1465	1433	1433	1433	1466	1473	1417	1201	1415	141	1440	1474	5 <u>4</u>	1427	1477	1641	1301	1414	1413	1492	404	1396	1479	1468	1468	1434	1464	1335	1500	1418	1404	1507	1427	1384	1388	1462	1475 1384	1468	1391	1382	1426 1346	1462	1463 1370	
.			1	32	85	85	40 ¥	2 8	₽	67	38	4	53	5 4	2 2	8	8	88	3 4	8	88	8 8	2 5	2 5	8	8	83	55	: 4	8	8 2	3 5	8	œ :	2 2	12	5	8 2	1 1	87	62	83	57	58	35	64 :	₽ 9	2 23	11	
		d Total Cycle Time			12 768.02 11 770.01					175.67 175.67					1 778.54	~		17 779.59 14 780.56			29 780.68			12.01.10				8 /81.04 13 780.61			14 781.02											13 780.55 17 700.04		10. 780.49			12 780.10 16 780.43		9 780.76 8 781.11	
		Period Cycle Time		4 750.20			t 783.21		1.4	t 780.24				766.24		t 774.12		791.37 700.44				1 799.15			·	· _					TB4.64	· ·			1 777.58 1 788.56			1 752.50					t 769.07 t 791.72		14		t 763.12 t 798.86		t 794.59 t 802.28	
		d Total DFR			74 0.74 74 0.74								0.74 0.74				_	74 0.74				14 0.74		_	_	_	74 0.74		_	_	_	74 0.74	_	_	74 0.74	_	_	74 0.74	_	_	-	<u> </u>	74 0.74 74 0.74		_	_	74 0.74 74 0.74		74 0.74 74 0.74	
	A	Period																																										4 0.74			5 0.74 7 0.74			
	Product A	Total Shipped	1038	2110	3165 4233	5315	6309	8414	9466	10518	12644	13682	14738	20801	17936	1896	2000	21076	2323	2429	2529	2020	96495	29508	3056	3155	3261	34755	35810	3684	37897	40008	41082	42152	43190	46298	46382	47362	40500	50570	51668	52757	53883 54882	56014	57106	58170	59266 60327	6136	62433 63465	
		Period	1038	1072	1055 1068	1082	994 1060	1052	1052	1052	1061	1038	1056	1000 11011	1032	1030	1040	1070	1074	1061	1004	1000	1040	1023	1062	966	1063	1098	1055	1032	1055	1046	1074	1070	1038	1060	1084	980	0001 0801	1070	1098	1089	1126	1022	1092	1064	1096	1041	1066 1032	
		Total Demand	1389	2925	4423 5848	7270	10001	11497	12912	14328	17206	18599	20042	SECC	24434	26847	27266	28689	31519	32904	34363	30803	3/2/23	40131	41543	42944	44418	47312	48795	50196	61567 50025	64616	56003	57426	58814 60240	61617	63057	64617 exneu	67366	86798	70275	71725	73185 74624	62092	77531	79984	80430 81846	83262	84630 86031	
		Period Demand		1536	1498 1425	1422	1395	1416	1416	1416	1429	1393	1443	1616	1399	1413	1419	1423	1425	1385	1469	0441 0441	142U	1432	1412	1401	1474	1483	1483	1401	1371	1481	1487	1423	1388	1377	1440	1460	1 100	1443	1477	1460	1480 1439	1465	1462	2463	849 814 814	1406	1378 1401	
٤		XIW	1-	e	<i>ო</i> ო	ю		, n	ю	<i>с</i> , с	n m	м	с с		, n	ო	м	m m	, m	м	е (m (n e	, n	m	м	<i>с</i> с	n 0	. ო	m		n ო	m	<i>с</i>	m m		ю		• •	м	m	<i>м</i> (, m	м	е (, m	<i>ო</i> ო	
Independent	Variables	HOM	-	-		-			-			-				-	-			-					-	-			-	-			-	-		-	-			-	-			-	-			· -		
Inde	2	MAS	8	0	0 0	0	0 0	10	N	0 0	1 (1	N	0.0	чс	10	0	0	0 0	10	0	0 0	NO	чс	10	0	ю	0.0	1 11	101	2	61 0	1 (1	N	N	N 0	101	0	0 0	1 11	0	0	0.0	N 0	1.61	0	0.0	0 0	1 (1	0 0	
		Replication	-	~ ~	0 4	5	9 1	. ∞	6	\$;	12	13	4 5	2 9	17	8	£ 8	212	22	23	24	96	27	28	29	8	58	3.5	34	35	98 26	38	39	\$ 3	1 4	43	4	49 97	47	48	49	2 2	52	53	54	55 56	20 21	58	59 60	
		d S Z																					ŀ	เอเ	н/	MO	с :	зв	A																					

Product C Period	Cycle Time		8		362.76	1 424.79 1 428.38		429.49 422.25								3 4	4	4	4 4	4	417.87	- 4	4	4 4	14	4	4 5	14		4 5				•	409.62			406.02		404.40		•	405.79 405.79	40.004	¥ i
Product C	Total Period Total Shipped DFR DFR	1.00 1.00 1.00 1	1.00	00 ⁻¹			427	128	ວ່ ແມ່			4 a	6 ₽.	8	81	<u>5</u>	8	5	5 6	12	8 9	2 8	4	5 8	5 4	12	88	18	8	88	1 8	5	28	8	8,8	ŏ ۵	8	4	5 8	9 P	5 4	10	6 8	8 E	5 1
Product C	Total Period T Shipped DFR I	8,6	8		2 :						9 439.38	9 459.47 0 458.04		9 349.59	_	9 383.84	_		9 351.01 9 354.57	_		9 347.76	~		9 381.41	9 424.12		9 337.60	9 395.	9 360.95 0 476.03		9 405.01		_	9 408.28	6 8 8 8 8 8 8	_	9 347.42	9 351.	9 35913 9 35913		9 425.18	9 410.40	90,700 B	10.001
Product C	Total Shipped				8 :			_			6.0	66:0 66 0000		6.0 66					36.0 36.0 36.0		0000			800		90 0.9	00.0		90 0.9	80	800	60			800		0000	9.0	80		_	6.0	80		b c c
		86					·	0.5	LB:0 0					_		660 060 0			66'0 96'0		0000							0000			800 t				0.00		66.0						0.00		
	eriod Nipped		572	84	626		E	88	n ng	1118	1210	1316	É ĝ	1680	167	1830	1916	200	2070 2156	226(2346	5200	269.	588 288	284	296(3036	318(3276	336	f ĝ	3607	3762	3840	3936	6 8 8 8	4160	4243	4308	7477 7477	4678	466	4746	2 984	
		86	¦₿:	58	22	80 80 42 43	8	8 ç	4 7 7	: P2	85	6 6 8	8 ₽	85	8 i	2 8	8	87	73	108	88	38	8	6 6	22	106	83	58	87	68	8 8	8	88	87	8 F	29	8	8	8	8 2	5 Đ	87	6 8	6 8	2
	Total Demand 9	19 170	282	3/8 465	541	630 719	808	897 7002	1007 1083	1166	1266	1375 1468	1671	1660	1746	1832	2003	2095	2170	2368	2462 2640	2623	2707	2806	2974	3084	3172	3332	3423	3614 2606	3888	3778	3940 3940	4034	4122	4206 4284	4366	4463	4617	4606 4694	4798	4896	4083 F066	5147	È
nt Vari	Period Demand	58	: <u>8</u> :	8 6	26	88	8	8	2 2	8	ĝ	<u>p</u> s	ŝÊ	8	8	8 8	8	92	87	Ħ	28	8 8	8	88	2 2	5	88	8 8	5	55	5 8	8	22	94	8 3	8 8	22	97	8	8 8	3 5	8	66	2 5	0
ben		5.8	18	1 8	6	ęg	8	8 2	4 b	4	8	88	2 8	8	8 :	. 8	8	4	5 0	8	8 2	5 8	Ē	5 2	t 12	34	8 9	e (9	4	2 %	3 2	E	2 8	5	e 8	88	1	10	¥ ;	86	1 1	90	<u>ہ</u>	9, 9	8
			346.95						329.87			5 336.03 336.03				326.90			1 324.76 1 323.19		326.93			324.75		.,	5 322.96			316.70			313.30			314.68 313.30				+ 308.90 * 308.12			310.31		
Period	Cycle Time	289.71 207.01	447.99	309.46 309.46	282.31	331.16 333.70	336.23	338.77	291.06 291.06	307.79	384.88	377.26	466.75	270.39	229.24	305.20	302.34	373.05	262.81 287.11	413.25	326.07	269.90	281.42	340.32	283.86	321.98	342.45	213.54	291.68	272.53	287.06	278.34	259.70	421.43	300.93	280.28 250.89	264.48	267.26	228.97	281.64 264.67	409.87	337.40	290.46 250.46	303.11	
	Total DFR	8 8	ŝ	<u> </u>	0.1	88	8	9 2 2 3	3 8	9 <u>9</u>	1.00	88	<u>8</u>	1.00	9 1 1	8 8	10	1.00	88	1.00	9 9 9	8 8	1.00	89	8 8	1.00	9 1 0 1 0	8 8	1.00	8 9	8 8	1.00	3 9	1.00	9 9 9 9	8 8	8	1.00	9 1 0	3 8	8	1.00	8 F	8 8	2011
	Period DFR	9 9 8	8	<u> </u>	1.00	8 8	0	8, 9	8 8	8	100	88	8 6	1.00	6	8 8	0;1	1.00	8 8	1.00	9 9 9	8	1.00	8 8	8 8	1.00	9 9 9	8 8	1.00	8 8	8 8	6.1	8 8	1.00	8 9	8 8	0,1	1.00	0.1	88	8 8	1.00	9 9 9	8 8	201
-	Total Shipped	339	1066	1414	2132	2497 2862	3227	3592	4306	4672	5034	6369 6667	6013 6013	6388	6768	7487	7828	8176	8525 8897	9290	9640	10356	10723	11026	11720	12042	12426	13118	13444	13791	1484	14824	15528	15891	16230	16598 16965	17367	17722	18072	18415	19158	19509	19863	20202	70007
		338	369	939 939	382	366 365	365	365	342	366	362	330 283	361	375	380	9 88 88	145	348	371 371	393	360	345 1	367	88	322	322	383	361	326	347	5 88	360	495 940	363	88	368 367	402	355	350	4 8 8	386	361	848 848	9 88	000
	Total P. Demand Sh	343	1082	1430 1780	2169	2642 2914	3287	3659	4005 4384	4757	5134	6468 6760	6127	6601	8889	7613	7958	8311	8863 9038	9445	9800	0622	0893	1201	11811	12239	12631	13332	13663	14015 14360	14700	15062	15777	16148	16498 16060	16869 17247	17655	18025	8379	18/24 19/189	19484	19838	20190 20507	/8007	0000
		67 8 2	373	⁴ 4	8 1	2 2	E E	25	7 F	2 2	12	5 5	. 8	74	67	86	8	ŝ	22 22																										
	Period	~ ~			<i>с</i> ,	<u>м</u> м	n n	<i>е</i> с	n n		е 	00	40	m	е (" M	e	m	n n	4		• •	m	<i>с</i> с	• •	e	<i>е</i> с	• •	m	<u>е</u>	• •	m	<u>n</u> m	e	<i>с</i> с	ო ო	04	m	<i>с</i> (<u> </u>		e		t e	,
Total	Cycle Time	295.04 295.04	372.19	343.45 343.45	334.41	337.79 341.16	344.54	347.91	351.00	346.70	349.54	363.38	363.26	358.49	361.87	344.26	343.70	346.06	341.97 340.07	344.67	344.87 246.67	342.86	341.65	341.83	339.24	338.74	339.84	334.46	333.66	331.93	331.99	331.86	330.13 328.30	331.72	331.22	330.49 329.47	328.16	326.69	324.74	323.80 322.66	325.79	326.26	326.83 224.46	326.67	20.025
Period	Cycle Time	295.04 205.83	524.50	861.16 307.16	290.96	367.83 364.68	371.33	378.08	437.17	295.87	385.95	407.36 333.37	546.59	274.34	230.34	309.55	331.91	397.27	249.19 292.89	461.32	362.16 264.22	268.83	304.73	347.19	320.95	322.17	378.25	218.06	303.59	264.90	310.99	326.33	261.07	476.94	308.01	297.97 279.65	266.50	263.85	225.95	21 A 203	497.51	361.67	302.89 245 en	443 78	s 2 4
ļ	Total DFR	08:0 0	66.0	88'0	0.99	66.0	0.99	0.99	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66.0	0.99	66°0	660	0.99	0.99	800	0.99	0.99	66'0	0.99	0.0	000	0.99	800	800	0.99	0.99	88.0	0.99	66.0	660	0.99	R 0	0.99	0.00	0000	0.99	0.99	0.99		660	0.99	0.0	80	0.0
	Period DFR	08.0 08.0	6.0	66'0	0.99	06.0 06.0	0.99	0.00	68.0	660	0.99	0.00 0	66.0	0.99	0.99	66.0	0.99	0.99	66.0	66.0	06.0 06.0	000	0.99	0.0	800	0.99	0.90	66.0	0.99	0.00	680	0.99	68.0	0.99	0.00	06.0 06.0	66.0	0.99	0.99	68 0	66°0	0.99	800		90.0
∢	Total F Shipped	1401 2820	4241	50U3 6974	8425	9844 11262	12681	14099	100US 16915	18346	19777	21184	24027	26389	26772	29583	30988	32416	33846 35208	36565	38072	40946	42288	43709	46568	47973	40347 £07.46	52102	63471	54851 68268	57659	59014	61867	63324	64688 ee140	66140 67494	68928	70319	71707	74590	75993	77404	78866	81744	F
	Period 1 Shipped St	1401	1421	1371	1461	1419 1419	1419	1419	1407	1431	1431	1407	1387	1362	1383	1412	1405	1428	1429 1363	1367	1607	1446	1342	1421	1465	1405	1374	1366	1369	1380	1383	1355	1421	1467	1364	1462 1364	1434	1391	1388	144 144 144	1403	1411	1461 1976	1514	2
	Total Pe Demand Shi	1415 2870	4301	20/0 7110	8542	9982 11423	12863	14303	17180	18590	20076	21478	24391	26766	27146	28087	31412	32855	34290 35669	37107	38602 40024	41482	42838	44275 45000	47171	48592	60005 51110	62775	64160	65584 58071	58395	59783	61215 62647	64146	66617 erroor	67003 68371	69824	71240	72634	76667	76983	78410	79867 01206	0 1280 82824	17070
		1415 1465	1431	13/4 1435	1432	044 044 044			1416			1402		4		1412			1435		1495			1437	- 10	_		1369		1404			1431			1486			st .	1477			1447 7		
	Period																																												
ndent bles	ХIМ Н				-		-				-			-			-	-		-			-			-			-			-		-				-				-			_
Independent Variables	MAS MOH						-							-			-	-		-			-			-			-			-		-			· -	-				-			-
		-~	с. -	+ vo	9	~ ∞	6	e :	12	13	44	2 9	17	œ :	19	21	22	53	52	26	27	29	20	5.8	33	34	35	37	38	10	: =	4	2 4	45	9 L	¥ 8	6†	50	2.2	23	54	55	56	; 22	3
	Replication Number								÷.	-						1	. 4		- 19	. 4					501						4	4.4	. 4	4		- 4	4	-/	-ar 16	167			_, u	. 147	. •

Γ		Total Cycle Time	69.35	667.97 666.71	54.67	69.19	67.19 45.10	61.21	48.22	46.23	146.26	0/./4	19.81	148.31	140.37	40.28	46.82	148.68	447.30 46.63	4.9	144.96	144.54	143.36	10.00	146.01	46.29	46.93 MB 07	46.62	46.78	146.58	146.76	146.29	46.28 46.80	5 38 8 38	645.45	146.64 146.25	44.56	145.43	146.68 146.37	146.81	145.47	46.16	645.48 e.4e.04	40.04	646.66	646.96	146.56	20.00
		Period To Cycle D. Time T.		666.58 6 664.00 6			647.14 6 eor ro				645.54 6 erroi				650.28 6 200.27 0		599.86 6			642.56 6				628.02 6				630.16 6			632.31 6			626.97 6					662.32 6 635.22 6					6/3/34 0 636.76 6			677.82 6 ee.450 e	
		Total Cy DFR Ti	 _	0.90 1.00 89			0.92 64				0.92 64					0.92 66 0.92 66			78 07 78 0					0.92 62			0.92 66				0.92 63		0.92 64			0.92 65 65			0.92 65				0.92 66				0.92 67	1
		Period To DFR D		88			0.82				0.82					28.0			78.0				0.92			-					76.0		8 8			0 0 0 0 0 0 0 0 0		_	0.92			-	88		_	_	0.82	
	Product C		162	323	639	808	970	1282	1437	1593	1761	01810	2245	2384	2641	2826	2973	3144	3304	3642	3805	3952	4105 4287	4420	4686	4755	4927 6005	5233 5233	5398	5562 570 2	5/24 5873	6005	6169 6352	6504	6652	6814 6966	7112	7284	7446 7600	7763	7903	640	8191 02£0	8515 8515	8674	8968	9028	
	Pro	d Shipped		161	2 5	e	161 							_	167		<u>4</u>	-	_	_	_		88			, 691	172			-	2 2		20 8 0 4			2 2 2			62				<u>4</u>			_	2	
		Period Shipped	Ŷ	₽ ‡	2 ¥	4	₽;	2 ¥	4	16	₽÷	- +	2 12	4	₽ 3	2 7	4	4	<u> </u>	2 12	ŧ	1	¥ 4	≌ ₽	ŧ	ŧ		2 7	ţ.	₽ 3	2 7	₽	¥ ¥	2 ¥	7	2 2		¢ :	₽ ₽	2 ¥	ŧ	7	7 i		: ₽	₽.	2	
iables		Total Demand	185	360	729	915	1089	1445	1623	1801	1994	2241	2635	2690	2868	3190	3366	3567	3032	4128	4327	4488	4667 4064	5041	5224	5412	5610	5968 5968	6161	6341	0699	6838	7027	7405	7575	7971	8095	8284	8471 8646	8819	8868	9156	9312 0600	UUG8	0870	10078	10266	
Dependent Variables		Period Demand		175	194	186	174	178	178	178	193	<u> </u>	191	155	178	8 1	176	201	Ş	2 <u>6</u>	189	171	1 <u>6</u> 0) 24	8	8	8 7	181	193	<u>8</u>	5 <u>8</u>	1	180 180 180	174	170	182	166	180	187	174	169	ĝ	156	22	192	208	8	r C
Depend				É t	1 8	850.26	8 F	. 9	86	1	28	2 6	19	51	.02 2	e 4	6	52	644.20 844.32	1 8	.47	545.34	24 ¢	8, 5	51	646.06	P. 9	ş 4	.28	12	- 60	.85	នុខ	8	.67	88	644.90	-26	89 F	646.05	64	89	643.82 844 11	Ęē	8	66	52	(
Γ		d Total Cycle Time		81 645.31 82 640.12			87 648.38 14 641.34		-	~		18 040.02 20 647.43				87 644.40	-	-		-	-	-		21 646.05	-	-	50 646.79 50 646.79			-	94 04/.1/ 80 646.69	-	36 645.59 20 646.29		-	74 645.60 43 645.28	-	-	36 645.38 47 645.26	-	-	-				-	50 645.22	Ì
		Period Cycle Time		6539.31 652.62			638.87		-	-	659.55 e.42 to					631.37		-		662.79			642.70						-		630.30	-	643.36		-		-		650.66		-	-	613.80			-	658.50	
		Total DFR		800			0000				800				0000					0000 0000 0000			660 6		0.09 0.090						BR: 0		800						800				800				0.00	
		Period DFR		800			000				80												0.00					80			66.0			680		66.0			0,0				80				66.0	
	Product	Total Shipped	671	1408	2867	3663	4267	26891 26892	6400	1117	7848	0067	1026	10652	11397	127921	13608	14191	15620	16318	16997	17674	18371	19776	20494	21213	21895 22600	23341	24052	24771	26215	26930	27653	29027	29738	30467 31171	31844	32562	33302	34628	36333	36081	36766	3/419 38114	38820	39601	40185	
		Period Shipped	671	737	741	969	704	E	717	717	737	080	989	689	746	706	716	883	171	689	679	677	697 eoo	717	718	719	085 7 10	133	711	719	746	715	723 672	702	711	729	673	718	740	88	705	248 84	685 e£3	202 192	200	681	684	
		Total P Demand St		1463	2950	3670	4385	5848 5848	6580	7311	8075	0626	0251	10956	11720	3167	3913	14637	0368 6113	16829	7536	8225	8942 0e£o	20404	1162	1876	2581	24070	4806	5544	27038	1111	8516 9209	28933	0657	31405 32127	32822	33569	34338 36037	36711	6443	37194	37901 Doge <i>e</i>	38265 39265	39984	10682	41378	
			392	80 00	8 6	20	16	3 2	32	32	40.0							724 1																	724 3				769 999				707 3		, (,	4	396	
		Period							1.					14								_							13												1.							
		Cycle Time	754.99	750.65	753.64	766.82	760.17	756.63	754.86	753.09	752.46	06127	749.61	750.66	751.42	760.36	761.37	750.96	750.06	751.55	751.73	751.87	762.69	752.86	752.34	751.48	751.43	752.22	761.65	751.33	762.03	761.66	761.72	752.33	751.75	752.08	752.24	752.28	762.20	762.13	752.15	752.81	752.43	763.60	764.37	763.80	763.80	
		Period Cycle Time	754.99	736.14	734.54	764.93	780.77	744.71	741.17	737.63	745.56	744.75	724.69	763.02	763.36	734.72	768.86	742.58	745.45	765.71	755.95	765.00	769.26	772.76	736.62	724.65	749.80	757.66	727.36	743.96	744.03	739.80	754.14 745.04	780.42	729.62	739.60	758.42	754.26	748.21	756.59	753.08	784.28	735.33	780.38	804.91	718.37	763.80	
		Total DFR	0.60	89 92 92 92 92 92 92 92 92 92 92 92 92 92	0.67	0.67	6.0	/0.0	0.67	0.57	6.0	220	0.67	0.67	0.67	/010	0.67	0.67	250	0.57	0.57	0.57	19:0	/orn	0.67	0.57	79.0	220	0.57	0.67	/o:n	0.67	0.57	0.57	0.57	220	0.57	0.67	6.0	0.67	0.57	0.57	19:0	/90	0.67	0.67	0.67	
		Period	0.60	0.56	0.54	0.67	6.0	/orn	0.67	0.57	0.57	20.0	0.67	0.67	0.67	20.0	0.67	0.67	20.0	0.57	0.67	0.57	0.67	/orn	0.67	0.67	0.57	0.57	0.57	0.67	/o:n	0.67	0.67	0.57	0.57	0.57	0.57	0.67	0.67	0.67	0.57	0.57	0.57	/on 1910	0.67	0.67	0.67	
	Product A	Total Shipped	826	1637 2446	32.18	3988	4830 FeT0	6615 6615	7358	8200	8949	10500	11340	12303	13086	14878	16737	16507	18123	18878	19684	20564	21462 22260	23099	23863	24625	25381	27040	27789	28619	30296	31241	32017	33617	34498	35295 36172	37108	37867	38616 39490	40375	41244	42109	43045	44729	46499	46231	47002	
	Ľ	Period J Shipped St		811	2123	770	842	2 2	843 243	843 543	740	808	752	883	783	7 8 8	859	770	000 818	755	806	880	888	000	764	762	756	9 10 10 10 10 10 10 10 10 10 10 10 10 10	749	830	847 847	945	776	883	881	787	836	749	759 874	582	898	865	836 77 F	622 848	2.2	732	171	
			1477	2942	5768	7166	8677 0070	11568	364	14659	15925	+0+/	20356	21810	23210	120	180	915	202	15	34662	110	582	91 0	41828	43343	784	47578	020	230	905 392	328	367 106	800	706	104	6	435	866 71	70763	206	73507	75016 76406	77826	79178	361	82099	
		d Demand												4		6 26071	8 27489				-		2 37582 1 20002								9 01909 3 63392				0 60706			66435		_								
		Period	1477	1464	1460	1380	1422	1 1 1 1 1	1496	1496	138	R701	1470	146	1400	1306	141	1426	941	. 4	143	44	147	1421	1412	1515	1441	1375	1442	1510	13/9	1536	1429	1410	1500	1398 1483	1463	1395	612221 (609286	1392	1443	130	1509	13851	136.	147.	1448	
ent	ŝ	XIM	7	0 0	4 04	7	0 0	1 (1	0	ы	0 0	ч c	4 (4	7	0 0	1 0	101	10	ч c	1 (1	7	10	01 0	1 (1	8	м	0 0	1 01	ы	00	1 11	7	00	4 (4	ы	N 0	101	0	00	1 (1	0	10	0 0	а ю	101	5	0 0	
Independent	Variables	HOW	-			-			-	-				-			-	-			-	-			-	-			-	- 1		-			-		-	-			-	-				-	- 1	
Ĩ	-	MAS	[-	F	- 1		-	-			-	-	- 1		-	-	• •	-	-	-		· -	-	-			-	- 1		٣		-	-		-	-		-	-	-	~ •		. –	-	~ `	
		Replication Number	- (2 10	4	ŝ	9 1	- 00	6	÷;	5 5	4 00	14	15	2 0	: ₽	19	20	22	23	24	52 72	07	38	29	85	5 6	33	34	35	37	38	40	4	45	34	45	9 t	48	49	50	5	22	543	55	28	20	
		Repl Nu																						αΞ	W A	Mo	٦s	sol	L																			

Г	Τ	Total Cycle	đ	30.26 01.00	703.63	10.10	11.55	710	708	707	06.81	05.90	02.95	13.34 88.60	06.23	05.30	07.15	05.57	05.05	00.22	01.22	01.76	02.20	04.50 04.00	74.10	9 0 .48	38.56	99.64		8.82	38.14	698.56 600 22	105.86	97.35	97.21	20.76	96.10	96.17	96.21 26.24	696.04	96.81	96.74	695.70	96.83 05.44	696.12	96.68	694.97	694.31 604.00	594.03 594.27	694.04	00. T
			Ì.		708.41 70			700.05		690.12 70				708.52 70		689.07 70			694.75 70 e.42.7e 70			714.25 70		732.066 71 677.63 70					0//./8 0% 697.25 66			713.62 60					704.23 66			733.12 66			693.75 66					655.24 60 errod er		680.15	
		Period al Cycle									_	_		802 62		_			0.79 694								_					0.79 715					70 707		0.79 696	280 A30	2022	_	289 623	70 702	, E	79 67	79 656	79 855	//0 B/	. 88	én R/
		od Total	1.					0.79 0.79	0.79 0.79				97.0 0.79	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97.0 97.0 97.0 97.0				0.79						0.79					0.79					97.0 97.0		0.79 0.0		0.70	-0 8/0	0.79 0.0	0.79 0.79	0.79 0.0	0.70	0.79	20	0.79 0.7	0.70		62 G	i Na
	a c	Period	٦.					ь.			_	_																																							
	Product C	Total	Shippe	274 542	823	Ē	1658	1937	2216	2773	3069	33	3623	3896 4167	14	- 12	1	524	5514 5750	00	626	6661	ö i	2 2	ň P	78(816	<u>8</u>		88	950	9768	ġ ġ	105	10	113	116	119	122	127	13033	132(13563	1381	14382	÷ †	14817	15169	55	15965	104
		Period	Shipped	274 268	281	272	279	279	279	279	296	281	273	273	283	255	282	262	265	246	284	272	286	283 240	f 97	240	271	277	20 20 20 20 20 20 20 20 20 20 20 20 20 2	201	274	285	5 12	275	265	292	280	256	285	202	281	267	273	272	276	265	270	262	1 2	58	212
iables		Total		360 713	1092	1812	2180	2665	2930	3679	4080	4444	4819	5159	5902	6247	6604	6936	7284	7944	8307	8663	9036	8408 0730	10086	10429	10799	11154	11830	12162	12550	12884	13603	13969	14332	15062	15443	15776	16175	16875	17261	17615	17978	18347 18723	19089	19444	19810	20159	20868	21209	0/017
ent Val		Period	emand	88	379	373	368	375	375	375	6	364	375	946 196	382	945	357	332	348	329	363	366	373	373	347	848	370	365	337	332	388	88	88	366	363	367	381	333	399	354	376	364	363	369 276	366	365	366	88	367	148	800
Dependent Variables	 		1.	000 41.7	690.26 505.26	979	693.20	593.81	594.43	595.65	592.48	592.06	592.40	589.46 500.08	588.96	589.41	589.07	589.58	589.68 601.20	691.27	690.26	690.91	691.34 	692.02 602.24	692.10	692.41	692.47	692.27 roo o i	592.68	692.53	591.36	591.05 501.05	201.12 591.17	590.86	591.30 51.30	690.89	590.54	590.76	690.08 Fon on	589.23	689.23	689.23	589.22	588.32 588.32	588.18 588.18	588.22	588.41	588.36 501 00	588.148 588.14	9.5	10.0
		e Cycle	1.																																													č			
		Period Cycle						2 597.55		2 601.22				2 554.08 2 611.52					2 591.52 5 647.70					2 610.20 2 507.54		2 600.33		2 586.21				2 580.65			2 608.13				2 558.14					2 542.60 2 576.69						602.66	
		d Total	-					32 0.62		2 0.02				22 0.62 27 0.62					12 0.62			32 0.62		22 0.62 23 0.62		82 0.62			2010 Z			22 0.62			32 0.62				22 0.62			32 0.62		22 0.62 0.62					.62 .62 0.62	200	
	8	Period	•		0.62			0.62		0.02				0.62		0.62			0.02			0.62		0.62		0.62			70'0 0 8 0			0.62			0.62				0.62					0.02				00	0	000	
	Product	Total	Shipped	848 7.71	2605	τ Ř	517	602	687	826	9	10235	11118	12042	1371	1469(1543	16395	1728	1926	2009	2097(2179(7260	2446	2641	2632	2718(29062	2999(3085	31774	3366	3446	3536	3716.	37993	3894	3977;	41500	4233	4326(4415(45010	4874	4766	4858(4954	5133	52274	222
		Period	Shipped	848 927	830	861	839	840	8 0 0 0		781	886	88	924 801	784	879	838	961	088	88	838	882	820	813 920	914 914	967	803	88	028	637	828	920	51 B 212	904	901	400 100 100 100 100 100 100 100 100 100	829	952	829	850	8	911	006	869 267	200 826	924	915	992 000	998 988	86	8
		Total	Demand	1424 2880	4270	2000	8507	9928	11348	14189	15621	17094	18502	20057	22906	24290	25717	27174	28616	31501	32961	34347	36716	37094	39966	41407	42865	44306	40/0 0	48649	50173	51666	54513	55992	57417	50802 60332	61768	63205	64703 ee144	67563	69044	70437	71966	73487 74065	76420	77874	79310	80811	83746	85174	00000
		Period	emand	1424 1466	1390	1420	1434	1421	1421	1421	1432	1473	1408	1355	1460	1384	1427	1467	1442	1481	1460	1386	1368	1379	1480	1441	1448	1461	2041	1486	1524	1483	1418	1479	1425	1480	1436	1437	1498	4 f	1481	1393	1518	1632 1479	1465	1464	1436	1501	1434	1429	P F
			1	88	90 F	100	92	8	85	27	8	22	8	49.0	58	72	12	.78	56	64	31	20	ę. :	5 ¢	2 4	.05	-17	88	3,8	88	47	26, 52	3 8	36	2	7 8	8	8	₽ S	3 2	74	64	.70	0, %	85	. 8	50	16 16	à 5	81	- R
		d Total e Cycle			92 474.66							28 494.22		00 488.64 80 485.07		92 493.72			04 495.61 20 406.00			68 493.59										76 497.97												25 503.70 42 500.65				~ -		84 502.88	Z
		Period Cycle	_					3 479.76				~	<u> </u>	6 491.00 2 425.80		~~~	~		608.04	~~~			~	6 404 90					6 01/.02 833.40		~	3 480.76	~ ~		-	3 577 57		~	3 139.14			~	~	3 548.25 3 269.47	• • •			~ `	3 433.75		
		od Total	1.		0.03 0.03									20 0 00 20 0 00																		800												0.03 0.03			03 0.03			0.03	
	ţA	Period	•																																																
	Product A	Total	Shipped	м 00	123	2 2	5	23	88	88	4	4	41	2 <u>2</u>	36	12	77	82	6 9	ē	106	E	11	901	1330	1398	1429	1472	1801	β	1687	1736	ο β	180	1934	202	2066	214	2166	2319	2347	2424	2460	2605	2668	2607	2651	2712	280	2866	707
		Period	Shipped	89	83	1 4	5 ¥	8	88	88	4	91	81	8 %	3 4	8	64	8	5 F	2 8	8	4	8	8 5	5	8	۳	83	5 5	6	35	6 8	8 2	4	83	5 2	37	74	8 8	8 8	88	11	26	88	3 1	: 9	4	55	ò 8	88	3
		Total		1423 2897	4288	7173	8641	10098	11554	14467	15889	17388	18856	20310	23222	24690	26100	27497	28938	31863	33310	34756	36170	37619	40463	41894	43350	44808	40202	40194	50644	52121 £2470	54883	56283	57691	60438	61888	63346	64808 66010	67615	69021	70425	71839	73266 74661	76069	77514	79020	80489	87818 83381	84803	00700
		Period	Ι.	1423 1474	1391	87 97 97	1468	1467	1467	1467	1422	1499	1468	1464 1418	1484	1468	1410	1397	1441 eact	1469	1447	1446	1414	1967	1467	1441	1466	1468	1485	1447	1460	1477	1413	1400	1408	1347	1460	1458	1482	1403	1406	1404	1414	1426 1306	1408	1445	1506	1469	1459	1422	201
¥			XIM	m m	<i>с</i> с	n m		m	<i>с</i> с	n m	m	m	е (m m	n ო		m	e			e	m	<i>с</i> ,		n m	m	m	<i>с</i> с	n e	, m	m	<i>с</i> , с	n m	m	м (n e:	. ო	e		n es	ი ი	m	m		2 M) m	m	<i>с</i> с			- ?
Independent	Variables		HOM				-	-			-	-				-	-	-		· -	-	-				-	-	- 1			-			-			-	-			· -	-	-			· -	-				-
Inde	s Va		MAS				· -	-			·	٣				·	-	٣		·	٣	-	-			-	-	- 1			-			٣			-	-			•	-	-			-	-				-
		Replication	umber	- ~	ς. Γ	• • •	9	~ 9	» с	, 6	÷	5	<u>5</u> ±	± 5	16	17	9	19	2 2	22	23	24	67 67	27	28	29	8	58	33	34	35	36	; 8	39	9	42	43	4	45	4	48	49	20	53	53	54	55	86	5 8	59	3
		Rep	ż																					ł	ю	н	M	г	sp.	T																					

Hilling mailative IO Period NOI Jumm 77:33:34 95,111.05 Jumm 23:301.05 17; 34 95,111.05 Jumm 23:301.05 17; 34 95,111.05 Jumm 70:4,160.25 94,105.55 64,105.55 249.177.31 64,105.55 64,105.55 21.300.055 64,105.55 64,105.55 21.300.055 64,105.55 64,105.55 21.300.055 64,105.55 11,175 21.300.055 64,105.55 11,24 21.300.055 64,105.55 11,24 21.300.055 64,105.55 11,24 21.300.055 64,105.55 11,24 21.300.055 64,105.55 11,24 21.300.055 64,105.55 11,11 21.300.055 64,105.55 11,11 21.300.055		pul	Independent	ent	-										HOW			
Model Note Model		>	arrapio	S				All Produc	te					M	ME		9 H	_
1 0	Replication	MAS	HOW	XIM	Period	Total Demand	_	Total Shipped	Period	Total						Jumulative NO		umulative NO
2 1 10 700 100 200	1	e	٦	-	1867	1867		1853	0.998	0.998		1		1	I	77,333.49		53,111.63
1 1	2	m	-	-	1858	3725	1817	3670	0.999	0.999	291.38	280.77	82,898.22	168,362.63	74,482.29	151,815.77	50,260.44	103,372.07
5 1 1 000 000 000 000 00000 00000 0000	. 4	<i>е</i> с			1994	5719	1952	5622	0.996	0.998	326.94 200.50	296.80	89,461.21 05 007 01	257,813.83	81,865.28 76.006.20	233,681.05	57,643.43 50.743.40	161,015.49
6 1	. 2	n m			1831	9524	1874	5 9348	0.988	0.996	328.44	303.40	88.074.61	430,885,66	80.058.68	390.676.02	55.836.83	269,566.76
7 0 1	9	m	-	-	1932	11456	1916	11264	0.996	0.996	327.90	307.65	86,529.01	517,514.67	78,498.08	469,174.11	54,276.23	323,842.98
9 1	ž	m	-	-	1894	13350	1868	13132	0.996	0.996	339.52	312.18	86,387.06	603,901.73	78,327.38	547,501.49	54,105.53	377,948.52
0 3 1	~ ~	m	-	-	1894	15244	1868	14899	0.996	0.996	301.23	310.82	86,387.06	690,288.79	78,327.38	625,828.88	54,105.53	432,054.05
1 1	n ę	e		-	1894	17138	1868	16867	0.996	0.996	304.70	310.14	86,387.06	776,675.85	78,327.38	704,156.26	54,105.53	486, 159.58
1 1	2 €	m (1894	19032	1808	18734	0.995	0.996	303.32	309.46	86,387.06 60.427.44	863,062.91 062.600.22	78,327.38 o4 £06 A0	782,483.65	54,105.53 57 274 52	540,265.11 507,620,74
1 0	÷ 6	n 0			8-8- 0701	12807	2081	74007	CRR:D	088:0	5/ U/S	510.14	03/43/.41 02/646.22	1 002,000.32	00 021 74 170 200	804,U8U.13	07,574.03 40.057.44	F/ 503 749
1 1 1000 3000<	ι Έ	n m			of 01	54715	1869	24328	0.996	0.880	324.54	313.32	85.598.61	1 120 714 15	77 467 68	1015717101	53 235 83	700 833 01
15 3 1 1000 3000 0100 0000 0000 0000 0000 00000 000000 00000000 000000000000000000000000000000000000	14) M			1882	26597	1850	26178	0.996	0.996	248.89	308.77	80,966.81	1,201,680.96	72,505.89	1,088,222.99	48,284,03	749,117.04
1 1	15	ю	-	-	1853	28450	1834	28012	0.995	0.996	312.37	309.00	87,349.61	1,289,030.58	79,308.69	1,167,531.67	55,086.83	804,203.87
N N	21	m	-	-	1899	30349	1880	29892	0.996	0.996	280.42	307.21	85,547.81	1,374,578.39	77,461.88	1,244,993.56	53,240.03	857,443.90
0 1	19	с (1868	32217	1825	31717	0.996	0.996	299.14	306.74	83,912.81	1,458,491.20	75,631.89	1,320,625.45	51,410.03	908,853.94
0 1 1 0	e é	m (- 1	- 1	1828	24040	1826	33043	966.0	966.0	2/9.84	87.005	86,548.U1	1,040,039,222	70,000,00	50' /00' BBS' L	54,210.23	963,064.17
21 3 1	20	n ("			1890	19775	1801	37207	066.0	066.0	018.50	300.81	8/,U90.U1 80.101.42	1,032,130.23 1 712 326 64	60'070'87	1 540 773 11	47,473,64	1,017,802.40
2 1	21	0 M			1867	39624	1845	39062	0.996	0.996	263.25	300.21	87,248,81	1.799,575,46	79,177,89	1.628,901.00	54,956.03	1,120,242.07
2 3 1	22	m	-	-	1811	41535	1873	40925	0.995	0.996	354.06	302.67	90,168.41	1,889,743.87	82,442.48	1,711,343.48	58,220.63	1,178,462.70
1 1	23	m	-	-	1886	43421	1866	42791	0.996	0.996	209.92	298.63	81,608.01	1,971,351.88	73,347.09	1,784,690.57	49,125.23	1,227,587.94
5 3 1 1 1000 2004	24	m	-	-	1831	46252	1800	44591	0.996	0.996	296.57	298.55	82,497.82	2,053,849.70	74,026.89	1,858,717.46	49,805.04	1,277,392.97
2 1	25	m	-	-	1860	47112	1823	46414	0.996	0.996	294.35	298.38	82,682.41	2,136,532.11	74,261.49	1,932,978.94	50,039.63	1,327,432.61
2 1		с (-	1847	48959	1841	48265	0.996	0.996	248.40	296.47	81,868.01	2,218,400.13	73,482.09	2,006,461.03	49,260.23	1,376,692.84
20 1 1 010 6652 010 6536 010 5536 010 01		m 0			1915	50874 £2710	1878	60133 61060	0.995	0.996	362.61	298.58 208.04	90,415.41 o1 020 01	2,308,816.64 2,200,766,26	82,634,48 70 ABO OD	2,089,096.62 2 182 584 40	68,412.63 40.247.02	1,435,105.47 1 //0/ 262 61
30 1 1 1062 00011 0001 00001 000001 00000100 00000000 00000000 000000000 000000000 000000000 000000000 0000000000 0000000000 000000000000000 000000000000000000000000 000000000000000000000000000000000000		o 0				67732 64832	1877	63836	0.995	0.006	321.97	797.82	87 993 21	2,478,748,66	80.107.28	2,102,004.40	56 886 43	1 640 237 94
31 1 1 1001 66446 1666 5706 0006 26043 1002 26023 1003 260443 27713		0 00	-	-	1882	56514	1846	55681	0.995	966.0	306.33	298.10	86,286.01	2,666,034.68	78,210.09	2,320,881.77	63,988.23	1,694,226.17
32 3 1 1 1982 0527 1913 056444 2.4617.207.80 7.36646 2.4617.31 5.46666 33 3 1 1 1902 0527 1913 0.004 2.4617.31 5.46666 34 3 1 1 1007 64004 1004 0.006 2.006 0.006 2.4617.31 5.4666.33 2.4617.31 5.4666.33 36 3 1 1 1007 6602 0.006		m	-	-	1931	58445	1885	67566	0.995	0.996	384.82	300.94	89,248.81	2,664,283.39	81,382.88	2,402,264.66	67,161.03	1,661,387.20
33 3 1 1 1030 62267 1011 61267 1013 63263 61303 61303 61303 61303 6131313 613133		м	-	-	1882	60327	1858	59424	0.996	0.996	326.08	301.72	86,924.41	2,741,207.80	78,908.49	2,481,173.14	54,686.63	1,706,073.83
3 1 1 1944 64204 10206 0.0026 340.32 305.22 0.008.05 2.006.470 87.105 2.742.105 2.742.105 2.742.105 2.742.105 2.742.105 2.742.105 2.742.050 6.473.35 3 1 1 1860 66034 1304 0.505.2 0.00442 3.006.46 2.742.105		e	- 7	-	1930	62267	1911	61336	0.996	966.0	372.07	303.92	89,589.01	2,830,796.81	81,813.08	2,562,986.23	67,691.23	1,763,665.06
1 1	5, 5	<i>с</i> ,		-	1947	64204	1934	63269	0.996	0.996	349.93	306.32	90,882.61	2,921,679.41	83,181,68	2,646,167.91	58,959.83	1,822,624.89
1 1 1 1 1 1 0.000 0.0000	сс 92	<i>с</i> , с			1880	66084 eT040	1860	66129 eenne	0.996	0.996	304.20	306.29	84,386.81	3,006,066.23	76,210.89	2,722,378.79	61,989.03 47 effe 44	1,874,613.92
1 1	26	" ("			0201	218/0	180/	02800	066.U	966.0	200.662	303.77	80,404.22 86,621,41	3,080,470.44	72 605 40	2./94.20/.U8	4/,000,444 64.472.62	02:0/2,228,1 1 076 742 00
7 1 1 1666 75574 1546 72511 0.000 240.05 303.15 61/007.51 3.364.1868 7.2651.69 3.02.77.77 66.410.05 7 1 1 1 1686 75256 0.005 0.006 377.52 3.05.33 9.0460.1 3.456.473 9.0327.77.74 66.410.05 7 1 1 1883 7.7965 0.005 0.006 0.006 0.006 0.0045 0.347.185 7.466.00 3.07.55 0.466.10 3.466.470 3.277.966.2 0.265.25 0.00461 0.307.1075 7.447.60 3.07.473.25 0.055.25 0.00461 0.07.252.64 0.471.155 0.222.264 0.471.155 0.025.25 0.0266 0.0017.019 0.222.564 0.032.256 0.002.52 0.0266 0.0017.015 0.027.625 0.0266 0.0017.019 0.027.625 0.0266 0.0017.019 0.223.566 0.0017.019 0.223.566 0.0017.019 0.223.566 0.0017.019 0.223.566 0.001017 0.0217.526 0.0260.018	8	o (1			1844	71706	1832	70666	900.0	966.0	346.62	304.70	86,289,21	3.268.381.07	77.128.29	2.950.080.85	62.906.43	2.029.650.42
1 1 11 1988 75462 1940 74200 0.006 0.006 377.52 37.642 37.645.50 3.101.750.64 3.101.750.64 5.101.750.64 </th <th>39</th> <th>0</th> <th>-</th> <th>-</th> <th>1868</th> <th>73674</th> <th>1845</th> <th>72611</th> <th>0.996</th> <th>0.996</th> <th>240.63</th> <th>303.15</th> <th>81,037.81</th> <th>3,339,418.88</th> <th>72,631.89</th> <th>3,022,712.74</th> <th>48,410.03</th> <th>2,078,060.46</th>	39	0	-	-	1868	73674	1845	72611	0.996	0.996	240.63	303.15	81,037.81	3,339,418.88	72,631.89	3,022,712.74	48,410.03	2,078,060.46
3 1 1 1003 77505 1060 2047 204050 10546600 1147 1003 77516 77423 3 1 1 1833 75046 1000 2047 204050 315762 315762 315762 315762 315762 315762 315762 315762 315761 3157616 315762 3157616 315762 3157616 3157616 315762 3157616 3157616 315762 3157616 315762 3157616 3157616 31526140 3257616 31525166 3152616 3156161 3156161 3156161 3156161 3156161 3156161 3156161 3156161 31561616 31561616 31561616	40	м	-	-	1888	75462	1849	74360	0.995	0.996	367.98	304.52	87,054.61	3,426,473.49	78,963.69	3,101,676.42	54,741.83	2,132,802.29
3 1 1 1833 7916 73015 0.046 23.06 0.0142 5.27.05 5.4602.00 200.020 0.017800.02 0.010800.02 0.010800.02 0.010800.02 0.010800.02<	4	м	-	-	1903	77365	1866	76226	0.995	0.996	337.52	305.33	89,486.01	3,615,959.50	81,675.09	3,183,361.61	67,463.23	2,190,255.52
3 1	4	<i>с</i> ,		-	1833	79198	1789	78015	0.996	0.996	289.67	304.97	82,920.62	3,598,880.12	74,454.69	3,267,806.20	50,232.84	2,240,488.35
1 1	}	m (1848	81046	1835	79860	0.996	0.996	281.30	304.42	83,273,81	3,682,153.94	76,007.89 Te TEE 00	3,332,814.09 0.400.570.07	50,785.03	2,291,274.39
3 1 1 1977 86735 1970 6660 1900 2660 1000 26100 30000 301000 30000 301000 300100	45	0 C			100	00620	1008	83683	0.005	0.006	266.14	304.63	10, 76, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	3,868,663,16	83 060 48	3,403,631,46	60,738,63	2,343,608,42
3 1 1 1634 86069 1800 87343 0.0653 88223.81 4,000,887.78 80,302.88 3,644,7422 60,081.03 3 1 1 1 1828 00473 18018 0.05138 3,644,753.64 0.057.78 80,302.88 3,644,7422 60,081.03 3 1 1 1828 0.02403 18024 0.057.78 80,302.84 3,753.700 74,544 305.73 80,0161 4,110.564.20 70,007.74 40,753.84 3 1 1 1868 94.261 1826 0.2806 0.307.36 84,777.51 4,110.564.20 70,607.84 56,453.30 56,453.00 66,503.03 3 1 1 1869 91021 13061 306.74 305.77 84,705.41 4,233.338.22 76,616.80 5,47,502.03 56,603.03 3 1 1 1991 1991 10071 3007.91 87,617.81 4,233.338.2 76,616.80 4,101.56,503.03 56,603.03 56,	46	n m			1897	86735	1870	86463	0.996	0.996	330.00	305.09	84,100,81	3,942,763,97	76,919,88	3.569.451.34	51.698.03	2.465.246.08
1 1 1828 00407 7823 81218 0.006 244.44 00570 79.6664.22 71.064.43 77.067.1 47.73.64 3 1 1 1968 94.267 0.066 0.07.34 30.75.75 85.061.14 41.0664.03 71.766.1 47.73.64 3 1 1 1688 94.267 13634 0.0756.45 30.00.866.40 65.6630.85 3 1 1 1688 94.277 1364 4.0357.675.75 52.430.05 3 1 1 1688 94.277 1367 9607.14 7.335.84 55.43.05 50.649 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.05.05 50.610.69 37.75.75 50.24.90.65	47	. 0	-	-	1934	88669	1890	87343	0.995	0.996	371.81	306.63	88,223.81	4,030,987.78	80,302.88	3,649,754.22	56,081.03	2,611,327.11
1 1 1 1000 0.2401 1004 0.0401 0.0734 00573 83.05114 4.108.0655 61.0555.46 65.055383 3 1 1 1696 96.700 1857 0.2061 0.901 251.75 30.577 85.01514 4.108.56 8.17567 55.00055.46 65.05383 3 1 1 1696 96710 1857 0.9061 30.475 52.0154 3.017.67 3.017.67 3.017.67 3.017.67 3.017.67 3.017.67 3.017.67 3.017.67 3.017.67 3.017.67 3.017.67 3.017.67 3.0177 3.0167 3.0177 3.0167 3.0177 3.0167 3.0177 3.0169 3.0177 3.0169 3.0177 3.0169 3.0169 3.0169 3.0	48	е	F	F	1828	90497	1793	89136	0.996	0.996	264.94	305.70	79,566.42	4,110,554.20	70,955.49	3,720,709.71	46,733.64	2,558,060.75
1 1 1 1666 94.77 33 23 27 26.40 377.52 52.400.03 3 1 1 1686 94.70 335.82 70.56 36.400.03 367.75 52.400.03 3 1 1 1689 960450 1667 0.964 30.77.57 52.018.45 55.640.03 36.337.77 52.018.45 55.640.03 36.337.77 52.018.45 55.660.04 75.640.03 36.337.77 52.018.45 55.660.04 75.640.03 36.337.77 52.018.45 55.660.04 75.640.03 36.337.77 52.018.45 55.660.04 75.640.03 36.337.77 52.018.45 55.660.04 75.640.03 36.337.77 52.018.45 55.660.04 75.640.03 56.360.03 56.560.04 56.660.04 75.640.03 56.360.03 56.560.04 56.660.04 75.640.03 56.360.03 56.560.04 56.660.04 56.760.03 56.720.04 56.760.04 56.760.04 56.760.03 56.760.04 56.760.04 56.760.04 56.760.04 56.760.04 <t< th=""><th>49</th><th>e</th><th>-</th><th>-</th><th>1906</th><th>92403</th><th>1884</th><th>91020</th><th>0.996</th><th>0.996</th><th>307.34</th><th>305.73</th><th>88,051.61</th><th>4,198,605.81</th><th>80,175.68</th><th>3,800,885.40</th><th>55,953.83</th><th>2,614,014.58</th></t<>	49	e	-	-	1906	92403	1884	91020	0.996	0.996	307.34	305.73	88,051.61	4,198,605.81	80,175.68	3,800,885.40	55,953.83	2,614,014.58
3 1 1 1 1948 06/00 1657 04712 0040 326.45 305.75 64.9116 375.45 356.45 365.75 52.0164 356.50 365.75 52.0164 356.50 365.50 365.77 52.0164 55.66 56.72 56.66 56.72 56.72 56.72 56.72 56.72 56.72 56.72 56.72 56.72 56.72	20	м	-	-	1858	94261	1835	92855	0.996	0.996	291.78	305.46	84,777,81	4,283,383.62	76,651.89	3,877,537.29	52,430.03	2,666,444.61
3 1 1 1 1944 96004 1005 031605 30.614 07.605 30.615 4.465.606.64 7.61684 65.636.64 65.636.64 65.636.64 65.636.64 65.636.64 65.636.64 65.636.64 65.636.64 65.636.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.626.64 65.627.64 65.627.64 65.627.266.64 65.627.64 65.627.266.64 65.627.64 65.627.266.64 65.627.64 65.627.266.64 65.627.64 65.627.266.64 65.627.64 65.627.64 65.627.64 65.627.64 65.627.64 65.626.64 65.626.64 65.626.64 65.626.64 65.627.64 65.626.24 65.62.626.24 65.626.24 65.626.24 65.626.24 65.626.24 65.626.24 65.626.24 65.626.24 65.626.24 65.626.24 65.626.24 65.626.24 65.626.24 65.626.24 65.627.64 65.627.64 65.62	5	e	-	-	1889	96150	1857	94712	0.996	0.996	326.43	305.87	84,491.21	4,367,874.83	76,240.29	3,963,777.57	52,018.43	2,718,463.05
1 1	25	m r			1944	98094	1905	00422	0.995	0.996	319.63 204 £e	306.14	87,691.81 07 601 00	4,405,505.54 4,642,550,54	79,810.88 70,64£ 00	4,033,588.46	55,589.03 55,589.03	2,774,052.07
1 1	5	n (1001	10888	1000	100212	CRR:D	900 0	360.41	200.002 207.04	10 01 C 00	4,043,200,40	80.0P0,81	4,113,234,34	50,424,04	2,028,470.11
3 1 1 1894 105662 1868 0.306 312.83 306.33 86.169.41 4,003.038.70 78,089.48 4,346,816.86 6,375.63 3 1 1 1866 107437 1818 106814 0.806 237.12 306.73 81.906.42 4,884,734.11 73,184.49 4,422.00126 48,805.264 3 1 1 1827 107256 0.996 237.12 306.49 81.366.42 4,884,734.11 73,184.49 4,422.00126 48,805.264 3 1 1 1827 107256 0.996 0.996 21.91 304.98 81.365.52 4,980.265.56 43,422.00126 48,805.56 43,472.411 73,144.24 4,422.00126 48,805.56 43,473.411 73,144 4,422.00126 48,805.56 43,473.411 73,144.24 4,422.00126 48,805.56 43,473.411 73,141.24 4,1422.00126 48,805.76 73,494.24 4,422.00126 48,805.76 73,495.35 4,442.20124 4,422.00126 48,496.25 44,472.	55	n m			1836	103698	1816	102128	0.996	0.996	285.12	306.82	85,392.02	4,716,869,29	77.151.09	4.270.718.32	52,929,24	2.938.516.38
3 1 1 1 1826 107437 1818 106814 0.896 0.996 237.12 30573 81.965.42 4.884.734.11 73.164.49 4.422.00124 48.802.54 3 1 1 1827 108224 1812 10725 0.996 0.996 251.91 304.99 81.395.22 6.966.1363 72.9422 4.462.06556 48.712.44 3 1 1 1856 111090 1817 10943 0.996 0.996 257.56 304.49 82.51.55 5.048.855.56 74.94324 4.542.00124 74.9254 74.372 3 1 1 1912 113011 1897 11330 0.996 0.996 396.65 305.49 82.560.05 5.048.895.55 4.747.3425 4.569.09537 44.972.44	56	е	-	-	1884	105582	1868	103996	0.996	0.996	312.83	306.93	86,169.41	4,803,038.70	78,098.48	4,348,816.80	53,876.63	2,992,393.01
3 1 1 1 1827 108294 1812 107828 0.996 0.996 261.91 304.99 81.395.22 4.966.159.33 72.94.29 4.494.955.56 48.712.44 3 1 1 1836 111090 1817 109443 0.996 0.996 2.72.66 304.49 8.25.10.5 6.048.835.54 74.134.29 4.569.096.97 44.973.24 3 1 1 1912 113011 1895 111330 0.996 0.998 396.66 305.49 87.560.01 5.136.195.55 7.749.52 4.565.06.95.37 44.973.34	25	ю	-	-	1855	107437	1818	105814	0.996	0.996	237.12	305.73	81,695.42	4,884,734.11	73,184.49	4,422,001.29	48,962.64	3,041,355.64
3 1 1 1050 11094 161 1094 161 1094 151 1094 151 1094 151 1094 151 151 1094 151 151 151 151 151 151 151 151 151 15	802	<i>е</i> (1827	109264	1812	107626	0.996	0.996	261.91	304.99	81,395.22 20.540.20	4,966,129.33 # 040,600 #4	72,934.29	4,494,935.58	48,712.44	3,090,068.08
	6 9	n ("			1830	112011	181/	111220	066.U	900 U	350.65	305.40 205.40	27.010,28	5,136,180,55	70 704 08	4,009,009.87 4,648,773,05	49,912.44 56,482.23	3,139,980.01 3,105,467,74

	Independent	ende	Ę											HOM	- 		
	Vari	Variables					Al Products	9	ŀ			row	M	ME		HOH	Ŧ
Replication	NA C	ном	XIM	Period	Total	Period	Chinned	Period	Total	Period Cycle Time	Cvola Time	Period NOL	Cumulative NOL	Pariod NOL	Cumulative NO	Deriod NOL	Cumulative NO
NUMDer		+	VIIM C	ni Ibilian	nipilan		naddillo	0000	0000								
2	n m		1 (1	2296	4619	2065	4098	0.896	0.883	556.84	660.72	102,603.46	202,344,91	96,614,94	190,022.87	72,647.91	142,088.81
3	ю	-	0	2316	6935	2026	6124	0.900	0.896	526.83	542.81	100,413.29	302,758.19	94,059.77	284,082.65	70,092.74	212,181.56
4	е	-	0	2388	9323	2101	8225	0.883	0.893	549.69	544.57	102,799.85	405,558.04	96,891.33	380,973.98	72,924.30	285,105.88
	<i>с</i>	-	20	2323	11646	2067	10292	0.900	0.894	550.25	545.71	101,485.65	507,043.69	95,412.13	476,386.11	71,445.10	356,550.96
0 1	e e		0 0	2424 2206	14070 16466	2092	12384	0.895	0.894	555.36 555.07	547.34 540.73	99,580.50 100.054.26	606,624.19 707 670 46	93,441.99 04 000 26	569,828.10 664.711.24	69,474,95 70.016.22	426,025.91 406.042.13
- ~	n ("		ч r	7386	18843	2082	16547	182.0	1804	78:000 550 61	5450 10	100,804.20	/U/,0/8/40 808 532 71	94,883.20 04,883.25	750 504 50	70 016 22	480,842.13 567 858 35
0			10	2386 2386	21228	2002	18629	0.867	1.891	562.24	551.45	100,854,26	909 486 98	94,883,25	854 477 84	70.916.22	638 774 56
9	ი ო		1 (1	2386	23615	2082	20710	0.891	0.891	564.87	552.80	100,954.26	1.010.441.24	94,883.25	949,361.08	70,916,22	709,690.78
1	m	-	0	2263	25878	2019	22729	0.889	0.891	533.83	551.12	100,557.13	1,110,998.37	94,303.61	1,043,664.70	70,336.58	780,027.36
12	ю	-	0	2316	28194	2074	24803	0.895	0.891	561.63	552.00	102,480.81	1,213,479.17	96,542.29	1,140,206.99	72,575.26	852,602.62
13	м	-	0	2368	30562	2076	26879	0.888	0.891	567.14	553.17	101,118.99	1,314,598.17	95,030.48	1,235,237.47	71,063.45	923,666.07
₹ ;	m	-	ы	2325	32887	2037	28916	0.887	0.891	543.07	552.45	101,304.82	1,415,902.99	95,106.31	1,330,343.78	71,139.28	994,805.35
£ (ю	-	0	2299	36186	2024	30940	0.887	0.890	534.44	551.28	100,189.10	1,516,092.09	93,960.58	1,424,304.36	69,993.55	1,064,798.90
2 Ç	<i>с</i> (01	2329	37515	2066	33006	0.895	0.891	538.42	550.47	100,618.05	1,616,710.14	94,459.54	1,518,763.90	70,492.51	1,135,291.41
- 2	m 0		2 10	0677.	01885	2014	120020	000 U	0.000	536.6U	10.8P0	100,634,16	1,/1/,344.30 1 010 766 16	94,380.64 06.422.26	1,513,149,04	/U/418.61	20:01/,002,1
6			4 0	2334	44477	2048	39132	0.886	0.890	534.24	548 PG	102,722,1.00	1 922 334 62	96.584.84	1 806 167 73	72,617,81	1 350 794 15
20			1 (1	2268	46745	1998	41130	0.888	0.890	633.68	547.92	99,648.65	2,021,983.17	93,325.14	1,899,492.87	69,358.11	1,420,152.28
21	м	-	0	2309	49054	2063	43193	0.892	0.890	649.30	547.99	102,346.27	2,124,328.46	96,296.76	1,995,789.63	72,329.72	1,492,481.98
22	e	-	0	2266	51309	2029	45222	0.886	0.890	545.86	547.89	103,585.07	2,227,913.62	97,706.55	2,093,496.18	73,739.62	1,566,221.51
23	m	-	0	2374	53683	2024	47246	0.889	0.890	620.28	548.71	99,469.10	2,327,382.61	92,970.58	2,186,466.76	69,003.55	1,635,225.06
24	ю	-	0	2338	58021	2049	49295	0.888	0.890	633.46	546.16	101,001.95	2,428,384.57	94,813.44	2,281,280.20	70,846.41	1,706,071.47
5 8	м 1		0	2365	68376	2064	61369	0.893	0.890	633.68	545.88	100,638.86	2,629,023.43	94,465.35	2,376,746.66	70,498.32	1,776,669.79
27			2 1	1767	60013	Z602	10450 55500	/88/0	0.000	638./4 £34.04	048.3U	00.700,FUT	2,630,080.93	90,028.99 04.525.44	2,4/0,//4.64	70 660 41	1,847,631.74
	o es		4 (4	2468	66602	2077	57677	0.896	0.890	564.71	548.95	101.122.69	2.831.967.47	94,954.07	2.660.264.05	70.987.04	1.989.177.19
5 W) (M		1 (1	2424	67926	2106	59682	0.891	0.890	672.20	549.77	102,374.22	2,934,331.70	96,610.71	2,756,764.76	72,643.68	2,061,720.87
	е	-	19	2413	70339	2097	61779	0.891	0.890	547.03	549.68	102,306.47	3,036,638.17	96,332.96	2,863,097.71	72,366.93	2,134,086.80
	м	-	7	2223	72662	2016	63795	0.889	0.890	564.62	660.16	103,237.35	3,139,875.52	97,298.83	2,950,396.54	73,331.80	2,207,418.60
	с (~ ~	2326	74887	2073	66868	0.892	0.890	674.85 500 44	660.93 770.40	100,939.21	3,240,814.73	94,766.70	3,046,162.24	70,788.67	2,278,207.26
	m (2 10	10/22	/91//	2028	6/896 60074	0.890	068.0	636.11 505.00	000.44	100,992.48	3,341,807.20	94,8/8,96 04 TOT 67	3,140,031,20 2,224,040,02	28,118,07 70,000 05	2,349,119.19
5 22			9 0	7270	010R3	8/07	1/RR0	468.0	088.0	54130	540.70	00 070 20	3,442,723.39 3,642,601,77	94,/8/.0/ 02.604.07	3,234,818.87	/ U,82U.04	2,419,939,83 2,400,477,67
36			1 (1	2283	84146	2027	74044	0.891	0.890	626.00	540.14	100,551.88	3,643,153.66	94,268.37	3,422,582.11	70,301,34	2,559,779.01
37	ю	-	5	2361	86507	2087	76131	0.888	0.890	545.89	549.05	102,665.53	3,745,819.19	96,812.01	3,519,404.12	72,844.98	2,632,623.99
8	ю	-	7	2376	88883	2075	78206	0.891	0.890	566.85	549.52	101,941.40	3,847,760.59	96,937.89	3,615,342.01	71,970.85	2,704,594.85
66	с		2	2368	91241	2093	80299	0.890	0.890	561.64	549.84	102,541.09	3,950,301.68	96,722.58	3,712,064.69	72,765.65	2,777,350.40
0 1			01 0	2348	93589 0e000	2062	82361 04460	0.917	0.891	589.85 Fot 72	550.84 551 84	101,467.68 100,676.01	4,051,759.36 4 157 226 26	95,449.16 04 eco co	3,807,513.75	71,482.13 70.661.56	2,848,832.53
42	n e		ч c	2786 2786	90002 08280	2013	204402	0.887	180.0	548 03	56154	100,000	4,192,330.20	94,720.05 04,720.05	3,905,142.14 3,006,022,10	70,813,02	2,919,493,599 2,000,306,01
43			1 (1	2233	100502	2032	88497	0.895	0.891	643.12	661.36	101,128.85	4,354,413.68	96,126.34	4,092,047.52	71,158.31	3,061,465.21
44	e9	-	7	2256	102758	2019	90516	0.890	0.891	525.77	550.78	101,018.13	4,455,431.81	94,864.61	4,186,912.14	70,897.58	3,132,362.79
45	ო	-	13	2278	105036	2010	92526	0.889	0.891	529.02	660.31	101,404.78	4,556,836.59	95,141.27	4,282,053.40	71,174.24	3,203,537.03
91	en	-	13	2342	107378	2082	94608	0.894	0.891	556.58	550.44	100,556.56	4,667,393.15	94,458.04	4,376,511.45	70,491.01	3,274,028.04
4	en	-	13	2374	109752	2102	96710	0.893	0.891	584.91	551.19	102,810.44	4,760,203.59	96,976.93	4,473,488.37	73,009.90	3,347,037.94
84			0 0	2278	112030	2050	98760	0.891	0.891	520.64 Feo 04	550.56 ##0.00	103,341,55	4,863,545.14 4 064 676 44	97,578.03 of 007 70	4,571,066.41 4,6571,066.41	73,611.00	3,420,648.94
99	n e		ч r	20102	118700	2002	10201	CR0.0	1.00.0	12.200	000.000 660.47	00,421,21	4,804,070.44	80,0U7.78	4,000,074.18	7 1,040.70	3,441,008.7U
5	n m		1 (1	2396	119186	2067	104958	0.889	0.891	580.83	561.07	102.574.65	5,166,682,30	96.651.13	4.855,858.02	72.684.10	3.633.539.40
52		-	1 (1)	2354	121540	2077	107035	0.889	0.891	567.66	551.39	103,393.59	5,270,075.89	97,540.07	4,953,398.09	73,573.04	3,707,112.51
53	м	-	10	2409	123949	2093	109128	0.888	0.891	634.41	552.99	102,247.09	5,372,322.98	96,278.58	5,049,676.67	72,311,55	3,779,424.05
31	м	-	10	2396	126345	2107	111235	0.897	0.891	554.94	553.02	100,237.41	5,472,560.39	94,098.90	5,143,775.57	70,131.87	3,849,555.92
22	с (0 0	2330	128675	2033	113268	0.884	0.891	541.98	552.83 FTC 00	102,706.45	5,575,266.84	96,722.93	5,240,498.50	72,755.90	3,922,311.82
25	n e		ч c	2.788 2.788	133309	2015	112338	1089U	188.0	520.43	552 05	101 443 75	5 779 666 92	95,245,24	5,437,786,55	71 278 21	4.066.665.81
28) m		1 (1	2276	135585	2048	119384	0.892	0.891	541.36	551.87	102,157.36	5,881,824.28	96,158.84	5,528,945.39	72,191,81	4,138,857.62
20	м	-	0	2286	137871	2042	121426	0.890	0.891	539.61	551.66	101,831.79	5,983,656.07	95,828.28	5,624,773.67	71,861.25	4,210,718.87
00	m	-	2	2322	140193	2046	123472	0.894	0.891	528.83	551.28	100,624.17	6,084,280.24	94,385.66	6,719,159.33	70,418.62	4,281,137.50

Matrix Matrix <thmatrix< th=""> <thmatrix< th=""> <thmatrix< th="" th<=""><th></th><th><u>v</u></th><th>Independent Variables</th><th>lent</th><th> </th><th></th><th></th><th>All Deside</th><th></th><th></th><th></th><th></th><th>- mo</th><th>1</th><th>MOM</th><th></th><th></th><th></th></thmatrix<></thmatrix<></thmatrix<>		<u>v</u>	Independent Variables	lent				All Deside					- mo	1	MOM			
Mather Math Math <thmath< th=""> Math Math <t< th=""><th></th><th>•</th><th></th><th>3</th><th></th><th></th><th></th><th></th><th>2</th><th></th><th>Period</th><th></th><th>3</th><th>*</th><th>MIE</th><th></th><th>9</th><th>_</th></t<></thmath<>		•		3					2		Period		3	*	MIE		9	_
1 1	Replication Number	MAS			Period Demand	Total Demand	_	Total Shipped	Period DFR	Total DFR					- 1	umulative NO	- 1	Cumulative NO
1 1	- (e	-	m	3215	3215	2191	2191	0.668	0.668	614.51	614.61	102,781.92	102,781.92	97,559.64	97,559.64	73,845.09	73,846.09
3 1	2 0	e			3296	6511	2164	4365	0.673	0.671	620.71	617.59	104,217.67	206,999.49	99,020.30	196,579.94	76,306.76	149,150.84
5 7	04	ся с			3241	9762 12067	2172	6627 8606	0.679	0.674	621.50 620.00	618.89 621.44	101,143.46 104.441.75	308,142.94 412 584 60	95,651.18 00 364.47	292,231.12 201 606 60	71,936.63 76,640.02	221,087.47 206.727.30
F 1 1 200 0000 0000 00000 000000 000000 000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 0000000000 000000000000000 000000000000000000000000000000000000	5	00			3283	16250	2172	10868	0.691	0.676	585.24	614.20	104,686.45	617,271,14	99,509.18	491,104.77	76,794.63	372,632.02
Y N	9	m			3260	19510	2195	13063	0.679	0.677	612.45	613.91	103,715.86	620,987.00	98,603.58	589,708.35	74,889.03	447,421.05
9 3 1 3 3 3 4	2	m			3266	22776	2188	15251	0.678	0.677	617.36	614.40	103,342.09	724,329.09	98,184.82	687,893.17	74,470.27	521,891.33
0 1 1 0	8	m	-	m	3266	26042	2188	17438	0.678	0.677	618.42	614.91	103,342.09	827,671.19	98,184.82	786,077.99	74,470.27	596,361.60
1 0	. .	<i>с</i> с	- 1	<i>с</i> с	3266	28307	2188	19626	0.678	0.677	619.48	615.42	103,342.09	931,013.28 1 001.017.00	98,184.82	884,262.81	74,470.27	670,831.87
1 0	2 ₽	n e		n e	3206	34880	8812	21812	8/9/0	1/9.0	62U.00 620.72	616.27	103,342,09	1,U34,300.38 1 135 537 20	98,184.82 05 734.64	50.7 44 ,288	72 020 00	/40,3U2.14 817 322 23
1 0	- 6	n ~		• •	1925	20716	2210	28231	0.60.0	0.0.0	627.60	617.20	107,170,31	1 738 367 67	90,7543.11 07,653.11	1 175 835 38	80.020,27	87.1350,108
1 0 3	:0	0 0			4061	43277	2168	28399	0.733	0.683	616.30	617.24 617.24	103.685.51	1.342.053.18	98.618.24	1.274.463.61	74 803 69	966 164 47
15 3	14	0 0			2482	46759	2199	30598	0.573	0.677	616.22	617.17	104.056.80	1.446.109.98	98,984,52	1.373.438.14	75.269.97	1.041.434.45
1 3	15	e	F	m	3265	48014	2195	32739	0.686	0.678	623.29	618.60	103,254.86	1,549,364.84	98,042.58	1,471,480.72	74,328.03	1,115,762.48
1 2 3130 66000 2166 7170 1 70000000 6605203 720000000 6605203 720000000 6605203 720000000 6605203 72000000000000000000000000000000000000	16	e	F	m	3307	52321	2162	34955	0.665	0.677	613.94	617.35	105,031.10	1,654,395.94	100,023.83	1,571,504.55	76,309.28	1,192,071.76
1 3 3174 6664 171 6664 1600 2206 1 3 3014 6606 170 6606 170 6606 1700 1700 1 2000 1000 1 2200 2	17	е	F	м	3309	55630	2185	37140	0.682	0.678	613.51	617.13	101,902.51	1,756,298.45	96,535.23	1,668,039.78	72,820.68	1,264,892.44
1 3 3391 Cold Cold<	-9	e	-	е	3174	58804	2187	39327	0.680	0.678	629.67	617.82	103,781.98	1,860,080.43	98,684.70	1,766,724.48	74,970.15	1,339,862.59
2 3	19	m	-	e	3391	62195	2203	41530	0.682	0.678	615.28	617.69	101,587.74	1,961,668.16	96,230.46	1,862,954.94	72,515.91	1,412,378.51
21 3	20	е I	-	<i>с</i>	3281	65476	2189	43719	0.679	0.678	613.02	617.45	102,254.45	2,063,922.61	97,057.17	1,960,012.12	73,342.62	1,485,721.13
21 3 3202 7,034 2710 0000 0000 00000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000000000000000000000000000000	2 6	m (- 1		3295	1//80	2178	46897	0.000	7/9/0	620.05	017.08 017.08	103,797.86	2,167,720.47	98,585.59	2,068,697.70	74,971.04	1,560,692.17
21 3 3000 70000 2100 0001100 200000000 2000000000000000000000000000000000000	12	° (• •	5/75	4407/	7 1 9 2	8/02	R0000	7/0.0	02.220 616.06	8/7/10	103,702.80	2,200 1,72,2 2,770 603 25	90,000,00 07,000,74	2,107,303.20 2,266,766,04	74,840.80	1,000,000,10
5 0	24	0 0			3280	78626	2716	60486	e.0.0	0.677	621.70	617.86	103, 118, 30	2,277 927 06	08 146 62	2,200,200.34	74.431.07	1 784 263 27
2 6 1 0 0000 0000 0001	25	0 0		, n	3213	81839	2168	54633	0.679	0.678	627.56	618.24	101,611,61	2.579.438.56	96,119.24	2.449.521.69	72.404.69	1.856,657,98
28 3	26		F		3206	85045	2163	56796	0.676	0.677	612.25	618.01	106,132.34	2,684,570.90	100,036.06	2,549,556.76	76,320.61	1,932,978.47
28 3 1 3 3 4 1 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 5 3 4 1 3 3 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4		m	F	e	3297	88342	2162	58958	0.672	0.677	614.82	617.89	103,233.10	2,787,804.00	97,936.83	2,647,492.58	74,221.28	2,007,199.75
20 3 1 3 3144 4171 2104 64717 2134 64717 2134 64717 2134 64717 2134 64717 2134 7139 31 31 31 31 31 31 31 31 31 31 3141 85046 3141 85046 3141 85046 3141 85046 3141 85046 3141 85046 3141 85046 3141 85046 3141 85046 3141 85040		m	-	m	3231	91673	2183	61141	0.681	0.677	616.17	617.83	103,538.04	2,891,342.04	98,390.76	2,746,883.36	74,676.21	2,081,876.97
JU 3 3226 01143 2175 64-43 064-46 054-43 064-46 054-43 064-46 054-43 064-46 054-43 054-44 054-46 <t< th=""><th></th><th>е</th><th>-</th><th>m</th><th>3144</th><th>94717</th><th>2147</th><th>63288</th><th>0.668</th><th>0.677</th><th>623.79</th><th>618.03</th><th>104,887.58</th><th>2,996,229.61</th><th>05'066'66</th><th>2,846,873.65</th><th>76,275.75</th><th>2,158,151.72</th></t<>		е	-	m	3144	94717	2147	63288	0.668	0.677	623.79	618.03	104,887.58	2,996,229.61	05'066'66	2,846,873.65	76,275.75	2,158,151.72
1 3 371 1 3 371 1 3 373 1 3 373 1 3 373 37 111083 2114 17578 1111083 2114 17578 1111083 2114 17578 1111083 2104 111033 2104 111033 2104 111033 2104 111033 2104 111033 2104 111033 2104 111033 2104 11033 2104 11033 2104 11033 2104 11033 2104 100570 2104 100570 2104 100570 2104 100570 2104 100570 2104 100570 2104 100570 2104 2007 200500 20050 20050 </th <th></th> <th>e</th> <th>-</th> <th>m</th> <th>3264</th> <th>97981</th> <th>2175</th> <th>66463</th> <th>0.669</th> <th>0.677</th> <th>622.59</th> <th>618.18</th> <th>103,957.16</th> <th>3,100,186.77</th> <th>98,804.88</th> <th>2,944,678.63</th> <th>76,090.33</th> <th>2,233,242.06</th>		e	-	m	3264	97981	2175	66463	0.669	0.677	622.59	618.18	103,957.16	3,100,186.77	98,804.88	2,944,678.63	76,090.33	2,233,242.06
37 3 1 3 344 1 3 344 1 3 344 3		<i>с</i> с	- 1		3216	101197	2174	67637	0.674	0.677	623.57 04.05	618.36 040.01	103,766.92	3,203,963.69	98,664,65 07 000 47	3,043,343.18	74,950.10	2,308,192.15
34 5 330 11065 2160 7473 000 0001 0103 0103 0101 0103 0101 0103 0101 0103 0101 0103 0101 0103 0101<					334/	440401 617701	2180	71082	/99/0	0.677	614.90 615.56	618.20 618.17	103,006./4 104.027.62	3,306,960.44	97,839.47 08.840.36	3,141,182.60 3 240 023 00	76 126.81	2,382,317,07
3 1 3 2244 11452 2173 76544 0.66 616 61.56 617.36 <th></th> <th>о м</th> <th></th> <th></th> <th>3376</th> <th>111088</th> <th>2189</th> <th>74172</th> <th>0.669</th> <th>0.676</th> <th>614.31</th> <th>618.05</th> <th>103,859,45</th> <th>3.514.847.52</th> <th>2010-010-0106</th> <th>3.338.790.18</th> <th>75.052.62</th> <th>2.532.495.50</th>		о м			3376	111088	2189	74172	0.669	0.676	614.31	618.05	103,859,45	3.514.847.52	2010-010-0106	3.338.790.18	75.052.62	2.532.495.50
3 1 3 3244 11757 2166 78512 0518 05351 37723333 3500 7500 75313 37723343 5506.577 3534035 7500 7500 7500 7500 750334 3500 75000 7500 <th>35</th> <th>0 0</th> <th></th> <th></th> <th>3244</th> <th>114332</th> <th>2172</th> <th>76344</th> <th>0.665</th> <th>0.676</th> <th>615.78</th> <th>617.99</th> <th>104,538.45</th> <th>3.619.385.97</th> <th>99.491.18</th> <th>3.438.281.35</th> <th>75.776.63</th> <th>2.608.272.13</th>	35	0 0			3244	114332	2172	76344	0.665	0.676	615.78	617.99	104,538.45	3.619.385.97	99.491.18	3.438.281.35	75.776.63	2.608.272.13
3 1 3 3331 12087 216 60.06 618.25 10.2872.05 356.73.00 357.340.26 75.476.65 3 1 3 3121 12.36877 216 610.11 616.11 616.31 5.73.340.26 75.476.65 75.476.65 75.476.65 75.476.65 75.466.65 75.466.65 75.476.65 75.466.65 75.476.65 75.466.65 75.476.65 75.466.65 75.476.65 75.466.65 75.476.65 75.466.65 75.456.65 75.466.67 75.466.67 75.466.67 75.466.67 75.466.67 75.476.66 75.466.67 75.476.66 75.476.66 75.466.67 75.466.67 75.476.66 75.476.66 75.476.66 75.476.66 75.476.66 75.476.67 75.426.66 75.476.66 75.476.66 75.476.66 75.426.66 75.426.66 75.426.66 75.426.66 75.426.66 75.426.66 75.426.66 75.426.66 75.426.66 75.426.66 75.426.67 75.426.67 75.426.67 75.426.67 75.426.67 75.426.67 75.426.67 75.426.67 <th>36</th> <th>m</th> <th>F</th> <th>m</th> <th>3244</th> <th>117576</th> <th>2168</th> <th>78512</th> <th>0.675</th> <th>0.676</th> <th>624.52</th> <th>618.17</th> <th>103,463.51</th> <th>3,722,839.48</th> <th>98,246.24</th> <th>3,536,527.59</th> <th>74,631.69</th> <th>2,682,803.82</th>	36	m	F	m	3244	117576	2168	78512	0.675	0.676	624.52	618.17	103,463.51	3,722,839.48	98,246.24	3,536,527.59	74,631.69	2,682,803.82
3 1 3 3111 12268 22333 0577 0577 0433245 357304 60717 357305 757304 60717 357305 757304 60717 357305 757304 757304 7573045 756646 777756 777756 777756 777756 777756 777756 777756 7777756 <t< th=""><th>37</th><th>e</th><th>F</th><th>ю</th><th>3301</th><th>120877</th><th>2196</th><th>80708</th><th>0.684</th><th>0.676</th><th>620.96</th><th>618.25</th><th>102,972.09</th><th>3,825,811.57</th><th>97,684.82</th><th>3,634,212.41</th><th>73,970.27</th><th>2,756,774.08</th></t<>	37	e	F	ю	3301	120877	2196	80708	0.684	0.676	620.96	618.25	102,972.09	3,825,811.57	97,684.82	3,634,212.41	73,970.27	2,756,774.08
3 1 3 3313 12/31 2314 23043 2164 86017 0.0761 6107 0.0751 6107 0.0751 6107 0.0751 6100 0.0751 6100 0.0751 6106 0.0751 6100 0.0751 6105 6104 6111 0.037706 6104 0.0761 6007 6155 0.0181 6111 0.0182.02 61004 61026 7560486 </th <th>38</th> <th>e</th> <th>-</th> <th>m</th> <th>3121</th> <th>123998</th> <th>2125</th> <th>82833</th> <th>0.670</th> <th>0.676</th> <th>619.11</th> <th>618.27</th> <th>104,393.41</th> <th>3,930,204.98</th> <th>99,191.13</th> <th>3,733,403.54</th> <th>75,476.58</th> <th>2,832,250.67</th>	38	e	-	m	3121	123998	2125	82833	0.670	0.676	619.11	618.27	104,393.41	3,930,204.98	99,191.13	3,733,403.54	75,476.58	2,832,250.67
3 1 3 3782 190483 2713 87190 0671 0.074 0.076 64.256 618.25 10.33749 47.30749 77.40436 75.300 75.30 7	39	e	-	m	3313	127311	2184	85017	0.677	0.676	607.81	618.00	103,720.27	4,033,925.25	98,573.00	3,831,976.54	74,858.45	2,907,109.12
7 3 27.0 13.71 13.71 <th>01</th> <th>с (</th> <th>- 1</th> <th>с (</th> <th>3182</th> <th>130493</th> <th>2173</th> <th>87190</th> <th>0.674</th> <th>0.676</th> <th>622.96</th> <th>618.12</th> <th>103,871.69</th> <th>4,137,796.94</th> <th>98,764.41</th> <th>3,930,740.95</th> <th>75,049.86</th> <th>2,982,158.98</th>	0 1	с (- 1	с (3182	130493	2173	87190	0.674	0.676	622.96	618.12	103,871.69	4,137,796.94	98,764.41	3,930,740.95	75,049.86	2,982,158.98
7 7	4	m e		m (3275	133769	2154	89344	0.658	0.676	624.46 e2£ 00	618.28 e to eo	102,632.22	4,240,429.15	97,344,95 00,000,40	4,028,085.90	73,530,40	3,055,789.38
3 1 3 201 14226 2174 9626 0.501 615.74 015.67 455.25 456.25 62.57 64.57 64.55 64.57 64.55 64.57 64.55 64.57 64.57 64.57 64.55 64.57 64.56 75.66 75.66 75.66 75.56	43	n (n		n m	3131	140065	2156	91440 93652	0.065	0.0.0	624.90	618.83	105,759,69	4,449,530,61	100,892.42	4,120,160.30	77.177.87	3,130,174,31
3 1 3 2222 1466468 1107 65.0.74 61117 40.5882.53 4002.31881 31.1401 63.4411 64.3882.54 64.012.50 64.411 64.3882.54 64.02.366.74 61.167 470.268.20 65.074 61.016 64.411 64.368.25 64.01.20.36 64.417 67.00.360.56 67.017.50 64.61.71 67.02.366 64.417 67.02.360 67.01.94 67.22.367.74 67.02.366 64.417 67.860.10 67.460.17 67.02.366 67.01.94 64.61.71 67.02.366 67.01.94 64.01.74 67.02.366 67.01.94 67.01.94 67.01.94 67.10.74 67.02.366 67.02.366 67.02.966 67.01.96 67.10.74 67.10.96.97 75.466.17 75.466.17 75.466.17 75.466.17 75.466.17 75.466.17 75.466.17 75.466.17 75.466.17 75.466.17 75.466.17 75.466.17 75.466.17 75.466.17 75.766.46 75.766.46 75.766.46 75.766.46 75.766.46 75.766.46 75.766.46 75.766.46 75.766.46 75.766.4	44	e	F	е	3201	143266	2174	95826	0.680	0.676	624.86	618.97	103,429.92	4,552,960.53	98,247.65	4,326,326.44	74,633.10	3,281,885.27
3 3 2011 1400440 0.074<	45	e	F	ю	3232	146498	1167	66626	0.673	0.676	636.74	611.67	49,358.28	4,602,318.81	39,126.01	4,364,461.46	15,411.46	3,297,296.73
3 1 3 3173 156276 2714 110256 10174 10166 10174 10166 10174 10166 10174 10166 10174 10166 10174 10166 10174 10166 10174 10166 10176 10126 101266 00166 00166 00166 00166 00166 00166 00166 00166 00166 00176	46	e	F	e	3201	149699	3147	100140	0.670	0.675	644.11	618.80	158,041.57	4,760,360.38	157,944.30	4,522,395.75	134,229.75	3,431,526.48
3 1 3 3196 160000 2167 104425 620.36 158.46 103.43.46 106.41.45 104.425 104.425 104.425 104.425 104.425 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 104.446 <	47	e	-	ო	3173	152872	2119	102269	0.665	0.675	611.74	618.65	104,343.00	4,864,703.38	99,180.72	4,621,576.47	75,466.17	3,506,992.65
3 1 3 3211 106562 100016 0.075 0.075 0.020 0150102 01510102 02.000 01560102 01526000 0157 02.010 01561002 01510102 02.000 015010102 02.000 015010102 02.000 015010102 02.000 015010102 02.000 015010102 02.000 015010102 02.000 015010102 02.000 015010102 02.000 015010102 02.000 015010102 02.000 015010102 02.000 01501012 02.000 01501012 02.000 01501012 02.000 0100101 02.000 01001012 02.000 01001012 02.000 01001012 02.000 01001012 02.000 01001012 02.000 01001012 02.000 0100101 02.000 01001012 02.000 01001012 02.000 01001012 02.000 01001012 02.000 0100112 02.000 0100112 02.000 0100112 02.000 0100111 02.0101010 02.00012 02.00012 02.001012	₽ 9	<i>с</i> (- 1	<i>с</i> (3158	156030	2167	104426	0.674	0.675	620.39	618.69	103,840.28	4,968,543.66	98,863.00	4,720,429.47	75,138.45	3,682,131.11
0 1 3 2011 105733 2160 10000 00012 00012 00012 00012 00012 00012 00012 00012 00012 00012 00012 00012 00012 00012 00012 001112 001112 00112	6 1	m e			1155	198341	2190	106616	0.670	0/0/0	626.06	618.84	102,863.68 104.001 eo	5,071,407.34 5,176,200,02	97,581.41	4,818,010.88 4.010.010.20	73,800.80 76 204 06	3,600,997,997 5727,007,007,007
7 1 3 3296 7163 76515 76515 61501 6560507 536677 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 601926616 6336477 6336477 6336477 6336477 6336477 6336477 6336477 6336477 6336477 63364877 63336477 63336477 63364877 63336487 63336477 633364877 633364877 633364877 633364877 633364887 633364877 633364887 633364877 633364887 633364877 633364887 633364877 633364887 633364877 633364887 633364887 633364887 633364887 633364887 63336887 63336887 633368877 633364877 <	5.5	9 C			3201	166763	2150	110985	0.672	0.676	620.33 620.33	618.04	103,151,40	6 270 460 42	11.000,00	5 015 030 41	74.214.67	3 806 407 40
3 1 3 3201 17203 3163 115311 0671 0656 660.94 618.10 188.00133 5.486.923.70 153.12.324 170.106.51 3 1 3 3330 176663 2210 117521 0881 0.676 616.29 610.03 102.666.36 569.84.16 97.352.406 5.21.723.46 73.0553 3 1 3 33302 176663 20110 102.206.56 5691.736.57 638.15 5.470.726.46 73.057 73.0557 3 1 3 3302 186504 2168 119697 0567 615.06 5691.796.57 6307.567 73.057 73.057 3 1 3 3163 182.04 0.576 610.66 619.04 104.498.46 5901.54 600.54 73.057 3 1 3 3261 15677 0.666 611.76 619.02 104.498.46 5601.54 5607.56 501.746.54 70.056322.20 77.1655 75	52	0 0	-		3240	169002	1183	113148	0.684	0.675	766.18	615.01	18,567.04	5,298,027.46	3,359.77	5,019,299.18	(20,354.78)	3,786,142.61
3 1 3 33300 177653 0.651 0.61526 616.20 619.03 102.666.36 5.659.664.18 97.353.11 5.310.7676.34 75.6556 3 1 3 33302 178686 2176 119607 0.676 615.80 610.03 102.666.36 5.659.664.18 97.356.736 75.6356.56 3 1 3 33302 178686 2176 119607 0.665 0.676 611.08 106.2756.96 5.697.704.48 75.6365.56 3 1 3 3251 1862.08 2172 124872 0.666 0.676 611.08 104.488.46 5.001.64.37 6.607.647.86 75.368.55 3 1 3 3224 1962.72 12472 0.677 0.176 618.52 104.488.46 5.607.64.96 75.766.90 75.766.95 3 1 3 3324 191622 2.033 12657 0.676.61 75.766.90 75.766.90 75.766.90 75.766.90 75.766.90	53	е	F	m	3201	172203	3163	116311	0.671	0.675	569.94	619.10	188,901.33	5,486,928.79	193,824.06	5,213,123.24	170,109.61	3,956,252.12
3 1 3 3302 176862 2176 19640 619.06 10.05.07 6561.7657 0561.764.48 73.105.77 3 13 3182.1820.48 21656 0176 6114.96 100.105.705.46 73.105.77 3 13 31820.48 170.657 6114.06 110.657 6114.06 105.66 57.07.075.66 55.07.064.48 73.105.77 3 1 3 2261 1862.69 217.17 124025 0.671 0176 611.06 104.468.45 5.001.564.48 75.105.64 75.105.667 3 1 3 2261 1862.69 217.17 124025 0.671 611.76 619.02 104.468.45 5.001.54.64 75.105.663 75.146.65<	21	m	-	m	3380	176683	2210	117521	0.681	0.675	615.29	619.03	102,665.38	5,589,594.18	97,353.11	5,310,476.34	73,638.66	4,029,890.68
3 1 3 3 3 1 3	55	с (<i>с</i> (3302	178885	2176	119697	0.682	0.676	618.99	619.03	102,205.39	5,691,799.57	96,818.12	5,407,294.46	73,103.67	4,102,994.26
3 3 3300 1685699 2111 125740 0.0661 0.011 <th0.011< th=""> 0.011 0.011<</th0.011<>	96 25				3163	182048	2100	121803	0.000	0.0.0	621.04 618.00	619.US	105/2/5/10 101/180/15	5.001 5.028	100,253.42 00,481.10	6 807 000 709 8	/6,038.8/ 76 7/6 62	4,1/9,033.12
3 1 3 3324 191923 2203 128379 0.674 0.676 621.07 618.96 103.006.74 6.109.197.87 86.549.46 6.804.378.76 74.334.81 3 1 3 8178 198101 2175 130554 0.831 0.880 620.90 618.98 105.305.16 6.214.503.13 100.472.88 5.904.861.66 75.756.33	5 85	n m		n m	3300	188599	2151	126176	0.666	0.075	611.76	618.92	104,047,52	6.005.591.23	98,820,24	5,705,829,30	75,105.69	4,330,385.44
3 1 3 6178 188101 2175 130554 0.831 0.680 620.90 618.88 105.305.16 6.214,503.13 100,472.88 5,904,851.86 76,763.33	59	m	-	m	3324	191923	2203	128379	0.674	0.675	621.07	618.95	103,606.74	6,109,197.97	98,549.46	5,804,378.76	74,834.91	4,405,220.35
	60	e	F	е	6178	198101	2175	130554	0.831	0.680	620.90	618.98	105,305.16	6,214,503.13	100,472.88	5,904,851.65	76,758.33	4,481,978.69

	hde	Undependent Variablee	ent											HOW			
	>		6				All Products	5				ROW	W	ME		HIGH	
Replication Number	MAS	HOM	MIX	Period Demand	Total Demand	Period Shipped	Total Shipped	Period	Total DFR	rerod Cycle Time C	Cycle Time	Period NOI C	Cumulative NOI	Period NOI C	Cumulative NO	Period NOI 0	Cumulative NO
	2	-	-	1936	1936	1913	1913	0.999	666'0	312.00	312.00	88,165.29	88,165.29	80,375.30	80,375.30	66,046.33	66,046.33
5	0	-	-	1864	3800	1863	3766	0.998	0.998	305.80	308.95	84,243.28	172,408.57	76,968.29	156,333.59	61,628.32	107,673.66
~ ~	~ ~			1901	5701	1877	5843 1421	0.996	0.998	328.23	315.36 200.04	88,950.28 of one TT	261,368.85 246 205 62	81,006.30 Te 7.4 To	237,338,89	66,676.33 £0,444.00	164,348.98
• • •	4 (1			1787	9320	1787	9214	/66/0	0.998 808.0	236.14	200.84 288.18	77.361.27	423.756.89	68.561.29	382.641.97	44.231.32	260.992.11
9	1 (1	-	-	1867	11187	1822	11036	0.997	0.998	326.17	294.29	84,107.11	507,864.00	76,767.12	468,399.09	51,427.15	312,419.27
7	ы	-	-	1852	13039	1835	12869	0.998	0.998	237.56	286.20	83,307.19	591,171.20	74,930.96	533,330.05	50,600.99	363,020.26
8	N	-	-	1852	14892	1834	14702	1.000	0.998	263.00	283.31	83,265.11	674,436.31	74,883.88	608,213.93	50,553.91	413,574.16
6	N	-	-	1852	16744	1834	16535	0.998	0.998	267.22	280.42	83,223.03	757,659.34	74,836.79	683,050.72	50,506.82	464,080.98
2 7	N	-	-	1852	18596	1833	18368	0.998	0.998	303.55	282.72	83,180.94	840,840.28	74,789.71	757,840.43	50,459.74	514,540.72
= \$	0			1872	20468	1845	20213	0.998	0.998	259.70	280.62	84,631.95	925,472.23	76,386.96	834,227.39	52,056.99	566,597.71
7 Ç	N			1850	22328	1842	22055	0.998	0.998	243.28	277.50	83,631,46	1,009,103.67	75,261,46	909,488.85	50,931.49	617,529.20
1	N 0			1813	24141 26000	1785	23840	866.0	866.0	216.70	272.95	76,777.94	1,085,881.61 1,177,824.06	67,967.95 oo oo 47	977,456.80	43,637.98 Fe £20.50	661,167.18 747 600 60
15	1 (1			1821	28011	1812	27666	0.998	0.998 808.0	2355.78 295.78	278.75	87.655.12	1.262.279.18	79.735.13	1.138.054.40	55.405.16	773.104.84
16	1 (1	-	-	1872	29883	1835	29501	0.998	0.998	304.03	280.32	84,019.28	1,346,298,46	75,634,29	1,213,688.69	51,304.32	824,409.17
11	10	-	-	1859	31742	1838	31399	1.000	0.999	261.16	278.67	83,588.78	1,429,887.24	75,328.79	1,289,017.49	50,998.82	875,407.99
<u>8</u>	ы	-	-	1881	33623	1869	33208	0.999	0.999	307.49	280.79	88,105.95	1,517,993.18	80,155.96	1,369,173.45	55,825.99	931,233.98
61	ы	-	-	1952	35575	1937	35145	0.999	0.999	346.17	284.39	90,139.29	1,608,132.47	82,479.30	1,461,652.75	58,149.33	989,383.31
3 2	N 0			1825	37400	181	30900	0.000	0.000	229.13	281.69	82,669.28 67.40 <i>6.46</i>	1,590,801.75	74,229.29 70.175.46	1,525,882.04 1 806 067 64	49,899.32 £4.04£.40	1,039,282.63
22	4 0			1924	41234	1869	40715	888.0	6660	326.86	284.63	86.186.95	1.864.094.15	78,106,96	1.683.164.47	63.776.89	1.147,905.12
23	101	-	-	1844	43078	1828	42643	0.999	0.999	304.76	285.40	84,170.11	1,948,264.26	75,860.13	1,759,024.59	61,630.15	1,199,435.27
24	0	-	F	1956	46034	1875	44418	0.999	0.999	268.77	284.27	85,838.95	2,034,103.20	77,783.96	1,836,808.56	53,453.99	1,252,889.27
25	0	-	-	1822	46856	1858	46276	0.998	0.999	369.57	287.70	86,963.11	2,121,066.32	78,868.13	1,915,676.69	64,638.16	1,307,427.42
	7	-	-	1860	48716	1837	48113	0.998	0.999	313.93	288.70	86,931.61	2,207,997.93	78,906.63	1,994,583.31	54,576.66	1,362,004.08
77 77	00	- 1		1950	50666	1907	50020	0.999	0.999	405.56	293.15	87,106.28	2,295,104.21	79,141.30 77 200.00	2,073,724,61	64,811.33 54 070 00	1,416,815.41
	N 0			9/8L	0704/2 27/E0	1881	61881 6.0760	0.000	0000	286.20	20 COC	83,574,61 02,025,45	2,378,678,833	75,600,463	2,148,134,24	99'B/0'L9	1,46/,895.07
3 6	ч с				56370 56370	18/8	03/08 66668	866'O	666.0	369.28	205.85	63,830.40 01 243 06	2,402,014,28 2,663,768,23	70,000.40 83.638.97	2,224,/34./U 2 308 273 67	51,2/0.49	1,019,100.00 1.678.374.66
	1 (1	-	-	1919	58289	1894	67662	0.999	0.999	276.11	295.01	88,954.12	2,642,712.34	81,154.13	2,389,427.80	56,824.16	1,635,198.71
	ы	-	-	1883	60172	1851	59403	0.999	0.999	318.70	296.75	85,818,95	2,728,531.29	77,743.96	2,467,171.76	53,413.99	1,688,612.70
	ы	-	-	1909	62081	1880	61283	0.999	0.999	298.08	295.82	83,600.78	2,812,132.07	75,320.80	2,542,492.58	50,990.83	1,739,603.53
	0	-	-	1930	64011	1908	63191	0.999	0.999	330.81	296.88	87,035.45	2,899,167.52	79,055.47	2,621,548.02	54,725.50	1,794,329.03
с ж	0			1910	65921	1877	65068	0.998	0.999	304.80	297.11	89,768.28	2,988,935.81	81,878.30	2,703,426.32	67,648.33	1,861,877.36
26	NC			242 0201	60600	U281	60700	266°0	888.0	323.74	07 00C	83,/64./8 00.402.46	3,U/2,/UU.58 9,162,102,02	P/.B32.0/	2,//8//15.11	28'808'00 67 202 60	1.902,837.17 1.060 120 67
8	1 (1			1858	71557	1834	70624	0.999	0.999	279.55	297.99	83,675.11	3,246,868.14	75,315.13	2,936,663.70	50,985.16	2,011,114.82
39	N	-	-	1868	73425	1864	72488	0.980	0.998	301.80	298.08	84,269.11	3,330,137.26	76,154.13	3,011,807.83	51,824.16	2,062,938.98
4	N	-	-	1885	75310	1863	74351	0.998	0.998	275.62	297.52	85,158.95	3,415,296.21	76,908.96	3,088,716.79	52,578.99	2,115,517.97
4	0		-	1888	77198	1861	76212	0.998	0.998	332.59	298.38	89,429.61	3,504,725.82	81,439.63	3,170,156.42	57,109.66	2,172,627.63
43	2 10			75253	153451 80975	1882	78094	0.959	088.0	361.39 266.46	299.90 298.87	91,313.12 82 960 78	3,596,038,93 3,678,999,71	83,603.13 74.650.79	3,253,759.55 3,328,410.35	59,273.15 50,320,82	2,231,900.79 2,282,221.61
44	1 (1)	-	-	1907	82882	1898	81830	0.998	0.998	368.76	300.50	87,600.78	3,766,600.50	79,670.80	3,408,081.15	55,340.83	2,337,562.44
45	N	-	F	1860	84742	1825	83655	0.998	0.998	264.69	299.40	83,246.61	3,849,847.11	74,926.62	3,483,007.77	50,596.65	2,388,159.10
46	9	-	F	1821	86563	1806	85461	0.998	0.998	268.63	298.84	82,562.44	3,932,409.55	74,097.46	3,557,105.23	49,767.49	2,437,926.68
47	7	-	-	1928	88491	1903	87364	0.998	0.998	422.79	301.54	90,114.62	4,022,524.17	82,469.63	3,639,574.86	58,139.66	2,496,066.24
84	0 0			1911	90402	1882	89246	0.998	0.998	304.22 316.06	301.60 200 46	87,091.12	4,109,615.28 2 107 000 40	79,136.13 00.050.40	3,718,710.99	54,806.16 55 000 16	2,550,872.40
92	ч c			1261	00076	1070	02010	0.000	00000	08:075 262.64	303.10 202.76	20 606 11	4, 187, 028,440 4, 706,616,61	20,208.10 70,716.12	3,/ 30,300.14	00,808.10 66,206,16	2,600,611,07,72
51	4 (4			1866	98096	1862	94862	0.998	0.998	280.90	302.33	83,623,11	4,369,038,63	76.228.13	3,953,924,38	50,898.16	2.713.095.88
52	ы	-	-	1865	97961	1843	96705	0.998	0.998	293.79	302.17	88,142.61	4,467,181.24	80,137.63	4,034,062.00	55,807.66	2,768,903.54
53	0	-	-	1871	99922	1928	98633	0.998	0.998	391.64	303.92	92,777,79	4,549,959.02	86,267.80	4,119,329.81	60,937.83	2,829,841.37
55	0	-	-	1981	101903	1936	100569	0.998	866.0	366.62	304.93	89,784.12	4,639,743.15	82,019.14	4,201,348.94	67,689.17	2,887,530.53
00 92	(1)			1877	103780	1860	102429	0.998	0.998	331.24	305.41	87,135.45 01 200.05	4,726,878.59 4,040,077,55	79,035,46	4,280,384.40	54,705.49 50,550.00	2,942,236.03
57	4 (4			1909	107619	1885	106231	0.998	966.0 866.0	346.95	306.46	86,281,62	4,904,659,16	78,236,63	4,442,520.00	53,906.66	3,055,711,68
58	0	-	-	1885	109504	1849	108080	0.998	0.998	281.54	306.02	85,685,61	4,990,344.77	77,570.63	4,520,090.63	53,240.66	3,108,952.34
59	0	-	-	1789	111293	1785	109865	0.998	0.998	315.03	306.17	84,655.94	5,075,000.71	76,295.95	4,596,386.58	51,965.98	3,160,918.32
00	Ν	-	-	1886	113179	1850	11775	0.998	0.998	321.29	306.42	86,397.78	5,161,398.49	78,342.79	4,674,729.38	54,012.82	3,214,931.15

		Veriables															
	>	Variables	es_				All Products	te				LOW	N	MED		HIGH	Ŧ
Replication Number	MAS	HOM	×IW	Period Demand	Total Demand	Period Shipped	Total Shipped	Period	Total DFR	Period Cycle Time C	Cvole Time	Period NOL C	Cumulative NOI	Period NOI	Cumulative NO	Period NOL C	Cumulative NO
	2			2389	2389	2128	2128	0.922	0.922	746.49	746.40	0	106,901.02	I -+	101,661.54		77,482.58
2	7			2412	4801	2122	4260	0.898	0.910	735.21	740.86	107,686.40	214,586.42	102,440.92	204,102.47	78,261.96	166,744.66
~ ~	0.0	- 1	00	2305	7106	2133	6383	0.921	0.913	739.23	740.32	104,962.54	319,548.96	99,443.06 20,420,40	303,545.53	76,264.10	231,008.66
- 10				0877	11730	2140	10637	1 8.0	51 B C	752.75	742 DD	104,000.04 104,704,20	529.061.80	99, 109.10 99, 134.72	501 869 40	74.955.76	300,010,000 380,974,61
9				2330	14060	2115	12752	0.924	0.917	748.65	743.08	106,849.68	635,911.48	101,446.20	603,314.60	77,266.24	468,240.85
2				2347	16407	2134	14886	0.919	0.917	750.68	744.17	105,471.09	741,382.57	100,025.36	703,339.96	75,846.40	534,087.25
~				2347	18755	2134	17019	0.919	0.917	752.60	746.23	105,471.09	846,853.66	100,025.36	803,365.33	75,846.40	609,933.65
5				2347	21102	2134	19153	0.919	0.917	754.52	746.27	105,471.09	952,324.76	100,025.36	903,390.69	75,846.40	685,780.05
2 7	0 0		0 0	2347	23449	2134	21286	0.919	0.917	756.45	747.29	105,471.09	1,057,795.85	100,025.36	1,003,416.05	75,846.40	761,626.46
= 9	0 0	- 1	NO	2387	25835	2165	23461	0.915	716.0	768.37	749.23	106,278.85	1,164,074.70	100,929.37	1,104,346.42	76,750.41	838,376,87
<u> </u>	N		N	2338	4/L87	90LZ	/0007	216.0 0 0 0 0	10.0	1/10//	00710/	10/,428./5	445'ENG'L/Z'L	102,0/4.2/	1,206,419.69	15.0B8,1/	81.272,818
27	NC		N	19827	30006	1012	2000	0.0 0 0 0 0	18.0	102.00/	41.201 41.037	103,080,140 107,060,101	08.UBU,018,1	101 TOD 66	1,304,302.61 1 406 075 06	73,753,95 77,674,60	4 067 £70 02
15	40		4 0	2326	35221	8717 0112	31947	0.8.0	718.0	767.27	761.13	107,000.13 104.722.16	1,586,881,13	00.02/,101 99 172 68	1,505,248,94	74 993 72	1 142 564 55
16	101	-	1 01	2254	37475	2056	34003	0.910	0.917	751.44	751.15	107.720.57	1.694.601.71	102.266.09	1.607.515.03	78.087.13	1.220.651.68
17		-	1 (1)	2336	39811	2123	36126	0.918	0.917	750.55	751.11	107,212.51	1,801,814.21	101,888.03	1,709,403.06	70,907,77	1,298,360.75
18		-	2	2276	42087	2094	38220	0.921	0.917	721.51	749.49	106,609.51	1,908,423.72	101,065.03	1,810,468.08	76,886.07	1,375,246.81
19		-	7	2414	44501	2173	40393	0.918	0.917	771.11	750.66	106,412.68	2,014,836.40	101,183.20	1,911,651.28	77,004.24	1,462,251.05
07		-	2	2367	46858	2135	42528	0.913	0.917	762.02	751.23	106,152.75	2,120,989.14	100,638.27	2,012,289.55	76,469.31	1,528,710.36
58		-	7	2292	49150	2109	44637	0.924	0.917	745.36	750.95	108,234.06	2,229,223.20	103,049.58	2,116,339.13	78,870.62	1,607,580.98
72		-	2	2312	51462	2111	46748	0.915	0.917	731.70	750.08	106,474.26	2,335,697.46	101,049.78	2,216,388.91	76,870.82	1,684,451.80
32			2	2278	63740	2103	48851	0.913	0.917	708.49	748.29	106,297.44	2,441,994.90	100,822.96	2,317,211.87	76,644.00	1,761,095.80
25			~ ~	2348	56088	2145	50996	0.926	0.917	718.67	747.04	104,926.78	2,546,920.68 2,554 245 00	99,381.30	2,416,693.17	75,202.34	1,836,298.14
26			2 1	0052	08288	74040	21120		218.0 0	/00.80	14/43	104,380.30	2,0015,100,2 0 510 737 0	100 ere 20	2,010,293,99	74,021.80 To 777 of	00.028,018,1
			4 0	2360	00/00 62100	2127	24200	218.0	18.0	767.00	001/14/	102/076/05	601140' /07'72	101 761 47	27.008,010,2	17,14,01	02.182,106,1
33 i 12			4 (1	2397	02100 86606	2146	67576 59525	0.916	716.0	766.66	748.12	104.734.88	2,969,092,63	99,335,41	2,817,047,10	75.156.45	2.140.036.24
		-	1 01	2280	67786	2106	61631	0.914	0.917	695.00	746.31	106,684.75	3,074,777,28	100,100,27	2,917,147,37	76,921.31	2.215.967.64
я мо		-	6	2401	70186	2138	63769	0.915	0.917	776.33	747.28	105,985.06	3,180,762.33	100,560.58	3,017,707.94	76,381.62	2,292,339.16
ਸ਼ ਸ		-	7	2307	72483	2109	65878	0.915	0.917	733.82	746.85	106,990.06	3,287,752.39	101,630.58	3,119,338.62	77,451.62	2,369,790.78
		-	ы	2358	74851	2129	68007	0.915	0.917	743.99	748.76	104,475.13	3,392,227.52	98,840.65	3,218,179.17	74,661.69	2,444,452.47
			0	2283	77134	2111	70118	0.916	0.917	744.90	748.71	107,079.26	3,409,306.78	101,649.78	3,319,828.95	77,470.82	2,621,923.29
5 %			~ ~	2321	79465	2109	72227	0.916	0.917	717.28	746.85	105,583.06 407.004.07	3,604,889.84	100,073.58	3,419,902.53	75,894.62	2,597,817.91
98			NO	2326	18/18	2000	76201	019.0	118.0	677.680	87.447	06:160,001	3,/U9,981./9	00 202 00	3,019,410.00 2,640,022,40	10,3333,01	2,6/3,101.42
37			ч c	4777	56254	2146	18507	0.918 410 0	710.0	754.60	741.65	105,634,88	3,0 10,008.30	50.700,88	3,0 18,922.10	75 006 45	2,748,478,00 2,824,476,01
8			1 (1	2369	88723	2123	80660	0.917	0.917	772.36	742.45	104,576.51	4,025,299.76	99,032.03	3,818,129.53	74,853.07	2,899,329.07
39		-	10	2283	91006	2116	82776	0.915	0.917	718.95	741.85	106,198.78	4,131,498.54	100,634.30	3,918,763.83	76,455.34	2,975,784.41
40		-	ы	2304	93310	2120	84896	0.916	0.917	759.86	742.30	106,236.19	4,237,734.73	100,816.72	4,019,580.54	76,637.76	3,052,422.17
4 5			6	2337	95647	2153	87049	0.921	0.917	751.20	742.52	104,978.61	4,342,713.34	99,464.13	4,119,044.67	75,285.17	3,127,707.34
43			N 0	2308	97955 100103	2109	89158 01220	0.916	719.0	705.07	743.07	104,691.05 107 362 13	4,447,404.40 4.554.766.52	99,191.58 101 742 65	4,218,235.25 4,310,078,00	75,012.52 77,563,60	3,202,719.95
44		-	101	2315	102508	2127	93356	0.909	0.917	743.34	742.70	105,893.92	4,660,660.44	100 444 44	4,420,423.34	76,265.48	3,356,549.12
45		F	2	2268	104776	2113	95469	0.916	0.917	748.48	742.83	106,276.47	4,766,936.91	100,786.99	4,621,210.33	76,608.03	3,433,157.16
46		-	7	2321	107097	2125	97594	0.916	0.917	776.98	743.57	105,421.71	4,872,358.63	99,852.23	4,621,062.56	75,673.27	3,508,830.43
47		-	2	2276	109373	2107	99701	0.912	0.916	703.42	742.72	106,622.85	4,978,981.48	101,083.37	4,722,146.93	76,904.41	3,585,734,84
84			0 0	2337	111710	2136	101837	0.915	0.916	736.11	742.58	106,147.85	5,084,129.33 7 400 400 70	99,698.37 20.274.20	4,821,844.30	76,619.41	3,661,264.26
6 1			2 0	0492	116266	2712	106076	018.0	019.0	765.03	742.00	105,301,40	0,189,430.73 6 206 330 61	100 260 40	4,921,090,22 6,022,066,63	76 101 25	3./30.92/.21 3.730.02
5.5			40	2366	118762	2112	108180	0.018	0.010	761.64	743.42	106,989,47	6 402 320.08	101 614 99	6 123 671 62	77 436 03	3,800,644,60
52		-	1 01	2318	121070	2139	110328	0.919	0.916	724.00	743.04	106,266.16	5,507,576.24	99,761,68	6,223,433.30	76,682.72	3,966,127.41
53			7	2402	123472	2165	112493	0.922	0.916	719.72	742.59	105,642.85	5,613,219.09	100,293.37	6,323,726.67	76,114.41	4,042,241.82
54		-	6	2376	125848	2134	114627	0.909	0.916	770.57	743.11	105,896.64	6,719,116.74	100,447.16	5,424,173.83	76,268.20	4,118,510.03
55			6	2368	128206	2148	116775	0.915	0.916	761.95	743.46	106,297.09	6,826,412.83	100,962.61	5,525,138.45	76,783.65	4,195,293.68
90 22	0 0		~ ~	2403	130609	2126	118901	0.916	0.916	762.70	743.80	106,366.82	5,931,779.64 e 007 047 00	100,997.34	5,626,133.78 5,725,040,05	76,818.38	4,272,112.06
5 8			1 10	2299	135256	2109	123146	0.6.0	0.9.0	737.04	744.29	106,238,06	6.143.255.45	100.808.58	5.826.620.63	76.629.62	4,424,240,98
59		-	1 01	2308	137564	2117	125262	0.916	0.916	738.36	744.19	106,027.88	6,249,283.33	100,483.40	5,927,104.03	76,304.45	4,500,545.43
60		-	0	2271	139835	2116	127378	0.919	0.916	756.81	744.40	106,054.78	6,355,338.11	100,595.30	6,027,699.33	76,416.34	4,576,961.77

Number Antoni Antoni<		pri ,	Independent	ent	-										ном	- -		
Mode Mode <th< th=""><th></th><th>></th><th>anable</th><th>es-</th><th></th><th></th><th></th><th>All Produc</th><th>ş</th><th></th><th></th><th></th><th>ΓÖ</th><th>w</th><th>ME</th><th></th><th>HIG</th><th>Ŧ</th></th<>		>	anable	es-				All Produc	ş				ΓÖ	w	ME		HIG	Ŧ
1 1	Replication Number	MAS			Period	Total Demand	Period Shipped	Total Shipped	Period	Total DFR				umulative NOI		umulative NO		Cumulative NO
2 2 1 3		2			3199	3199	2173	2173	0.686	0.686			I.++	114,769.74		111,589.12		88,317.89
3 1	2	2			3431	6630	2226	4398	0.676	0.681	649.93	663.51	115,090.65	229,860.39	112,120.03	223,709.16	88,848.80	177,166.68
5 1 1 0	ς, <u>π</u>	0 0			3298	9928	2197	6595	0.673	0.678	660.84 200.00	662.62	115,200.31	346,060.71	112,124.70	336,833.86	88,853.46 20.740.44	266,020.14 256,020.14
6 1 1 2020 0000 0000 00000 00000 000000 000000 000000 000000 000000 000000 000000 000000 000000 00000000 00000000 00000000 000000000 0000000000 000000000000000000000000000000000000	• •	4 0			3240	16331	2184	10/01	0.682	0.078	667.57	665.14	115.014.09	575.252.7B	111.753.47	559,574,67	88.482.23	304,730.20 443.218.40
7 2 1 2	9	1 (1)			3203	19534	2175	13140	0.683	0.679	668.34	665.67	116,747.62	692,000.38	113,827.00	673,401.67	90,555.77	633,774.26
9 2 1 2	7	2			3223	22767	2193	16333	0.677	0.679	668.42	666.06	115,285.58	807,285.96	112,196.21	785,597.89	88,924.98	622,699.23
9 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2	æ '	7			3223	25981	2193	17525	0.721	0.684	669.16	666.45	115,285.58	922,571.55	112,196.21	897,794.10	88,924.98	711,624.21
1 2 1 2	6	7			3223	29204	2193	19718	0.682	0.684	669.90	666.83	115,285.58	1,037,857.13	112,196.21	1,009,990.32	88,924.98	800,549.19
1 1	₽ ₹	0 0		<i>е</i> с	3223	32427	2183	21910	0.682	0.684	670.64	667.22 567.52	115,285.58	1,153,142.71	112,196.21	1,122,186.53	88,924,98	889,474.17 010,005,01
1 2	= 5	NO		m (3207	35634	2203	24113	0.686	0.684	671.34	667.59 667.00	115,847.96	1,268,990.67	112,802.34	1,234,988.87	89,531.10 00,657,40	979,005.27
1 2 1 0	4 C	NC		» (3236	388/0	2108	20500	0.000 0.000 0.000	1084 0 0 0	07170	00/30	110,484,20 315,502,351	1,384,974,92	40.828,211	10./18//95/1 10./18/192/1	04.700,88	1,008,662.67
1 2 1 2 1 2 1	4	40		• e	3220	46323	2196	30705	0.683	0.684	671.70	668.66	115 746.37	1.000,007.10	112.685.76	1.573.204.90	08, 414.57	1 247 407 59
1 2 3	15	1 (1	-		3361	48684	2211	32916	0.688	0.685	652.54	667.58	114,988.48	1,731,302.04	111,952.86	1,685,157.76	88,681.63	1,336,089.22
1 2 1 3	16	ы	-	ю	3331	52015	2226	35142	0.681	0.684	663.20	667.30	115,382.59	1,846,684.63	112,326.97	1,797,484.74	89,055.74	1,425,144.98
No 2 3 2 4 0	1	7	-	е	3187	55202	2174	37316	0.681	0.684	685.32	668.35	115,704.68	1,962,389.31	112,594.06	1,910,078.80	89,322.83	1,514,467.78
1 3 3111 111 31 3111 111 3111 111 3111 111 3111 111 3111 111 3111 111 3111 111 3111 111 3111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111	<u>8</u>	7	-	e	3214	58416	2193	39509	0.685	0.684	665.36	668.18	116,294.55	2,078,683.86	113,333.93	2,023,412.73	90,062.70	1,604,530.48
21 3 3177 0 <th>6L 0C</th> <th>0</th> <th>-</th> <th><i>с</i></th> <th>3214</th> <th>61630</th> <th>2184</th> <th>41693</th> <th>0.686</th> <th>0.684</th> <th>677.96</th> <th>668.70</th> <th>115,874.09</th> <th>2,194,557.95</th> <th>112,803.47</th> <th>2,136,216.20</th> <th>89,532.23</th> <th>1,694,062.71</th>	6L 0C	0	-	<i>с</i>	3214	61630	2184	41693	0.686	0.684	677.96	668.70	115,874.09	2,194,557.95	112,803.47	2,136,216.20	89,532.23	1,694,062.71
22 2 1 3 3331 7 9644 3334 7 9644 3334 7 9644 3334 7 9644 3334 7 9644 3334 7 9644 3334 7 9644 3334 7 9644 3334 7 9644 3334 7 9644 3334 7 9644 93344 93344 93344	3 2	010			3236	64866	2188	43881	0.690	0.685	666.41	068.58 222 23	114,624.85	2,309,182.80	111,414.23	2,247,630.43	88,142.99	1,782,205.71
2 1 3 3 7 1 1 3 3 1	2 8	N (//18	24030	0000	10005	//0.0	10000	020.30	008.38	110,301.37	2,424,534.17	0/10/1/211	2,309,800,19	20'80'8'80	52.011,178,1 52.020,540,50
21 2 3312 7776 2177 5637 5000 5777 5770 5000 5777 5000 5777 5000 5777 5000 5777 5000 5777 5000 5777 5000 5777 5000 5776 5000 5776 5000 5776 5000 5776 5000 5777 5000 57777 5777 57777 57	3 1	4 0		• •	0212	70000	2174	50460	0.600	0.694	670.72	10.900	114,035,00	2,008,144,800,2 7 864,722 61	111,003,04	2.603.150.20	00,070,00	0.240,608,1
5 1 0 0000 <th>24</th> <th>40</th> <th></th> <th></th> <th>3312</th> <th>77766</th> <th>2172</th> <th>60R31</th> <th>0.684</th> <th>0.684</th> <th>662.64</th> <th>660 14</th> <th>115,058,80</th> <th>10:007/100/2</th> <th>112 048 18</th> <th>2,000,108.30 2,606,107,48</th> <th>80,676,05</th> <th>2 137 607 81</th>	24	40			3312	77766	2172	60R31	0.684	0.684	662.64	660 14	115,058,80	10:007/100/2	112 048 18	2,000,108.30 2,606,107,48	80,676,05	2 137 607 81
Žř 1 3 2020 6000 1000 <th>25</th> <th>10</th> <th>-</th> <th></th> <th>3336</th> <th>81095</th> <th>2214</th> <th>54845</th> <th>0.689</th> <th>0.685</th> <th>667.16</th> <th>669.06</th> <th>115,114.30</th> <th>2,886,306.62</th> <th>112,138.69</th> <th>2,808,246.16</th> <th>88,867.45</th> <th>2,226,466.26</th>	25	10	-		3336	81095	2214	54845	0.689	0.685	667.16	669.06	115,114.30	2,886,306.62	112,138.69	2,808,246.16	88,867.45	2,226,466.26
1 3 3 300 6774 2013 6003 6004	26	2	F	ю	3213	84308	2192	67037	0.683	0.684	672.46	669.19	115,984.61	3,001,271.23	112,928.99	2,921,176.18	89,657.76	2,316,123.01
28 2 1 3 300 00004 2106 0006 006 0002		2	-	ю	3206	87514	2201	69238	0.689	0.685	668.06	669.15	114,994.08	3,116,266.31	111,818.46	3,032,993.62	88,547.22	2,404,670.24
30 2 1 3 3266 05044 0506 0506 0506 0504 0506 0504 0506 0504 0504 0506 0504 0504 0506 0504 0506		7	-	m	3190	90704	2168	61406	0.688	0.685	674.03	669.32	115,468.04	3,231,733.34	112,342.42	3,146,336.04	89,071.18	2,493,741.42
37 2 1 3 3.268 0.711 2.10 0.704 0.706 0.744 0.746		00		<i>с</i> с	3155	93869	2168	63664	0.690	0.685	673.88	669.47	116,477,63	3,347,210.98	112,187.01	3,267,623.06	88,915.78	2,682,867.20
32 2 1 3 3330 100400 210400 210400 210400 210400 210400 210400 210400 210400 210400 210400 210400 210400 210400 210400 210400 210400 210400 21040 20040 200400 2104000 2104000 2104000 2104000 2104000 2		CN C		~ ~	3268	97117 1000er	2176	66740 erono	0.686	0.685	674.22 een te	669.63 eeo 20	116,660.66	3,463,761.54 2,570,606,00	113,619,94	3,371,142.99	90,348.71	2,673,005.90
33 2 1 3 3220 10077 2214 7233 06077 2214 7233 06077 2214 7233 06077 2214 7233 06077 3200 10072 3200 10072 3200 10072 3200 10072 3200 10072 3200 10072 3200 10072 3200 10072 3200 10072 3200 10072 3200 20073 9303 20073 9303 20073 9303 20073 9303 20073 9303 20073 9303 20073 9303 20073 9303 20073 9303 20073 9303 20073 93033 9303 93033 9303		40		• e	3187	103547	2187	70120	0.671	0.684	007.10 683.95	669.84	116,636,91	3,078,080.08 3,606,337,00	113 625 29	3,507,607,22	90.354.05	2,852,927,68
		101	-	0 00	3230	106777	2214	72334	0.689	0.685	670.19	669.86	114,886.30	3,811,218.30	111,746.69	3,709,352.90	88,474.45	2,941,402.11
2 1 3 3208 119508 2784 66002 115688.74 6002.71 500004 4002.4717 115.066.04 4002.4717 317.01 3007.062.4 8000004 2 1 3 3101 11600.68 7583 00001 115.7416 4.033.7168 111.00.277 4.166.0624 84000.04 2 1 3 3277 120681 0087 06601 06001 115.7416 4.033.7168 111.00.277 4.166.0864 4.062.7266 8400.73 812.040 8400.73 812.040 8400.710 822.226 8400.710 822.236 8400.710 822.236 8400.710 822.236 8400.710 822.246 8400.710 822.246 840.701.741 87.060.711 822.266 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66 842.721.66		0	-	m	3302	110079	2206	74540	0.691	0.685	666.25	669.75	115,310.78	3,926,529.08	112,295.16	3,821,648.07	89,023.93	3,030,426.03
2 1 3 3100 116063 2162 75634 60640 116,646,44 4.383,711623 4113,02287 41668,962.13 80337 64 2 1 3 3226 11690.03 15,1466,44 4.383,7142 112,002.85 4.231,507.93 4.231,507.93 4.231,507.93 4.231,507.93 8.2326	35	7	-	m	3239	113318	2189	76729	0.682	0.685	672.40	669.82	115,888.79	4,042,417.87	112,878.17	3,934,526.24	89,606.94	3,120,032.97
2 1 3 3206 110603 2064 60077 60047 116,414.60 4,503,716.66 112,00088 20501 82037 145,114.60 4,503,716.66 112,00088 26071 9504.71 9504.64 4,503,776.66 112,00088 26071 9504.71 9504.20 9323.641.19<	98	7	-	m	3190	116508	2192	78921	0.685	0.685	675.84	66.93	115,854.61	4,158,072.48	112,568.99	4,047,095.23	89,297.76	3,209,330.72
2 1 3 3277 12081 3238 96003 1611406 4.3867/014 1712431/2 82263 96003 16114406 4.3867/014 1712431/2 842023 847023 847023 847023 847023 847023 84003 16114406 4.3867/014 1712472 84203 9400 10067 10057 96003 16114406 4.3867/014 1712472 84203 9400 10067 10047 10 84203 101047 10047 10047 10 10047 10 101047 10 101047 101047 101047 10 10047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 101047 10 10101047 101047 <th>37</th> <th>0</th> <th>-</th> <th><i>с</i></th> <th>3295</th> <th>119803</th> <th>2194</th> <th>81115</th> <th>0.689</th> <th>0.685</th> <th>650.71</th> <th>669.47</th> <th>115,043.49</th> <th>4,273,115.98</th> <th>111,902.87</th> <th>4,158,998.11</th> <th>88,631,64</th> <th>3,297,962.36</th>	37	0	-	<i>с</i>	3295	119803	2194	81115	0.689	0.685	650.71	669.47	115,043.49	4,273,115.98	111,902.87	4,158,998.11	88,631,64	3,297,962.36
2 3 3111 1 2000 00000 00000 00000 000000 000000 000000 000000 000000 0000000 0000000 0000000 00000000 00000000 00000000 00000000 000000000 000000000 000000000 0000000000 00000000000000000 000000000000000000000000000000000000	8 8	N 0		m (3277	123080	2178	83293	0.685	0.685	657.85 een or	669.17 eeo.oo	115,645.44	4,388,761.42 4 #03 076 00	112,509.83	4,271,507.93	89,238.59 00 700 01	3,387,200.95 2.47£ 062 76
7 1 3 2216 13270 2208 660.36 660.46 116.960.22 4736.266.30 113.078.40 4606.202135 850.135 2 1 3 2316 13270 2208 660.36 670.37 16.23302 4.766.266.30 113.078.40 4606.202135 850.135 2 1 3 3142 130002 2162 94066 060.36 114.73102 4.969.902.71 114.731364 4947160 114.7366.40 4966.962.7135 850.1356 2 1 3 3230 146706 2702 969.40 060.30 114.73102 4969.600.71 110.02.266 822.251.11 860.4140 114.73102 4964.66 90.353.11 114.73162 4966.90.525 4964.66 90.353.11 91.966.76 92.351.11 91.967.766 92.351.11 91.967.766 92.351.16 93.957.76 92.957.16 93.957.76 93.957.76 93.957.76 93.957.76 93.957.76 93.957.76 93.957.76 93.957.76 93.957.76 93.957.76	69	40		n e	3111	120381	2189	87700	/2010 0.683	0.685	695.01	509.03 669.68	115 791 20	4,5U3,870.U8 4,619,667,28	112,034.04	4,485,541.97	88,429,34	3,565,393,10
7 3 3113 1326800 2182 92084 060 60003 166.23321 4961.46000 11.200.04 472.105 472.106 472.106 472.106 472.106 472.106 472.106 472.106 472.106 472.106 472.106 472.106 472.106 472.106 474.106 474.106	41	1 (1)	-		3215	132707	2202	89902	0.693	0.685	660.36	669.45	116,599.02	4,736,266.30	113,678.40	4,609,920.95	90,407.16	3,655,800.26
2 1 3 3142 130202 2182 94066 0.086 06437 0603 1550327 111200-40 49666 6333135 2 1 3 3201 1462062 2172 96466 0.086 06457 07003 11731125 61065327 111200-40 496666 633310 2 1 3 3240 146666 2702 09643 06037 07030 11731125 61053327 111200-40 496666 033310 2 1 3 3706 146667 2702 09643 06037 11744490 516847436 50543146 6002391071 10100206 530510146 2 1 3 3106 166531 20030 07016 114323.05 514947406 11160640 5056419476 6032357 61754705 61000230 61963767 61002030 61002300 61002356 6174070 61062300 61002356 6197470 61002030 6100323017 610020230 617427016 <th>42</th> <th>13</th> <th>-</th> <th>ю</th> <th>3183</th> <th>135890</th> <th>2182</th> <th>92084</th> <th>0.683</th> <th>0.685</th> <th>680.98</th> <th>669.73</th> <th>115,233.21</th> <th>4,851,489.50</th> <th>112,092.59</th> <th>4,722,013.54</th> <th>88,821.35</th> <th>3,744,621.61</th>	42	13	-	ю	3183	135890	2182	92084	0.683	0.685	680.98	669.73	115,233.21	4,851,489.50	112,092.59	4,722,013.54	88,821.35	3,744,621.61
2 1 3 3207 14,250 2,001 4,366 86,46 0,664 0,644 0,602 114,1440 0,103,634 1,173,664 0,305,317 10,002,86 9,325,16 2 1 3 3106 116616 2103 6,060 0,666 664,56 114,32161 5,064,1966 111,322,561 9,036,317 2 1 3 3106 165610 2103 0,066 664,56 114,32161 5,064,1966 111,322,914 6,936,317 117,4604 9,352,351 117,3604 9,363,317 117,4604 117,3264 111,362,34 117,3264 9,363,316 113,3264,34 117,3264 9,363,316 113,3264 113,3264 9,363,316 113,3264 113,3264 111,322,361 111,322,316 11	43	2	-	ო	3142	139032	2182	94266	0.686	0.685	678.73	669.93	115,303.21	4,966,802.71	112,122.59	4,834,136.13	88,851.35	3,833,472.97
2 1 3 3370 146065 2172 08040 0.666 069.06 114,752.05 5.106,779 5700.77 1010.205 2 1 3 3370 147765 2172 08040 0.666 069.05 114,752.15 5.400,400 115,04.46 5.205,101.46 08035 1737 1577.956 070047 9100.256 5.490,400 111,020.40 5.205,101.46 08035 1747.2175 5.490,400 111,020.40 5.205,101.46 08035 114,752.151 5.490,400 111,020.40 5.265,101.46 08035 114,752.151 5.793,246 114,742.25 5.490,40.05 111,020.40 5.265,101.46 08035 114,752.151 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 114,742.25 5.793,246 <th>4</th> <th>13</th> <th>-</th> <th>e</th> <th>3207</th> <th>142239</th> <th>2202</th> <th>96468</th> <th>0.684</th> <th>0.685</th> <th>681.43</th> <th>670.20</th> <th>114,731.02</th> <th>5,081,533.72</th> <th>111,560.40</th> <th>4,946,696.63</th> <th>88,289.16</th> <th>3,921,762.13</th>	4	13	-	e	3207	142239	2202	96468	0.684	0.685	681.43	670.20	114,731.02	5,081,533.72	111,560.40	4,946,696.63	88,289.16	3,921,762.13
2 3	97 97	01 0			3316	146555	2172	98640 100040	0.690	0.685	648.55 eee on	669.72 een ee	117,144.80 116 £00.06	5,198,678.52 # 24# 270.40	114,274.18	5,059,970.71 5.172.505.05	91,002.95 00.252.10	4,012,765.07
2 1 3 3773 16616 2133 1001 6509.04 6500.04 65	47	40			3168	161063	2022	103046	0.686	0.686	687.36	009:000 990 03	114,762,02	5,430,040,60	111 606 40	5,173,595,00 5,285,101,45	90,303.10 88.326.16	4,103,118.18 4,101,443,34
2 1 3 3106 16831 2182 10740 0.606 663.93 77.06 114.321.61 5.660.195.66 111.020.06 5.607.975.77 87.746.73 2 1 3 22.02 11064.00 0.666 660.19 114.321.61 5.660.195.66 111.020.06 5.607.975.77 87.746.73 2 1 3 22.02 11064.00 0.666 690.60 114.632.14 6.002.376.60 114.321.61 6.560.486 714.746.74 5.977.975.75 5.877.915.16 9.507.28 2 1 3 32.00 1164632 2.700 114632 0.690.64 670.18 115.004.14 6.002.376.80 112.778.52 5.877.915.64 9.507.28 2 1 3 2.006 10684 0.665.10 660.56.71 6.106.466.66 0.116.20.068 5.877.915.66 5.877.915.66 5.877.915.66 5.877.915.66 5.877.916.96 5.877.916.96 5.877.916.96 5.877.916.96 5.877.916.96 5.877.916.96 5.877.916.96 5.877.916.96	48	1 (1			3173	156136	2193	106238	0.687	0.685	681.91	670.18	114,833.66	5,544,874.05	111,662.93	5,396,854.38	88,391.70	4,279,835.04
2 1 3 3222 1060440 0.006 0.066 60126 600.07 114,000.64 5/73,306 5/13,500 38,000 2 1 3 3300 1664833 2262 111652 0.606 640.01 661.05 650.01 660.355 652.3316 612.256 573.351.351 322.352 57.355.135.13 225.332.60 83.635.351 325.355 57.355.135.13 225.332.60 83.60.352 56.40.61 660.51 660.40 660.51 660.40 670.13 114.576.55 67.47.332.61 82.573.550 83.00.353 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.83 83.00.74 80.40.02.43 83.00.83 83.00.83 83.00.83 83.00.74 83.00.82.83 83.00.83 83.00.75 84.00.83 83.00.75 84.00.83 83.00.75 84.00.83 83.00.75 84.00.83 83.00.7	49	2	-	e	3195	158331	2192	107430	0.690	0.685	663.93	670.05	114,321.61	5,859,195.86	111,020.99	6,607,876.37	87,749.76	4,367,584.80
2 1 3 3300 1646633 2262 11652 0.666 660.60 60.60 11565.46 502.5106.13 2.525.105 13 2.255.00 2 1 3 2206 166068 2200 114632 0.674.30 674.49 670.18 116.455.46 10.259.57 5.647.3165.13 2.255.00 2 1 3 2206 116020 2164 116.475 0.664.55 5.647.31 5.647.326 5.647.326 5.647.326.56 5.647.326 5.647.326 5.647.326.55 5.647.326.55 5.647.326.55 5.647.326.55 5.647.326.55 5.647.326.55 5.647.326 5.645.75 5.647.326 5.647.326 5.645.75 5.647.326 5.647.326 5.645.75 5.647.326 5.647.326 5.645.75 5.647.326 5.756.667.32 5.647.326 5.756.667.32 5.647.326 5.756.760.32 5.756.667.32 5.647.326 5.756.726.56 5.756.726.56 5.756.726.56 5.756.726 5.756.726.56 5.756.726.56 5.756.726.56 5.756.726.56 5.756.726 <t< th=""><th>50</th><th>2</th><th>-</th><th>m</th><th>3262</th><th>161583</th><th>2210</th><th>109640</th><th>0.690</th><th>0.685</th><th>661.28</th><th>669.87</th><th>114,600.54</th><th>6,773,796.21</th><th>111,464.92</th><th>6,619,330.30</th><th>88,183.69</th><th>4,455,768.48</th></t<>	50	2	-	m	3262	161583	2210	109640	0.690	0.685	661.28	669.87	114,600.54	6,773,796.21	111,464.92	6,619,330.30	88,183.69	4,455,768.48
2 1 3 3206 150044 114432 0.064 0.664 674.49 670.16 115.494.56 011.2773 213.47 133.66 054.40 670.16 115.494.56 012.395.65 5.546.235.25 5.847.313.68 550.0738 530.063.35 5.246.235.25 5.847.313.66 550.0738 530.063.35 5.246.235.25 5.847.313.66 550.063.35 5.846.235.25 5.847.313.66 550.063.35 5.846.235.25 5.847.313.66 550.063.35 5.846.235.25 5.847.313.66 550.063.35 5.846.235.35 5.846.236.32 5.847.313.66 550.063.35 5.846.206.32 5.84.305.35 5.846.206.32 5.84.305.35 5.846.206.32 5.84.306.85	50	0	-	<i>е</i>	3300	164883	2262	111852	0.686	0.685	669.61	96.99	118,686.46	5,892,381.66	115,804.83	6,736,136.13	92,633.60	4,648,302.08
2 1 3 3161 174563 2170 1102/1 1102/1 10063 0005 0065 065 1151181 6 11511616 0.044004.0242 86.4086.35 2 1 3 3161 174564 2170 1102/1 0005 0666 657.81 660.46 11511616 0.0440.0242 86.4086.35 86.4086.35 2 1 3 3161 174564 2170 0566 657.81 660.46 11511616 0.0440.0242 86.4085.35 2 1 3 2240 130400 2100 10666 657.81 660.45 116.442.23 6.401.0362 88.442.56 2 1 3 2240 130400 2100 10666 657.81 660.42 116.442.23 6.401.0363 88.442.56 2 1 3 3140 184068 124677 0.5304.4868 80.0751 660.0651 11516.442.23 6.401.0363 80.0755.48 80.00755 80.00756.142.16 <t< th=""><th>22</th><th>0 0</th><th></th><th></th><th>3205</th><th>168088</th><th>2200</th><th>114032</th><th>0.679</th><th>0.685</th><th>674.99 oro 40</th><th>670.18 220 70</th><th>115,994.14</th><th>6,008,375.80 0,440,407,00</th><th>112,778.62</th><th>5,847,913.65 7.07.1000.00</th><th>89,507.28 20,220,22</th><th>4,637,809.36</th></t<>	22	0 0			3205	168088	2200	114032	0.679	0.685	674.99 oro 40	670.18 220 70	115,994.14	6,008,375.80 0,440,407,00	112,778.62	5,847,913.65 7.07.1000.00	89,507.28 20,220,22	4,637,809.36
2 1 3 4406 178700 2172 0000 0702 0000 07071 0000 170700 07070 0805 0771 08010 11616461 0.346772.7 112013.90 07700.38 26400 2 1 3 2240 100004 2100 122773 06015 11616461 0.346772.7 112013.90 07700.38 26400 2 1 3 2240 100004 2100 10065 66751 660.07 1144400 657769.400 11277847 0.3800.486 860.07 2 1 3 3140 198059 124767 0.880 6864 116.162.26 6.800.27103 87.400.98 80.0072.3 2 1 3 3212 10671 21367 0.800.24 680.2757 680.2641165 6.800.2756 680.207 0.800.74 6.800.075 6.800.076 0.800.075 6.800.076 0.800.075 6.800.076 0.800.075 6.800.076 0.800.075 6.800.076 0	3 2	0 0			3285	174534	0LL2	112311	0.603	0.625	666.51U	660.46 660.46	91.080,011 91.01.01.61	6,118,430.98 6 231 617 66	106,369.57 100 741 06	5,954,283.22 6.064.024.28	83,098.33 86.460.83	4,720,907.70 4 807 377 63
2 1 3 2240 180040 2160 122773 0.656 657.81 669.42 114,432.73 6,461.205.01 111,132.11 6.287,170.36 87.860.88 2 1 3 3149 184050 2184 124457 0.656 669.47 116,444.00 6.575.640.00 111,132.11 6.287,170.36 87.800273 2 1 3 3212 187301 2168 127456 0.656 669.47 116,444.00 6.575.640.00 111,132.14 6.287.170.36 89.007233 2 1 3 2212 187301 2168 0.656 669.37 116,442.75 6.461.205.01 111,132.14 6.287.170.36 89.007233 2 1 3 2212 187301 2168 0.6565 698.41 116,472.75 6.892.814 16.461.205.61 6.481.64 6.312.65.41 89.015.64 6.461.64 6.312.65.41 89.016.44 6.312.65.61 6.316.44 6.316.64 6.316.4.40 6.316.82.27.44 89.016.40	55	1 (1			4166	178700	2182	120583	0.702	0.686	678.77	669.63	115,154,61	6,346,772.27	112,013.99	6,176,038.28	88,742.76	4,896,120.28
2 1 3 3140 194050 2164 124657 0576 0586 659.47 669.77 115.444.00 6.575.640.00 112.7347 6.399.448.68 89.0723 2 1 3 2212 15730 2168 127156 0589 0586 169.57.57 659.64 116.162.66 169.25.131.3113.65.64 6.512.65.64 89.16.40 2 1 3 2212 196513 2169 12364 0881 0586 659.23 669.83 115.616.46 0.588.23744 11.2400.87 6.552.05.37 89.236.46 2 1 3 3126 139653 2166 134505 0584 0.865 652.55 670.12 114.375.76 0.522.706.56 111.098.13 6.736,134.50 87.236.56	56	10	-	m	2240	180940	2190	122773	0.658	0.685	667.81	669.42	114,432.73	6,461,205.01	111,132.11	6,287,170.39	87,860.88	4,983,981.16
2 1 3 2.12 16-301 2198 12,100 100631 00681 00681 00.50.0 006394 10,102.0 0042,511-301 13,10200.57 50.520539 95410-34 2 1 3 3.212 190513 2160 131505 0.581 0.685 699.2 33 115,516.44 5.882.27.94 11,240.57 5.5250537 5122026 2 1 3 3126 130509 2166 131505 0.584 0.685 687.55 570.12 114,375.75 5.922.706.59 111,098.13 6,736,134.50 87,225.09	57	0 0		<i>с</i> о	3149	184089	2184	124957	0.676	0.685	689.47 070 7 7	669.77	115,444.09	6,576,649.09 0 000 044 05	112,278.47	6,399,448.86	89,007.23	5,072,988.39 7,100,000,70
2 1 3 3.126 13039 2160 13100 0384 0.085 05.00.12 14,278.75 6,222.706.59 11,08:13 0,282,344 07.225.80	8 6	N 0		n e	3212	18/301	2198	12/100	0.684	0.685	6/3.5/ 660.22	660.84	115,518,40	6,692,811.35 6,808,327,84	113,186.64 112,400,87	6,012,030.44	04-019,88 80 120 64	6,162,9U3./9 6,262,032,43
	60	101			3126	193639	2156	131505	0.684	0.685	687.55	670.12	114,378.75	6,922,706.59	111,098.13	6,736,134.50	87,826.90	5,339,860.32

-	Independent Variables	heer	-											HOW			
	V di lat	<u> </u>					All Products	2		Period		LUW	M	ME		нюн	_
Replication Number MAS	KOM S	H MIX	×	Period Demand [Total Demand	Period	Total Shipped	Period	Total DFR		Cycle Time	Period NOI C	Cumulative NOI F	Period NOI C	Cumulative NO	Period NOI C	Cumulative NO
. .	÷	-	-	1849	1849	1826	1826	0.992	0.992	300.34	300.34	84,212.16	84,212.16	75,884.38	76,884.38	51,588.82	51,588.82
2 0	-	-	-	1909	3768	1859	3684	0.992	0.992	300.00	300.16	86,860.63	170,062.69	77,742.75	163,627.13	63,447.19	105,036.01
ا م				1907	5665	1883	7201	0.992	0.992	509.12 207.02	371.09	93,288.91 of 644.07	263,361.60 340 005 87	86,721.13 77 201 20	239,348.26 246 720 55	61,426.66 60 006 70	166,461.67
· •				1866	9366	1793	9174	0.992	0.992	313.14	346.38	82,671.98	431,667.66	74,184.20	390,923.75	49,888.64	269,446.95
9	-	-	-	1897	11252	1908	11082	0.992	0.992	291.66	336.13	87,432.39	519,100.05	79,584.61	470,508.37	55,289.05	324,735.00
ž	-	-	-	1902	13154	1868	12950	0.992	0.992	365.63	338.94	87,022.88	606,122.93	79,022.60	549,530.96	54,727.03	379,462.04
	-	-	-	1902	15056	1868	14817	0.992	0.992	361.32	341.76	87,022.88	693,145.80	79,022.60	628,553.56	54,727.03	434,189.07
n ĉ			- ,	1902	16957	1868	16685	0.992	0.992	367.02	344.59	87,022.88 07 000 00	780,168.68	79,022.60	707,576.15	54,727.03	488,916.10
2 €				2081 8081	50757 122705	1808	20081	786.0	286.0	3/2/1	347.42 366.16	8/,UZ2.88 90.686.14	00.191,108 08.778.730	00.220,87 82 808 36	01.280,387	58,6127,U3	543,543.14 602 166 03
12			- ,-	1870	22627	1853	22260	0.992	0.992	289.16	350.40	83,949,94	1.041.827.63	75.762.16	945,169.26	51.466.60	653.622.53
13	-			1886	24613	1876	24136	0.992	0.992	301.59	346.69	86,246.22	1,128,072.85	78,217.44	1,023,386.70	53,921.88	707,544.41
14	-	-	-	1963	26476	1885	26021	0.992	0.992	388.35	349.71	89,875.11	1,217,947.96	82,067.33	1,105,464.03	57,771,77	765,316.18
15	-	-	-	1845	28321	1847	27868	0.992	0.992	404.86	353.37	90,296.34	1,308,244.30	82,358.56	1,187,812.59	58,063.00	823,379.18
9 ţ	-	-	-	1851	30172	1827	29695	0.992	0.992	337.47	352.39	83,338.36	1,391,582.66	74,785.58	1,262,598.17	50,490.02	873,869.19
11				1917	32089	1840	31544	0.992	0.992	529.68	362.78	90,200.54	1,481,783.20	82,342.76 *** 000 00	1,344,940.93	58,047.20	931,916.39 201 ere or
2 ę	- ,	- ,		1827	01822	7781	33300	288'N	788'0	2//.04	01.308.1U	80,108.80	1,200,802.U5	77, JUUG.US	1.421,940,101 1.000000	ZG:01/1ZG	16'070'586
20				1026	30/8U	184/	20213	288'0	288'0	234.10	901.00	80,389,34	1,003,301.40	72 626 20	1,000,318.07 1,672,067,06	04,075.00	1,007 042 640 F
21			- ,-	1895	39511	1873	38900	0.992	0.992	311.75	344.62	86,360.92	1.821.735.39	78.388.14	1.652.242.00	54.092.58	1.142.035.22
22	-	-	-	1862	41373	1832	40732	0.992	0.992	329.32	343.84	84,897.85	1,906,633.24	76,630.07	1,728,872.07	62,334.61	1,194,369.73
23	F	-	-	1888	43261	1863	42595	0.992	0.992	395.47	346.10	87,012.93	1,993,646.17	78,950.15	1,807,822.22	54,654.59	1,249,024.32
24	-	-	-	1862	46123	1852	44447	0.992	0.992	263.89	342.26	82,962.84	2,076,609.01	74,645.06	1,882,467.28	50,349.50	1,299,373.81
25	-	-	-	1841	46964	1816	46263	0.992	0.992	294.49	340.38	83,970.27	2,160,579.27	76,712.49	1,958,179.76	51,416.92	1,350,790.74
92 E	-		-	1956	48920	1858	48121	0.992	0.992	461.49	344.67	93,434.43	2,264,013.71	85,886.65	2,044,066.41	61,591.09	1,412,381.83
28				1934	60864 62763	193/	51042	0.002	266.0	348.93 262.61	344.84	89,240.2/ 87.874.01	2,343,263.98	81,462.48 70 771 23	2,126,618.91 2,205,200,14	57,100.93 55,475,67	1,469,038.78 1,626,014,43
29				1874	64827 54827	1868	53810	0.992	0.992	272.41	342.98	86.328.43	2.616.266.42	77.155.85	2.282.446.78	52.860.08	1.677.874.62
30	-	-	-	1811	56438	1792	55602	0.992	0.992	303.91	341.72	82,823.88	2,599,080.30	74,441.10	2,356,886.89	50,145.54	1,628,020.06
3	-	-	-	1844	68282	1821	67423	0.992	0.992	348.60	341.94	85,907.76	2,684,988.06	77,559.98	2,434,446.87	53,264.42	1,681,284.48
2 5	-	-	-	1861	60143	1830	59253	0.992	0.992	281.06	340.06	84,981.65	2,769,969.72	76,708.87	2,511,155.74	62,413.31	1,733,697.79
6		- 1	. ,	1913	62056	1882	61135	0.992	0.992	318.15	339.38	84,458.81	2,854,428.53	76,301.03	2,587,466.78	52,005.47	1,785,703.26
5				B081	65915	1833	67000	786.0	ZBB:0	328.03	200.02	89,401.95 26,080,86	2,943,830.49	77 005 07	2,008,800.90 2,776,806,00	57,048.61 57,510,21	1,842,751.88 1 one per to
36			- ,-	1847	00000 67650	1815	04000 66623	788.0 788.0	788-0 788-0	2/4.00 2/63.66	337.99	83 212 17	3 112 911 30 3 112 911 30	74 784 39	2.7440,000.04	50.488.82	1,080,202.10
37				1789	69439	1786	68409	0.992	0.992	221.77	334.95	78,791.29	3,191,702.59	70,138.51	2,891,529.71	46,842.95	1,992,593.95
38	-	-	-	1807	71246	1782	70191	0.992	0.992	305.88	334.21	82,029.89	3,273,732.48	73,462.11	2,964,981.82	49,156.55	2,041,750.50
30	-	-	-	1847	73093	1814	72005	0.992	0.992	270.96	332.62	84,380.07	3,358,112.55	76,067.29	3,041,048.11	51,771,73	2,093,522.23
97				1841	74834	1832	73837	0.992	0.992	358.54	333.26	83,924.85	3,442,037.40	75,577.07	3,116,626.18	51,281.51	2,144,803.74
1				1848	70873	1810	75647	0.992	0.992	308.71	332.70	81,651.67 62,02£ 46	3,523,589.07 2,606,614,66	73,143.89	3,189,770.07	48,848.33 £0 242 44	2,193,662.07
43			- ,-	1888	80511	1871	79316	0.992	288.0 0.992	263.47 263.47	330.79	87.681.72	3,000,014.00 3,694,296,27	79.723.94	3,344,031.71	55.428.38	2,299,322,59
44	-	-	-	1853	82364	1841	81157	0.992	0.992	256.76	329.11	81,060.75	3,776,357.02	72,577.97	3,416,609.68	48,282.40	2,347,604.99
45	-	-	-	1964	84328	1907	83064	0.992	0.992	467.29	332.28	89,814.30	3,865,171.32	82,046.51	3,498,656.19	57,750.95	2,405,355.95
46	-	-	-	1809	86137	1789	84853	0.992	0.992	311.49	331.84	82,552.59	3,947,723.90	74,059.81	3,572,716.00	49,764.24	2,465,120.19
47	-	-	-	1941	88078	1893	86746	0.992	0.992	297.10	331.08	86,697.91	4,033,421.81	77,675.13	3,650,391.13	63,379.66	2,508,499.76
84				1824	89902	1797	88643 00440	0.992	0.992	277.12 260.00	329.99 220.30	81,326.38 56.254 40	4,114,747.19	72,862.60	3,723,253.72	48,567.04 54,000 Te	2,667,066.80
6			- ,	1000	02710	1006 1026	01100	788'D	788'D	00 092	77.070	00,301.10 06.662.26	4.201,120.54	70,020,07 70,424,47	5 000 716 61	54 125 01	2,011,289,00
51				1812	95630	1803	94087	0.992	0.992	231.04	326.49	78,344,98	4,366,026,61	69.662.20	3,949,878,71	46,366,63	2.710.805.09
52	-	-	-	1885	97415	1872	96969	0.992	0.992	284.09	324.68	87,618.82	4,463,644.33	79,596.04	4,029,474.75	66,300.48	2,766,105.68
53	-	-	-	1926	99340	1880	62836	0.992	0.992	262.98	323.60	86,651.62	4,540,295.95	78,623.84	4,108,098.58	54,328.27	2,820,433.85
31	-	-	-	1925	101265	1890	99729	0.992	0.992	478.74	326.44	93,152.61	4,633,448.56	85,624,83	4,193,723.41	61,329.27	2,881,763.12
22 22				1879	103144	1840	101578	0.992	0.992	362.35 201.01	326.91 200 ro	86,362.54	4,719,811.10	78,244,76	4,271,968.17	53,949.20 ro 000 00	2,936,712.32
57				1918	106948	1842	105296	0.992	0.992	300.20 263.72	326.25	82,469,85	4,888,348.16	74,262.07	4,424,189,68	40,966,50	3,039,342.70
58	-	-	-	1962	108910	1939	107235	0.992	0.992	436.66	327.26	90,517.47	4,978,865.63	82,774.69	4,506,964.37	58,479.13	3,097,821.83
59	-	-	-	1916	110826	1906	109141	0.992	0.992	386.84	328.30	87,338.20	5,066,203.83	79,405.42	4,586,369.78	55,109.85	3,152,931.68
00	-	-	-	1926	112752	1866	111007	0.992	0.992	326.38	328.27	89,614.23	5,155,818.06	81,806.45	4,668,176.23	57,510.89	3,210,442.57

Replication Number 1 4 5 5 7 4 4 4 3 3 2 2 4 4 3 3 7 4 4 4 3 3 2 4 4 4 3 3 7 4 1 7 1 7 1 7 1 7 1 7 1 7 1 1 7 1 1 1 1	MAS 1			Deriod	Total				Total	Period Cycle	Cycle Time			Ē			_
				22101		Period	Total	Period	5		- 1						
ーこうすらのて	-	HOM	MIX	Demand	Demand	Shipped	Shipped	DFR	Ϋ́.				_		Cumulative NO	- 1	Cumulative NO
N W 4 10 10 1		-	7 1	2367	2367	1659	1669	0.731	0.731	704.93	704.93	99,824.01	99,824.01	93,964.60	93,964.60	70,635.80	70,635.80
n 4 10 10 1			0 1	2408	4785	1709	3368	0.723	0.727	687.83	696.25	104,126.32	203,949.33	98,830.92	192,795.52	76,602.11	146,137.91
- e 2			ч с	2/77	75U/ 0.047	1801	8400 8724	0271	0.726	/ 19.23 686.09	/U3.9U 600.46	100,020.23 102 644 36	204,508.00 207.112.01	28.000,05 07,000,05	284 806 20	10.270,17	28/808/112
9	-	-	1 (1)	2293	11740	1636	8360	0.733	0.729	709.77	701.48	101,461.64	508,575.55	96,732.24	480,628.53	72,403.43	363,984,40
~	-	-	6	2311	14051	1707	10067	0.726	0.728	709.64	702.86	103,002.03	611,577.59	97,532.63	578,161.16	74,203.82	438,188.31
	-	-	10	2405	16466	1709	11776	0.724	0.728	694.50	701.65	102,008.86	713,586.45	96'209'96	674,668.12	73,178.15	511,366.46
8	-	-	ы	2405	18861	1709	13486	0.724	0.727	691.65	700.38	102,008.86	815,595.31	96,506,96	771,175.07	73,178.15	584,544.60
5 ç	-	-	ы	2405	21266	1709	15195	0.724	0.727	688.81	699.08	102,008.86	917,604.17	96,506,96	867,682.03	73,178.15	657,722.75
2 ₹			0	2405	23671	1709	16904	0.724	0.726	685.96	697.75	102,008.86	1,019,613.03	96,506.96	964,188.99	73,178.15	730,900.90
= \$			N (2323	25994	1654	18558	0.737	0.727	697.08	697.69	103,131.28	1,122,744.31	97,666.87	1,061,855.86	74,338.06	805,238.96
<u>4</u> ¢	- ,	- ,	N	/REZ	LIBS 87	80/1	20202	/1/0	97/10	698.14 000.00	5/7/80	98,994,18 400,000 AF	1,222,338.49	///8/8/20	1,100,/30.63	/R/nec/n/	CR'62/0/2
2 4			NC	L/87	30/02	1602 1620	878L7	307.0	127.0	600 000	607.16 607.16	05-551,201	1,324,302,93 1,426,626,34	96,480.04	1,202,220,68	73,106.23	948,946.16
15			4 (4	2314	35466	1821	25339	0.721	0.726	62'669	697.34	101.205.32	1.526.731.56	95.750.92	1.443.355.40	72.422.11	1.093.423.30
16	-	-	10	2342	37798	1685	27024	0.734	0.727	701.43	697.60	102,161.81	1,628,893.37	96,727.41	1,540,082.90	73,398.60	1,166,821.96
17	-	-	10	2341	40139	1765	28789	0.722	0.727	690.65	697.17	98,924.52	1,727,817.89	93,285.11	1,633,368.01	69,956.31	1,236,778.27
18	-	-	7	2289	42428	1706	30495	0.729	0.727	686.04	696.55	99,958.89	1,827,776.77	94,309.48	1,727,677.50	70,980.67	1,307,758.94
19	-	-	ы	2340	44768	1723	32218	0.730	0.727	696.43	696.54	100,900.37	1,928,677.15	95,375.97	1,823,053.46	72,047.16	1,379,806.10
88	-	-	7	2351	47119	1624	33842	0.729	0.727	702.43	696.82	100,708.89	2,029,386.03	94,869.48	1,917,922.95	71,540.67	1,461,346.77
28	-	-	7	2379	49498	1687	36529	0.728	0.727	692.97	696.64	102,460.11	2,131,846.14	96,990.70	2,014,913.65	73,661.89	1,525,008.67
77	-	-	7	2371	51869	1695	37224	0.726	0.727	692.54	696.45	104,381.28	2,236,227.42	98,991.87	2,113,905.52	75,663.06	1,600,671.73
57			~ ~	2319	54188 Foror	1614	38838	0.729	0.727	708.81	696.97 227 22	100,141.42	2,336,368.84	94,267.02	2,208,172.54	70,938.21	1,671,609.94
25			NC	733/	07000	2021	00101	/7/10	72/10	19.009	901 / RD	05////BB	2,430,141.24 2,624,827,02	01 239 00	2,302,080,508,2	/U,084.19 60 220 20	1,742,194.13
26			40	2368	61101 61101	1738	43028	0.723	0.727	70.950	607.40	102 323 67	2 636 061 40	96,854,16 06,854,16	2 /17F / FEC/2	73 626 36	1 885 047 86
		• •	10	2334	63626	1668	46686	0.728	0.727	694.41	697.38	100,300.86	2,737,252.26	94,521.46	2,586,118.35	71,192.66	1,956,240.51
38 78	-	-	6	2336	66861	1709	47295	0.731	0.727	702.10	697.55	101,489.32	2,838,741.69	96,974.92	2,682,093.27	72,646.11	2,028,886.62
	-	-	7	2343	68204	1648	48943	0.731	0.727	697.64	697.55	101,737.40	2,940,478.99	96,117.99	2,778,211.26	72,789.19	2,101,675.81
s s	-	-	7	2427	70631	1650	50593	0.722	0.727	689.84	697.30	102,624.69	3,043,103.68	97,065.29	2,875,276.55	73,736.48	2,176,412.29
5 S 5 S	-		0	2344	72975	1610	52203	0.726	0.727	706.58	697.58	100,227.84	3,143,331.62	94,328.44	2,969,604.98	70,999.63	2,246,411.91
			01 0	2329	75304	1111	53914 55614	0.729	0.727	703.24	697.76 eo1.70	102,726.62	3,246,067.14	97,276.21	3,066,881.20 2 1e1 e00 oo	73,947.40	2,320,359.32
			ч с	2312	70007	100/1	41 000	0.730	17770	20,007	8/./80 807.05	10.472,001	3,340,331.14 2,448,448,40	00'81 /'58	3,101,000.80	6/1082/17	2,381,700.11
35			40	90400	1088/ 82415	1712	65042	877.0	1770	601 17	607.66	104.522.01	3,440,440,10	00.000,451	0,200,801.40 2,266,126,02	75 875 70	2,502,701.93
36			4 (4	2286	84701	1690	50642 60642	0.731	0.727	713.62	698.10	102.215.54	3.653.185.63	96.646.14	3.461.782.07	73,317,33	2.611.944.96
37	-	-	1 (1)	2419	87120	1742	62384	0.728	0.727	685.77	697.76	103,035.15	3,756,220.78	97,770.75	3,549,552.82	74,441.94	2,686,386.90
38	-	-	N	2423	89543	1792	64176	0.719	0.727	678.52	697.22	100,297.47	3,856,518.25	94,873.06	3,644,425.89	71,544.26	2,757,931.16
39	-	-	ы	2357	91900	1663	65839	0.730	0.727	695.20	697.17	102,140.59	3,958,658.85	96,591.19	3,741,017.08	73,262.38	2,831,193.54
9	-	-	10	2336	94236	1592	67431	0.725	0.727	708.14	697.43	101,787.21	4,060,446.05	95,912.80	3,836,929.88	72,583.99	2,903,777.53
4 5			01.0	2308	96544	21.71	69148	0.728	0.727	705.27	697.62	101,173.40	4,161,619.55	95,609.09	3,932,538.97	72,280.28	2,976,057.81
43			40	2328	101266	1688	72576	0.732	0.727	708.62	12.180 697.54	103.026.26	4,203,217.41 4.366 293.66	97,651,85	4 126 324 27	74.323.04	3,046,802.40 3,123,185,50
44	-	-	7	2377	103643	1733	74309	0.723	0.727	685.85	697.27	102,037.84	4,468,331.50	96,563.43	4,222,887.70	73,234.62	3,196,420.12
45	-	-	2	2314	106957	1766	76064	0.721	0.727	695.93	697.23	100,668.05	4,568,999.55	95,058.65	4,317,946.35	71,729.84	3,268,149.96
46	-	-	0	2331	108288	1639	77703	0.733	0.727	705.86	697.42	102,798.08	4,671,797.63	97,223.68	4,415,170.03	73,894.87	3,342,044.83
47	-	-	5	613177	721465	1661	79364	0.671	0.594	695.40	697.37	102,063.30	4,773,860.93	96,558.90	4,511,728.93	73,230.09	3,415,274.92
48			0	(608412)	113053	1718	81082	0.569	0.727	692.53	697.27	101,366.64	4,875,216.58	95,766.24	4,807,495.17	72,437.43	3,487,712.35
6 1			N 0	097Z	110293	15/4	82766	0.724	72/0	701.82 Fe net	607.25	97,223.20 101,110,60	4,972,439.78 £ 072 ££2 20	91,128.80 06,660,11	4,698,623.97	86'66/'/9	3,000,012.34 3 637 753 65
5			40	1622	110867	1760	86230	0.730	0.727	706.83	607 40	103 103 64	6 176 746 94	07 070 74	4,802,172,32	74.660.43	3 702 408 07
52			1 (1	2372	12229	1763	88002	0.718	0.727	682.34	697.10	100,433.23	5,277,180,16	94,863,82	4,987,036,14	71,636,01	3.773,938.09
53	-	-	101	2241	124470	1656	89968	0.724	0.727	722.71	697.57	100,627.57	6,377,807.73	94,763.17	6,081,789.30	71,424.36	3,846,362.44
54	-	-	0	2298	126768	1700	91358	0.725	0.727	711.04	697.82	101,112.01	5,478,919.74	95,487.60	5,177,276.91	72,158.79	3,917,521.24
55	-	-	0	2264	129032	1635	92993	0.733	0.727	725.06	698.30	98,949.50	5,577,869.24	93,100.09	6,270,377.00	69,771.28	3,987,292.52
8 6		- 1	0 0	2379	131411	1697 1001	94690 0004r	0.724	0.727	695.92 701 7.1	698.26	102,568.94	5,680,438.18 r 700.070.04	96,779.53 04,000,00	5,367,156.63 7 204 050 40	73,460.72	4,060,743.26
5 25			N 0	2322	136086 136086	1857	01208 97867	0.726	0.727	708.38	098.59 698.56	100,503.03	5,881,480.21	94,093.03 94.724.58	5,401,800.10	71 395 77	4,132,108.07
59	-	-	1 (1)	2364	138430	1710	99577	0.723	0.727	695.18	698.50	99,884.47	5,981,364.67	94,185.07	5,650,759.81	70,856.26	4,274,360.10
60	-	-	0	2385	140815	1729	101306	0.722	0.727	689.34	698.34	101,333.25	6,082,697.92	95,808.85	5,746,568.66	72,480.04	4,346,840.13

	pu >	Independent Variables	lent se	_										HOM			
	•	222	3							Period		3	*	IME		5	_
Replication Number	MAS	MOH	MIX	Period	Total Demand	Period Shipped	Total Shipped	Period	Total DFR	Cycle Time Cy	Cycle Time	Period NOI C	Cumulative NOI	Period NOI 0	Cumulative ND	Period NOI D	Cumulative NO
· (F	-	8	3197	3197	1158	1158	0.374	0.374	612.46	612.46	99,446.39	99,446.39	94,263.11	94,263.11	72,166.66	72,166.66
2 2	-		e	3293	6480	124	2402	0.376	0.374	605.69	608.95	104,035.50	203,481.89	99,587.22	193,850.33	77,490.67	149,667.23
°.4				3160	12819	146 1168	2005 4744	0.371	0.376	630.68	619.31 619.31	BL:0/2,001	303,752.08 407 824 79	90,006.92 99.314.44	288,907.20	77 217 88	2222,011,100 200,836,47
5		-		3230	16058	1178	5922	0.376	0.376	614.65	618.39	100,194.72	508,019.51	95,146.44	483,368.13	73,049.89	372,885.36
9	-	-	m	3270	19328	1152	7074	0.374	0.375	611.81	617.32	100,172.59	608,192.10	94,989.31	578,357.44	72,892.76	446,778.12
-			с (3252	22580	1157	8231	0.375	0.375	619.21	617.58	100,634.79	708,826.89	96,622.76	673,880.20	73,426.21	519,204.33
00			n e	3252	20832	7911 7311	10546	0.375	0.375	619.26 610.27	617.06	100,634,79 100,634,70	809,461.68 010.006.47	97.220,08 05.522.76	/69,402.9/ 864.025.72	73,426.21	P0.053,580
9				3252	32335	1157	11703	0.375	0.375	619.38	618.10	100,634,79	1.010.731.26	95,522.76	960,448,49	73,426,21	739,482.96
1	-	-	ю	3255	35590	1118	12821	0.383	0.376	601.43	616.65	101,214.73	1,111,945.99	95,826.46	1,056,274.95	73,729.90	813,212.86
12	-	-	м	3336	38926	1198	14019	0.373	0.376	611.84	616.23	104,087.04	1,216,033.04	77.386,99	1,155,673.72	77,302.21	890,515.08
£ 5	-	-	m	3251	42177	1211	15203	0.373	0.376	605.21	616.45	102,530.11	1,318,563.15	97,771.83	1,253,446.55	75,675.28	966, 190.35
4 ¥			е с	3349	46526 40704	1255	16485	0.381 0.37e	0.376	584.76 e20.40	613.03 e14.07	105,869.63 101 £04 6£	1,424,232.77	101,336.35 0e Tee 31	1,354,781.90	79,239.80	1,045,430.15
16			» (31/8	48/04	8 F	1/1880	0.276	0.376	628.40 604 11	014.07	03.44.60 07.640.64	247.728,020,1 90.976.000 t	90,700.37	12:890,109,1 C3:003:003:1	/4,009.82	78-880'021'1
17			n e	3320	55227	8011	82/21	0.367	0.375	610.12	613.27 613.27	97,049.04 98.252.30	1 721 729 26	92,030,20 93,249,03	1,044,084,04 1,636,833,56	71 152 47	1,190,038.08
18			0 0	3194	58421	1184	21193	0.379	0.376	616.76	613.47	102,256.52	1,823,985.78	97,273,24	1,734,106.80	75,176.69	1,336,368.84
19	-	-	ო	3186	61607	1276	22469	0.379	0.376	608.64	613.20	104,936.42	1,928,922.20	100,728.15	1,834,834.94	78,631.59	1,415,000.43
20	-	-	e	3231	64838	1206	23675	0.375	0.376	610.72	613.07	100,518.78	2,029,440.97	95,650.50	1,930,485.44	73,553.95	1,488,554.37
21	-	-	e	3201	68039	1306	24981	0.367	0.375	616.58	613.25	102,763.41	2,132,204.39	98,585.14	2,029,070.58	76,488.58	1,565,042.96
22	-	-	e	3269	71308	1298	26279	0.374	0.375	598.66	612.53	102,520.68	2,234,725.07	98,292.41	2,127,362.98	76,195.85	1,641,238.81
23	-	-	ო	3270	74678	1170	27449	0.378	0.375	598.11	611.92	102,165.99	2,336,891.06	97,142.71	2,224,505.69	75,046.16	1,716,284.96
24				3188	77766	1203	28652	0.371	0.375	625.94	612.61	101,907.38	2,438,798.43	97,089.10	2,321,594.79	74,992.55	1,791,277.51
96				3155	80921	149	29801	0.376	0.376	626.24	613.04	101,220.19	2,540,018.63	96,031.92	2,417,626.71	73,935.36	1,865,212.87
				3201	84122	1126	30927	0.373	0.375	639.64 e40.0e	614.00 e10.0e	101,790.47	2,641,809.09 2,742,545,00	96,667.19 oe 200 et	2,614,183.90 2,610,000,61	74,460.64	1,939,673.61
³⁸ г				3274	90606	12/7	32204 33440	0.374	0.376	012.90 600.67	613.43 613.43	77 809 FUL	2.742,040.98 2 844 076 76	10.802,08 06.870.40	2,2707,284,000	74.773.94	2,013,780.57 2.088.560.50
			, n	3226	93730	1274	34714	0.374	0.376	601.96	613.01	101,461,49	2.946,527.24	97,018,21	2.804.282.21	74,921,66	2.163,482.16
8 M	-	-	m	3274	97004	1205	36919	0.377	0.375	606.93	612.81	102,391.31	3,047,918.54	97,673.03	2,901,955.24	75,576.48	2,239,058.64
	-	-	m	3264	100268	1188	37107	0.375	0.375	619.03	613.01	102,096.38	3,150,014.93	97,208.10	2,999,163.35	76,111.65	2,314,170.19
sc sc	-		<i>с</i> (3246	103514	1277	38384	0.373	0.375	599.91	612.57	104,269.89	3,254,284.81	99,926.61	3099,089,089,96	77,830.06	2,392,000.25
			m (3226	106740	12 12 12 12	39628	0.366	0.375	623.16 eor 47	612.90 e12.e1	102,170.50	3,366,466.31	97,662.22	3,196,742.18 2,206,067,72	75,555.67 Te 240.00	2,467,555.92
5 22				3260	2112267	1248	//804	0.305	0.375	570.00	612.67 611 77	102,793.83	3,409,249.14 2,660,207,72	98,310,00 06,060,01	3,290,001,002,5	70.052.76	2,043,//4,92 2,646,720,60
36			• e	3304	116671	1234	43278	0.373	0.375	605.24	61158	100, 130.08 102 637 83	3,008,307.73 3,662,025,56	98 059 56	3,488,167,60	75,963,00	2.010//20.00 2.692.691.68
37	. –			3129	119800	1243	44521	0.385	0.375	606.76	611.46	101,795.03	3,763,820.59	97,166.75	3,585,334,36	75,070.20	2,767,761.88
38	-	-	м	3199	122999	1202	46723	0.379	0.376	620.11	611.67	101,467.91	3,865,278.50	96,594.63	3,681,928.99	74,498.08	2,842,259.96
99	-	-	м	3245	126244	1219	46942	0.385	0.376	589.85	611.11	104,024.84	3,969,303.34	99,441.56	3,781,370.55	77,345.01	2,919,604.97
4			<i>с</i> (3196	129440	1201	48143	0.379	0.376	620.73	611.35	100,647.44	4,069,950.79	95,809.17	3,877,179.72	73,712.61	2,993,317.58
+ 9			m (3208	132648	1173	49316	0.382	0.376	615.22 #00.0e	41.118 20.019	100,831.39	4,170,782.17	95,818.11	3,972,997.83 4 070 4e4 e4	73,721.56 77 267 26	3,067,039.14 2 144 406 40
43			n m	3267	139099	1146	51718 51718	0.378	0.376	600.75	610.70	80.255,201 99.859.79	4,2/4,004.2/ 4.374,524.06	94.611.52	4,167.073.16	72.514.96	3,216,921,37
44	-	-		3228	142327	1282	53000	0.371	0.376	607.74	610.63	103,400.22	4,477,924.28	99,086.94	4,266,160.11	76,990.39	3,293,911.76
45	-	-	ю	3369	145686	1140	54140	0.383	0.376	683.27	610.06	100,864.99	4,578,789.27	95,661.72	4,361,821.82	73,565.16	3,367,476.92
46	-	-	e	3191	148877	1233	66373	0.379	0.376	608.45	610.02	100,785.37	4,679,574.64	95,987.09	4,467,808.91	73,890.54	3,441,367.46
47	-	-	ო	3176	152053	1197	56570	0.378	0.377	596.89	609.74	102,424.58	4,781,999.22	97,521.30	4,555,330.22	75,424.75	3,516,792.21
8 1	- •		<i>с</i> (3263	155316	1149	67719	0.385	0.377	618.86 700.00	609.92	102,790.19	4,884,789.41	97,726.92	4,653,057.13	75,630.36	3,592,422.57
î†			" "	1015	1084/7	1100	508004 60162	8/2/0 0 208	772.0	510 CT8	90'800	06/608/001	4,980,099.38 6 000 146 00	90,121,09 07 914 22	4,749,1/8.82	75,717,60	3,000,444/./U 3,742,166,30
51				3327	165099	1196	61359	0.386	0.377	679.18	609.11	101.207.11	6,189,354.00	96.288.84	4,943,281,89	74.192.28	3,816,357,66
52		-		3260	168349	1176	62634	0.386	0.377	590.75	608.76	100,263.32	5,289,607.32	96,220.04	5,038,501.93	73,123.49	3,889,481.15
53	-	-	m	3229	171578	1147	63681	0.382	0.377	621.78	609.00	99,448.26	5,389,055.58	94,259.98	5,132,761.91	72,163.43	3,961,644.68
54	-	-	m	3264	174832	1238	64919	0.377	0.377	611.59	609.05	102,931.70	5,491,987.28	98,393.42	6,231,166.34	76,296.87	4,037,941.46
55	-	-	e	3308	178140	1229	66148	0.370	0.377	605.82	608'309	103,530.50	5,595,517.78	98,977.23	6,330,132.66	76,880.67	4,114,822.12
25			m •	3319	181469	1278	67426 60666	0.377	0.377	596.96 600.04	608.76 600.20	102,626.35	5,698,143.13 5 700 044 84	98,297.08	5,428,429.64 6,626,662 06	76,200.62 76,006,67	4,191,022.66
28			n m	3244	187994	1196	00000 69851	0.374	775.0	617.09	608.54	101,703,11	5,901,647,75	96,864,84	5,622,417.70	74,768.28	4,340,817.60
59	-	-	n m	3192	191186	1254	71105	0.375	0.377	616.28	608.67	102,723.16	6,004,370.91	98,249.89	5,720,667.58	76,153.33	4,416,970.93
99	-	-	0	3231	194417	1211	72316	0.374	0.377	614.35	608.77	101,867.11	6,106,238.02	97,078.83	5,817,746.42	74,982.28	4,491,953.21