
A Dissertation

entitled

Data Warehouse Operational Design: View Selection and Performance Simulation

by

Vikas R. Agrawal

Submitted as partial fulfillment of the requirements for
the Doctor of Philosophy degree in

Manufacturing Management and Engineering

 Co-Advisor: Dr. Mesbah Ahmed

 Co-Advisor: Dr. P. S. Sundararaghavan

 Committee Member: Dr. Udayan Nandkeolyar

 Committee Member: Dr. Robert Bennett

 Graduate School

The University of Toledo

May 2005

COPYRIGHT @ 2005

This document is copyrighted material. Under copyright law, no parts of the document

may be produced without the expressed permission of the author.

iii

An Abstract of

Data Warehouse Operational Design: View Selection and Performance Simulation

Vikas R. Agrawal

Submitted as partial fulfillment of the requirements for
the Doctor of Philosophy degree in

Manufacturing Management and Engineering

The University of Toledo

May 2005

Decision support systems are a key to gaining competitive advantage. Many

corporations have built or are building unified decision-support databases called data

warehouses on which decision makers can carry out their analysis. A data warehouse is a

very large data base that integrates information extracted from multiple, independent,

heterogeneous data sources to support business analysis activities and decision-making

tasks. The data that is likely to be in demand is generally pre-computed and stored ahead

of time at the data warehouse in the form of materialized views. This dramatically

reduces execution time of decision support queries from hours or days to minutes or even

seconds.

iv

There are many architectural issues concerning the efficient design of a data

warehouse. This dissertation studies in depth three important issues. The first issue

addressed is the Materialized View Selection (MVS) problem, which is the problem of

choosing an optimal set of views to materialize under resource constraints. We have

formulated interesting bottleneck versions of this problem and presented the 0-1 Integer

Programming models as well as the heuristic procedures. Performance analysis of the

heuristic procedures is also presented.

Formulation of the MVS problem requires knowledge of the number of rows in

each view in a given lattice structure, which refers to views and their interrelationships

for a given set of dimensions. Counting actual number of rows present in each view takes

considerable time. The second issue addressed in this dissertation focuses on the

statistical sampling techniques applied to data warehouses to estimate number of rows in

each view in a given lattice structure. We have shown that the application of sampling

techniques results in significant time savings without compromising on accuracy.

 The third issue deals with modeling the behavior and performance of a data

warehouse system using simulation. We implemented the model in ARENA. The model

enables a data warehouse manager to walk through various scenarios to investigate the

synergy among various system components and to identify areas of inefficiencies in the

system. This could also help improve overall performance of the data warehouse system.

v

ACKNOWLEDGEMENTS

I take this opportunity to thank my co-advisors Professor Mesbah Ahmed and

Professor P. S. Sundararaghavan for their advice, support and encouragements during my

pursuit of the Ph.D. program. They are the one who introduced me into the beauty of

doing research in data warehousing. Their insights and expertise made my work easier

and their enthusiasm towards research kept challenging me to seek the best quality of

research.

 I thank Professor Udayan Nandkeolyar and Professor Robert Bennett for their

valuable suggestions and for serving as members of my doctoral advisory committee. I

am fortunate to have their support during the program and I want to express my sincere

thanks to them individually for their valuable advice and time.

 I thank Professor T. S. Ragunathan, Professor William Doll and Professor Subba

Rao for their help during my study at the University of Toledo.

 I thank my friends and colleagues here at the University of Toledo, Shanawaz

Muhammad, Ashish Thatte and Parag Dhumal who encouraged and helped me achieve

this goal.

 I thank my parents and my brother for their love and support. I thank my fiancé,

Pragya, for her love and continuous support during this period with all my heart.

vi

TABEL OF CONTENTS

ABSTRACT ... III

ACKNOWLEDGEMENTS ..V

TABLE OF CONTENTS .. VI

LIST OF TABLES .. VIII

LIST OF FIGURES ... XI

CHAPTER 1: INTRODUCTION ..1

1.1 SELECTION OF VIEWS TO MATERIALIZE..5

1.2 STATISTICAL SAMPLING TO INSTANTIATE MVS PROBLEM INSTANCES...6

1.3 SIMULATION MODEL AND ANALYSIS OF A DATA WAREHOUSE ..7

1.4 DISSERTATION ORGANIZATION...8

CHAPTER 2: SELECTION OF VIEWS TO MATERIALIZE..9

2.1 INTRODUCTION ...9

2.2 CONCEPTUAL BACKGROUND AND RELATED WORK..11

2.3 MATERIALIZED VIEW SELECTION PROBLEM ...18

2.4 INTEGER PROGRAMMING MODELS FOR THE MVS PROBLEM ..22

2.5 HEURISTIC PROCEDURES FOR THE MVS PROBLEM ...31

2.5.1 Selection of Views Under the Number of Views to be Materialized Constraint31

2.5.2 Selection of Views Under the Storage Space Constraint ...33

2.6 EXPERIMENTAL RESULTS..34

2.7 CONCLUSIONS AND FUTURE RESEARCH..42

vii

CHAPTER 3: STATISTICAL SAMPLING TO INSTANTIATE MVS PROBLEM INSTANCES44

3.1 INTRODUCTION ...44

3.2 SAMPLING LITERATURE RELATED TO THE NUMBER OF UNIQUE ROWS46

3.3 METHODOLOGY ..50

3.3.1 Lattice Instance 1 (TPCH Database) ..51

3.3.2 Lattice Instance 2 (AANS Database) ...52

3.3.3 Problem Instances for Experimentation ..53

3.4 EXPERIMENTAL RESULTS..58

3.4.1 Computational Times...77

3.5 DISCUSSION ..80

3.6 CONCLUSIONS AND FUTURE RESEARCH..81

CHAPTER 4: SIMULATION MODEL AND ANALYSIS OF A DATA WAREHOUSE................84

4.1 INTRODUCTION ...84

4.2 SYSTEMS DYNAMICS APPROACH TO DATA WAREHOUSE..85

4.3 RELATED WORK ...88

4.4 CONCEPTUAL FRAMEWORK FOR SIMULATING DATA WAREHOUSE OPERATION89

4.5 IMPLEMENTATION OF CONCEPTUAL FRAMEWORK IN ARENA ...93

4.6 EXPERIMENTAL DESIGN ..100

4.7 EXPERIMENTAL RESULTS..103

4.8 CONCLUSIONS AND FUTURE RESEARCH..108

CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH ...110

BIBLIOGRAPHY ...113

viii

LIST OF TABELS

Table 2.1: The Pij Matrix for Example 1 ..24

Table 2.2: The Xij Solution Matrix for Example 1...24

Table 2.3: The Xij Solution Matrix for Example 2...28

Table 2.4: Cost Comparison Between Optimal Solution and HRU Heuristic 1 Solution

for the Special Case of Problem 1 ...37

Table 2.5: Cost Comparison Between Optimal Solution and HRU Heuristic 2 Solution

for the Special Case of Problem 2 ...38

Table 2.6: Cost Comparison Between Optimal solution and Bottleneck Heuristic 1

Solution for Problem 3 ..39

Table 2.7: Cost Comparison Between Optimal solution and Bottleneck Heuristic 2

Solution for Problem 4 ..40

Table 3.1: Experimental Parameters Used to Generate Problem Instances54

Table 3.2: Actual and Estimated Number of Rows for Lattice Instance 1 for

Sample Size of 20%...59

Table 3.3: Actual and Estimated Number of Rows for Lattice Instance 1 for

Sample Size of 10%...60

Table 3.4: Actual and Estimated Number of Rows for Lattice Instance 1 for

Sample Size of 5%...61

Table 3.5: Actual and Estimated Number of Rows for Lattice Instance 2 for

Sample Size of 20%...62

ix

Table 3.6: Actual and Estimated Number of Rows for Lattice Instance 2 for

Sample Size of 10%...63

Table 3.7: Actual and Estimated Number of Rows for Lattice Instance 2 for

Sample Size of 5%...64

Table 3.8: Views to be Materialized for Three Problems in Lattice Instances 1 and 2

for Sample Size of 20% Under the Number of Views to be Materialized

Constraint...66

Table 3.9: Views to be Materialized for Three Problems in Lattice Instances 1 and 2

for Sample Size of 10% Under the Number of Views to be Materialized

Constraint...66

Table 3.10: Views to be Materialized for Three Problems in Lattice Instances 1 and 2

for Sample Size of 5% Under the Number of Views to be Materialized

Constraint...67

Table 3.11: Views to be Materialized for Two Problems in Lattice Instances 1 and 2

for Sample Size of 20% Under the Storage Space Constraint68

Table 3.12: Views to be Materialized for Two Problems in Lattice Instances 1 and 2

for Sample Size of 10% Under the Storage Space Constraint68

Table 3.13: Views to be Materialized for Two Problems in Lattice Instances 1 and 2

for Sample Size of 5% Under the Storage Space Constraint69

Table 3.14: Deviation of the Cost of Heuristic Solution from the Optimal Solution

for Sample Size of 20% Under the Number of Views to be Materialized

Constraint...70

Table 3.15: Deviation of the Cost of Heuristic Solution from the Optimal Solution

for Sample Size of 10% Under the Number of Views to be Materialized

Constraint...71

x

Table 3.16: Deviation of the Cost of Heuristic Solution from the Optimal Solution

for Sample Size of 5% Under the Number of Views to be Materialized

Constraint...71

Table 3.17: Deviation of the Cost of Heuristic Solution from the Optimal Solution

for Sample Size of 20% Under the Storage Space Constraint72

Table 3.18: Deviation of the Cost of Heuristic Solution from the Optimal Solution

for Sample Size of 10% Under the Storage Space Constraint73

Table 3.19: Deviation of the Cost of Heuristic Solution from the Optimal Solution

for Sample Size of 5% Under the Storage Space Constraint73

Table 3.20: Computational Times..78

Table 4.1: Experimental Parameters ..100

Table 4.2: Experimental Settings...101

Table 4.3: Query Type 1 Statistics...104

Table 4.4: Query Type 2 Statistics...105

Table 4.5: Overall Statistics...105

Table 4.6: Number of Queries Discarded ..108

xi

LIST OF FIGURES

Figure 1.1: A Three-Tier Data Warehousing Architecture..3

Figure 2.1: A Graphical Representation of a Data Cube with Associated Cuboids19

Figure 2.2: Data Cube Problem Instance ...35

Figure 3.1: Lattice Instance 1 with Actual Number of Rows ..51

Figure 3.2: Lattice Instance 2 with Actual Number of Rows ..53

Figure 4.1: Conceptual Framework for Simulating Data Warehouse Performance92

Figure 4.2: Implementation of Conceptual Framework of Simulation Model in

ARENA..99

Figure 4.3: Bar Chart Showing Comparison of Average Turnaround Time Between

Query Type 1, Query Type 2 and Overall ...106

Figure 4.4: Bar Chart Showing Comparison of 90th Percentile Turnaround Time

Between Query Type 1, Query Type 2 and Overall107

1

CHAPTER 1: INTRODUCTION

 In today’s fast-paced, ever-changing, wants-driven economy, information is seen

as a key business resource to gain competitive advantage (Haag et al. 2005). To compete

in today’s turbulent market, businesses need to do considerable market research to find

out what exactly people “want” rather than what they “need.” The last three decades have

seen an exponential growth in the area of information technology catering to the

information processing needs of businesses in the form of capturing, storing, conveying,

analyzing, and transferring data that will help knowledge workers and decision makers

make sound business decisions.

With the widespread availability and ever-decreasing cost of computers,

telecommunications technologies, and the Internet access, most of the businesses have

collected a wealth of data. As a result, companies are becoming data rich though they

remain information poor (Gray & Watson 1998, Grover 1998, Han & Kamber 2001).

Valuable information gets lost in the shuffle and many companies struggle to get the right

information, to the right person, and at the right time. This accentuates the need for

turning the vast amount of data that is locked away in operational databases and other

data sources into useful information that will help knowledge workers and decision

makers gain access to the hidden knowledge and make the right decisions at the right

time. One needs sound decision support systems to analyze this vast amount of data and

to find solutions to business problems that are by nature often complex and unstructured.

2

This is exactly where data warehousing comes into the picture. With the competition

mounting, most corporations have recognized that the data warehouse is a must-have

strategic weapon to unearth the hidden business patterns, to recognize what exactly

customers “want,” and to understand the market competition.

Today, virtually all big corporations have built or are building unified data

warehouses to support business analysis activities and decision-making tasks. The Palo

Alto Management Group provides figures about the size and growth of the data

warehousing market. They estimate that the sale of systems, software, services, and in-

house expenditures will grow from a US $ 8.8 billion market in 1996 to a US $ 113.5

billion market in 2002 – a 51% compounded annual growth rate (Hillard et al. 1999,

Walton et al. 2002).

In a typical organization, information is spread over many different multiple,

independent, heterogeneous, and remote data sources. Acting as a decision support

system, a data warehouse extracts, integrates and stores the “relevant” information from

these data sources into one centralized data repository to support the information needs of

knowledge workers and decision makers in the form of Online Analytical Processing

(OLAP). Figure 1.1 depicts the general three-tier architecture for a typical data

warehouse (Han & Kamber 2001).

 The bottom tier is a warehouse database server that is almost always a relational

database system. Data from the operational databases and other external sources are

extracted using different application program interfaces.

3

Top Tier:

Query-and-

Reporting

Tools

Figure 1.1: A Three-Tier Data Warehousing Architecture

Operational Databases

External Data Sources

Flat Files ERP

Extract

Clean

Transform

Load

Refresh

Data Warehouse

Output

Query/Reports Analysis

Data Mining

Data Sources

Bottom

Tier: Data

Warehouse

Middle Tier:

Materialized

Views

4

The middle tier is the materialized views that store the aggregated and

summarized data. This tier is typically implemented using either a relational OLAP

(ROLAP) model or a multidimensional OLAP (MOLAP) model. The ROLAP is an

extended relational DBMS that maps operations on multidimensional data to standard

relational operations and the MOLAP is a special-purpose server that directly implements

multidimensional data and operations. The top tier is a client interface, which contains

query-and-reporting tools, multidimensional analysis tools, statistical analysis tools,

and/or data mining tools.

Business analysts run business queries over this centralized data repository to gain

the insights into the vast data and to mine for hidden knowledge. Results of such queries

are generally pre-computed and stored ahead of time at the data warehouse in the form of

materialized views. Such materialization of views reduces the query execution time to

minutes or seconds which may otherwise take hours or even days to complete.

There are several architectural issues concerned with the design of a data

warehouse. One such important design issue is to select the appropriate set of views to be

materialized in the data warehouse. This is referred to as the Materialized View Selection

(MVS) problem. We have formulated interesting bottleneck versions of this problem and

proposed two heuristic procedures to solve the resulting MVS problem. We have also

proposed exact solution techniques for reasonable sized problem instances.

The formulation requires data on the number of rows associated with each view in

a given lattice structure. Querying to find the number of rows present in each view for a

large lattice structure may not be practical as it takes considerable time. We have

5

explored the use of sampling techniques to estimate the actual number of rows present in

each view under consideration in a give lattice structure.

Data warehouses are considered to be large complex systems with many nonlinear

interacting components. The performance of data warehouse systems is often

unpredictable. Small changes in one part of the system could lead to large deterioration in

performance. We have developed a simulation model to simulate the behavior and

performance of a data warehouse system given its overall design.

In the remainder of this section, we briefly summarize the various problems

addressed in this doctoral dissertation and present the contributions made.

1.1 Selection of Views to Materialize

Selecting the right set of views to be materialized is a non-trivial task. One cannot

materialize all the views in a given lattice structure as such materialization is constrained

by the availability of storage space, view maintenance cost, and computational time. On

the other extreme, if one does not materialize any view then business queries have to be

run over the source data, a process which would take considerable time. Such delay

cannot be tolerated in today’s decision support environment with its incredible demand

on speed. Between these two extremes, one needs to find the optimum number of views

to be materialized that will give reasonably good query response time while satisfying all

the constraints. The MVS problem has been shown to be NP-Complete in the data

warehouse literature (Harinarayan et al. 1999).

6

Given a set of queries to be supported, the conventional MVS problem is defined

as follows: Given the resource constraints, select the set of views to be materialized so as

to minimize the query response time. In this work, we have focused on the bottleneck

version of the MVS problem, which changes the objective while leaving the rest

unaltered. The objective is to minimize the maximum weighted number of rows to be

retrieved, as opposed to the traditional objective of minimizing the total number of rows

to be retrieved. We have also developed the 0-1 Integer Programming models for four

different versions of the MVS problem and compared the results obtained from the

heuristic procedures with that obtained from the 0-1 integer programming models.

1.2 Statistical Sampling to Instantiate MVS Problem Instances

Instantiation of an MVS problem for a given lattice structure requires the

knowledge of the actual number of rows present in each view in a given lattice structure.

Clearly this is needed for implementing the heuristic procedures or the exact solution

techniques. This actually requires processing many complex queries to find the number

of rows in all views in a given lattice structure. This would require considerable amount

of time and such delays may be unacceptable in today’s decision support environments

where time plays a crucial role in the decision making process.

Hence, we have explored the use of statistical sampling techniques to address this

issue. We have created two large realistic data warehouses and employed three estimators

from the database sampling literature to estimate the number of rows present in each view

7

in a given lattice structure using these two data warehouses. These estimators are the

Shlosser Estimator (Shlosser 1981, Hass et al. 1995), the Guaranteed-Error Estimator

(Charikar et al. 2000) and the Adaptive Estimator (Charikar et al. 2000). The next

question is the sensitivity of the heuristics to the estimated instantiations as compared to

the exact instantiations and their overall comparison to exact solutions. We addressed this

by employing the 0-1 Integer Programming model to the exact instantiations and the

heuristics developed by Harinarayan et al. (1999) to both the instantiations i.e. exact as

well as estimated, and compared the results. Our findings suggest a good amount of

savings in terms of computation time without compromising on accuracy.

1.3 Simulation Model and Analysis of a Data Warehouse

A data warehouse is a long term commitment for many organizations that

promises high rewards, with potentially high risks. Data warehouses are large complex

systems with many nonlinear interacting components. The data warehouse environment

is considered to be very sensitive and dynamic. A small change in any one component

may produce dramatically different changes somewhere else in the system. Often it is

difficult for the data warehouse manager to predict the system’s performance. Data

warehouse managers need to experiment with the real system components to optimize the

data warehouse design, which is an often tedious and risky endeavor.

8

We have developed a simulation model using the ARENA simulation package that

will simulate the behavior and performance of a data warehouse system given its overall

design. We had to overcome some challenges in building such a model which adequately

represents a multitasking processor environment within the constraints posed by the

model building tool. Given such a model, a data warehouse manager can walk through

various what-if scenarios and can pinpoint the areas of inefficiencies in the system. This

could result in improved data warehouse system performance.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we address the

problem of selecting the set of views to materialize in the data warehouse given two

different resource constraints. Chapter 3 deals with statistical sampling techniques

employed to formulate the MVS problem instances. In Chapter 4, we address the issues

concerned with the simulation of the data warehouse system environment. We end with

conclusions and future directions in Chapter 5.

9

CHAPTER 2: SELECTION OF VIEWS TO MATERIALIZE

2.1 Introduction

Decision support systems (DSS) are rapidly becoming a key to gaining

competitive advantage for businesses. DSS allow businesses to get at the vast amount of

data that is locked away in operational databases and other data sources and to turn that

data into useful information. Many corporations have built or are building unified

decision-support databases called data warehouses on which users can carry out their

data analysis. A typical data warehouse extracts, integrates, and stores the relevant

information from multiple, independent, and heterogeneous data sources into one

centralized data repository to support the decision making information needs of

knowledge workers and decision makers in the form of Online Analytical processing

(OLAP) (Han & Kamber 2001, Harinarayan et al. 1999).

While operational databases maintain current information, data warehouses

typically maintain information from a historical perspective. Hence, data warehouses

tend to be very large and grow over time. Also, users of DSS are more interested in

identifying hidden trends rather than looking at individual records in isolation. As a

result, decision support queries are more complex than Online Transaction Processing

(OLTP) queries and call for heavy use of aggregations.

10

The size of the data warehouse and the complexity of queries can cause decision

support queries to take a very long time to complete. This delay is unacceptable in most

DSS environments as it severely limits productivity. The usual requirement is that most

query execution times be a few seconds or at most a few minutes (Gupta 1999,

Harinarayan et al. 1996, 1999).

Many techniques have been discussed in the literature to improve the query

response time performance goals. Query optimization and query evaluation techniques

can be enhanced to handle the aggregations better (Chaudhuri & Shim 1994, Gupta et al.

1995). Also different indexing strategies like bit-mapped indexes and join indexes could

be used to handle group-by(s) better (O’Neil & Graefe 1995).

One such commonly used technique is to materialize (pre-compute and store) the

results of frequently asked queries. But picking the “right” set of queries to materialize is

a nontrivial task. One may want to materialize a relatively infrequently asked query if it

helps in answering many other frequent queries faster.

In this chapter, we formulate the 0-1 Integer Programming models that determine

the optimal set of views to be materialized for four different versions of the MVS

problem. Of these, two are bottleneck versions of the MVS problem. The objective in

two of the four versions is to minimize the total weighted number of pages to be

retrieved, and the objective in the other two versions is to minimize the maximum

weighted number of pages to be retrieved. The former objective attempts to reduce the

processing burden on the system while the later attempts to establish a ceiling on the

amount of time a user will have to wait to obtain the required data. We also develop and

present the heuristics for the bottleneck versions of the MVS problem.

11

The next section briefly discusses the conceptual background of the materialized

view selection (MVS) problem. The MVS problem is defined and discussed briefly in

Section 2.3. Section 2.4 discusses the 0-1 Integer Programming models for four different

versions of the MVS problem. The heuristic procedures developed for the MVS problem

are presented in Section 2.5. In Section 2.6, we present the performance of the 0-1 Integer

Programming models and the heuristic procedures on typical problem sets. We end the

chapter in Section 2.7 with the concluding remarks and future research directions.

2.2 Conceptual Background and Related Work

A data cube is a multi-dimensional modeling construct. For a detailed discussion

of data cubes and cuboids the readers may refer to Han and Kamber (2001) and Microsoft

SQLServer 2000 Analysis Services (Jacobson, R. 2000). A data cube contains many

cuboids. A cuboid is also commonly known as a “view.” In this context, a view is a set

of aggregated data for a particular set of dimensions. Essentially, a view is the result of a

“GROUP BY” query.

In a given data cube, the following implementation alternatives are possible:

1. Physically materialize the whole data cube. This is known as 100% materialization of

a data cube. This approach will give the best possible query response time.

Obviously, 100% materialization may be infeasible for a large data cube because it

will require an excessive amount of disk space. Also, the time required to materialize

a view is considerable. So 100% view materialization might take a long time to

12

accomplish, which might not be affordable in today’s decision support environment.

Also one needs to maintain indices, if any, which will further add to overall cost.

Once views are materialized, they need to be maintained to reflect the current or the

latest updates in the source data. Hence, as more views are materialized, the view

maintenance costs will also increase.

2. Do not materialize any view. In this case, one needs to access the raw data and

answer each query. This approach will result in long retrieval times due to high CPU

and disk load. But it does not need any extra storage space for the view

materialization.

3. The third alternative is to materialize only a part of the data cube. But selecting the

right set of views to materialize is the challenge. In a data cube, many views could be

derived from other views. Consequently, one may want to materialize a relatively

infrequently accessed view if it helps in obtaining many other views quickly. We will

refer to this problem as the Materialized View Selection (MVS) problem. The MVS

problem has been shown to be NP-Complete problem (Harinarayan et al. 1999).

In the1980s, materialized views were investigated to speed up the data retrieval

process for running queries on views in very large databases (Adiba & Lindsay 1980).

Subsequently, further research studies were reported in view and index maintenance

along with comparative evaluations of materialized views on the performance of queries

(Blakeley & Martin 1990, Qian & Wiederhold 1991, Segev & Fang 1991).

Gray et al. (1997) proposed the data cube as a relational aggregation operator

generalizing group-by, cross-tabs, and subtotals. Harinarayan, Rajaraman and Ullman

(1996, 1999) have discussed the major features of the MVS problem elaborately. They

13

have employed a lattice framework to capture the dependencies among views. This lattice

framework was then used to develop a greedy algorithm (this will be referred to as the

HRU Heuristic 1 in the rest of the dissertation) for a special case of Problem 1 (refer

Section 2.3). The details of the heuristic and the underlying assumptions are reproduced

here for the case of reference.

Assumptions behind the HRU Heuristic 1

1. The cost of constructing a view from its materialized ancestor is a linear function of

the number of rows in its materialized ancestor.

2. If view i is materialized, its storage cost will be ri, where ri is the number of rows in

view i.

3. Whenever a user (or an application) requests a view, the request is always for the

entire view and not for any part of it. For example, if someone requests the annual

sales, he/she requests the annual sales for each year, and not for a specific year.

4. The views are either stored or created from relational database tables.

HRU Heuristic 1:

Consider a data-cube lattice with space costs associated with each view. Here the

space cost is the number of rows in the view. Let C(v) be the cost of view v. The set of

views to be materialized should always include the top view (base cuboid), as there is no

other view that can be used to answer the query corresponding to that view. Suppose

there is a limit k on the number of views, in addition to the top view, to be selected for

14

materialization. After selecting some set S of views, the benefit of view v relative to S,

denoted by B(v,S), is defined as follows.

1. For each view w ≤ v (i.e. w can be totally obtained from v), define the quantity Bw by:

a. Let u be the view of least cost in S such that w ≤ u. Note that since the top

view is in S, there must be at least one such view in S.

b. If C(v) < C(u), then Bw = C(v) – C(u). Otherwise, Bw = 0.

2. Define B(v,S) = ∑ ≤vw wB .

Here, the benefit of v is computed by considering how it can improve the cost of

evaluating views, including itself. For each view w that v covers, the cost of evaluating w

using v is compared, and using whatever view from S offered the cheapest way of

evaluating w. If v helps, i.e., if the cost of v is less than the cost of its competitor, then the

difference represents part of the benefit of selecting v as a materialized view. The total

benefit B(v,S) is the sum over all views w of the benefit of using v to evaluate w, provided

that benefit is positive.

The Greedy Algorithm for selecting a set of k views to materialize is given below:

S = {top view};

for i = 1 to k do begin

 select that view v not in S such that B(v,S) is maximized;

 S = S union {v};

end;

resulting S is the greedy selection;

15

As seen from the above description, the HRU Heuristic 1 attempts to minimize

the average time taken to evaluate the set of queries that are identical to the views in a

given data cube. This algorithm first finds the benefit for each view in the data cube if it

were to be materialized and then materializes the one with the highest benefit. It

continues this process until the given number of views to be materialized constraint is

satisfied.

Instead of asking for some fixed number of views to be materialized, one might

instead allocate a fixed amount of storage space to views (other than the top view, which

must always be materialized). Harinarayan et al. (1999) pointed out that in this case one

needs to consider the benefit of each view per unit space used by a materialization of that

view. All the assumptions underlined HRU Heuristic 1 applies in this case as well. One

can easily modify HRU Heuristic 1 to address the storage space constraint. We will refer

to this as HRU Heuristic 2, which is the heuristic for a special case of Problem 2 (refer

Section 2.3) in the rest of dissertation. The stepwise procedure for HRU Heuristic 2 is

outlined below:

HRU Heuristic 2:

Let TS is the total space available for materialization of views and let SC is the

space consumed by the materialized views. Initially SC will be equal to the space

consumed by the top view, which is always materialized.

The Greedy Algorithm for selecting a set of views to materialize while satisfying

the storage space constraint is given below:

16

S = {top view};

while SC < TS begin

 select that view v not in S such that B(v,S)/C(v)* is maximized;

 S = S union {v};

 SC = SC + C(v)

end;

resulting S is the greedy selection;

* please refer to HRU Heuristic 1 for steps for calculating B(v,S) and for C(v)

Harinarayan et al. (1999) have developed heuristics for the basic versions of the

MVS problem i.e. Problem 1 with equal weights and Problem 2 with equal weights (refer

to Section 2.3). In their paper they have identified a number of issues that required further

investigation. Some of these major issues are:

1. The views in a lattice are unlikely to have the same probability of being requested

in a query. Rather, one might be able to associate some probability (weight) with

each view, representing the frequency with which it is queried and/or the

importance of the person accessing the view.

2. In case of the storage space constraint, the greedy algorithm again seems

appropriate, but there is additional complication that one might have a very small

view with a very high benefit per unit space, and a very large view with almost

the same benefit per unit space. Choosing the small view excludes the large view,

because there is not enough space available for the large view after one chooses

the small. However, they further pointed out that if one ignores “boundary cases”

17

like the one above, the performance guarantee of the greedy algorithm is the same

as in the simple case.

3. HRU heuristics (HRU Heuristic 1 and HRU Heuristic 2) as well as the heuristics

detailed in here (refer to Section 2.5) require prior knowledge of the number of

rows present in each view in a given lattice structure. One could use sampling

techniques to estimate the size of the other views by drawing a sample from the

root view.

In this work, we have extended the work done by Harinarayan et al. (1999). We

have provided extensive experimental evaluations by considering all of the above

important issues. We have also developed two bottleneck versions of the MVS problem

(refer to Section 2.5) that attempts to minimize the maximum weighted time taken to

evaluate the set of queries that are identical to the views in a given data cube. We have

also used three different sampling techniques (refer to Chapter 3) to estimate the size of

all the other views by drawing samples from the root view.

In the next section, we define some variants of the MVS problem.

18

2.3 Materialized View Selection Problem

Figure 2.1 presents a hypothetical data cube and the associated cuboids in a

hypothetical data warehouse. Each node represents a required view (cuboid) and the

numbers inside each node represent the number of pages that must be retrieved to

respond to the underlying query and the weight associated with each view, which is a

function of frequency of access and/or the importance of the user accessing the view. We

are using pages rather than rows as a surrogate for estimating the time it will take to

obtain the required views. This is because most database software retrieve blocks of

rows called pages during each physical access of the database. The page is then stored in

cache or RAM from where rows can be retrieved quickly. Consequently, the number of

pages is a better estimator of the time needed to obtain a required view.

View A (at the root) contains the lowest level of aggregated data, and it is

assumed to be always materialized. The links in the lattice indicate parent-child

relationships. Hence view B, for example, can be obtained from view A by processing

100 pages of data. If view B is materialized, it will contain 50 pages of data, and a query

on view B will involve retrieving 50 pages. In general, for a given node, an ancestor

node is defined as any node from which the given node may be reached by traversing

only directed arrows. A query on a view may be answered by materializing the

corresponding view or from any of its materialized ancestor views but not from any other

materialized views. For example, obtaining view E from view A will require retrieving

100 pages while it will require retrieving 50 pages to obtain it from view B. View E

cannot be obtained from view C or view D.

19

Based upon this type of configuration, we would like to know the specific set of

views that must be materialized to achieve some predetermined objectives and

constraints. We consider two types of objectives i.e. minimizing the total weighted

number of pages to be retrieved, and minimizing the maximum weighted number of

pages to be retrieved. We also consider two types of constraints – the maximum number

of views that may be materialized and the total amount of storage space available to store

the materialized views.

A

n=100

w=1

B

n=50

w=10

C

n=70

w=2

D

n=60

w=3

E

n=30

w=20

F

n=40

w=15

G

n=50

w=10

H

n=40

w=5

Figure 2.1: A Graphical Representation of a Data Cube with Associated Cuboids

Minimizing the total weighted number of pages to be retrieved is a commonly

used objective. In practice this represents the amount of computing effort required to

obtain all of the required views given either the frequency with which each view is

accessed or the relative importance of the various views. If one assumes that all of the

required views in a data cube are equally important, or that we do not have any

information about the relative importance of the various required views in a data cube,

we get a special case of this objective wherein all weights are equal.

20

Minimizing the maximum weighted number of pages to be retrieved attempts to

limit the amount of time it will take to obtain any of the views. This is a bottleneck

objective as it tries to minimize the maximum value. This measure also takes into account

the relative importance of the various views. This objective will help improve the

response time of the system.

Limiting the number of views that may be materialized is a commonly used

constraint and attempts to limit the complexity of the data warehouse (Harinarayan et al.

1996, 1999). The storage of too many views will make the data warehouse more

complex, increase the amount of time and effort required to both compute and maintain

the various views. In addition, there may be a limit on the amount of space available to

store the materialized views. Hence, from a practical point of view, a more realistic

constraint might be to compute the storage requirement of the views and limit this to the

amount of space available.

The discussions above lead us to define the following four problems:

Problem 1. Given a data cube, the maximum number of views that can be materialized,

the weight associated with each required view, and the list of required

views, determine the set of views to be materialized so as to minimize the

weighted total number of pages to be retrieved in order to obtain each

required view in the data cube. This reduces to the standard MVS problem

with the maximum number of views to be materialized constraint when all

weights are equal.

21

Problem 2. Given a data cube, the weight associated with each required view, the list of

required views, and the maximum number of pages that can be stored,

determine the set of views to be materialized so as to minimize the total

weighted number of pages to be retrieved in order to obtain each of the

required view in the data cube. Again, this reduces to the MVS problem

with maximum number of pages constraint when all weights are equal.

Problem 3. Given a data cube, the maximum number of views that can be materialized,

the weight associated with each required view, and the list of required

views, determine the set of views to be materialized in order to minimize

the maximum weighted number of pages to be retrieved so as to obtain each

required view in the data cube.

Problem 4. Given a data cube, the weight associated with each required view, the list of

required views, and the maximum number of pages that can be stored,

determine the set of views to be materialized so as to minimize the

maximum weighted number of pages to be retrieved in order to obtain each

required view in the data cube.

In the next section, we present the 0-1 Integer Programming models for four

different versions of the MVS problem discussed in this section.

22

2.4 Integer Programming Models for the MVS Problem

Below, we have presented Integer Programming models for each problem defined

in the last section. Since the MVS problem is NP-complete (Harinarayan et al. 1999), it

will not be practical to solve very large problems using these formulations.

Problem 1:

∑∑
i j

ijijj PxwMin : (1)

Such that:

jx
i

ij ∀=∑ ,1 (2)

jixx iiij ≠∀≤ , (3)

Tx
i

ii ≤∑ (4)

01 orxij = (5)

Where:

 },,3,2,1{ totalTN K=

Nji ∈,

jw = Weight assigned to view j

 ijP = Number of pages associated with view i, if view i is an ancestor of j

 = M otherwise

 T = Maximum number of views that can be materialized

23

totalT = Total number of required views in a given data cube

Explanation:

For a given materialization scheme, (1) gives the minimum total weighted number

of pages to be retrieved to generate all the required views in a data cube. The constraints

in (2) ensure that every required view can be obtained, and each is obtained from exactly

one source. The constraints in (3) ensure that a view j can be obtained from some view i

only and only if view i is materialized. The constraint in (4) ensures that a maximum of

‘T’ views will be materialized. The constraints in (5) make sure that queries requiring

view j is answered by using the appropriate materialized view. If xij = 1, it implies that

queries on view j is answered using view i and 0 otherwise. xii = 1 implies that view i is

materialized and 0 implies that it is not materialized. A special case of this formulation is

obtained when all the weights are equal, and without loss of generality are set equal to 1,

i.e., jw = 1.

Example 1:

For the data cube shown in Figure 2.1 (except that wj = 1 for Nj∈), and the

associated required views described in it, the Pij matrix is shown in Table 2.1. The matrix

shows that all views can potentially be obtained from view A upon reading 100 pages.

Furthermore, views E and F can be obtained from view B upon reading 50 pages if view

24

B is materialized, and so on. Let T = 5. Solve this problem using the formulation given in

Problem 1.

 A B C D E F G H

A 100 100 100 100 100 100 100 100

B 10000 50 10000 10000 50 50 10000 10000

C 10000 10000 70 10000 10000 70 70 10000

D 10000 10000 10000 60 10000 10000 10000 60

E 10000 10000 10000 10000 30 10000 10000 10000

F 10000 10000 10000 10000 10000 40 10000 10000

G 10000 10000 10000 10000 10000 10000 50 10000

H 10000 10000 10000 10000 10000 10000 10000 40

Table 2.1: The Pij Matrix for Example 1

 A B C D E F G H

A 1 1 0 1 0 0 0 0

B 0 0 0 0 0 0 0 0

C 0 0 1 0 0 0 1 0

D 0 0 0 0 0 0 0 0

E 0 0 0 0 1 0 0 0

F 0 0 0 0 0 1 0 0

G 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 1

Table 2.2: The Xij Solution Matrix for Example 1

Example 1 was solved using MS Excel and obtained the solution shown in Table

2.2. The solution indicates that views A, C, E, F, and H should be chosen for

materialization to minimize the total weighted number of pages to be retrieved. The

objective function value for this solution is 490. In addition the solution specifies that

25

queries based on views B, D and G should be answered respectively using views A, A

and C which are the most economical views among all views materialized by the

solution. This accounts for all of the required views in the data cube. It is important to

note that alternate optimal solutions also exist. For example, a solution where views A,

B, C, D, E are materialized with view F obtained from view B, view G obtained from

view C, and view H obtained from view D also gives an objective function value of 490.

Problem 2:

∑∑
i j

ijijj PxwMin : (6)

Such that:

jx
i

ij ∀=∑ ,1 (7)

jixx iiij ≠∀≤ , (8)

SPx
i

iiii ≤∑ (9)

01 orxij = (10)

Where:

},,3,2,1{ totalTN K=

Nji ∈,

jw = Weight assigned to view j

 ijP = Number of pages associated with view i, if view i is an ancestor of j

 = M otherwise

26

 S = Maximum number of pages that can be stored

totalT = Total number of required views in a given data cube

Explanation:

For a given materialization scheme, (6) gives the minimum total weighted number

of pages to be retrieved to obtain all the views in a data cube. The constraints in (7)

ensure that every required view can be obtained, and each is obtained from exactly one

source. The constraints in (8) ensure that a view j can be obtained from some view i only

and only if view i is materialized. The constraint in (9) ensures that the number of pages

that can be stored does not exceed ‘S’. The constraints in (10) make sure that queries

requiring view j is answered by using the appropriate materialized view. If xij = 1, it

implies that queries on view j is answered using view i and 0 otherwise. xii = 1 implies

that view i is materialized and 0 implies that it is not materialized. A special case of this

formulation arises when all the weights are equal, and without loss of generality are set

equal to 1, i.e., jw = 1.

Problem 3:

ZMin : (11)

Such that:

jx
i

ij ∀=∑ ,1 (12)

jixx iiij ≠∀≤ , (13)

27

Tx
i

ii ≤∑ (14)

jZPxw jij

i

ijj ∀=∑ , (15)

jZZ j ∀≥ , (16)

01 orxij = (17)

Where:

},,3,2,1{ totalTN K=

Nji ∈,

jw = Weight assigned to view j

 ijP = Number of pages associated with view i, if view i is an ancestor of j

 = M otherwise

 T = Maximum number of views that can be materialized

 totalT = Total number of required views in a given data cube

 jw = Weight of view j

 jZ = Weighted number of pages that must be retrieved to obtain view j

 Z = Maximum weighted number of pages that must be retrieved to obtain any

of the required views in a given data cube

Explanation:

The objective function in (11) minimizes the maximum weighted number of

pages to be retrieved to obtain all the required views in the data cube. Equations in (12)

ensure that every required view can be obtained, and each is obtained from exactly one

source. This will in general be the most economical view. However, if there are

28

alternate solutions, this view may be any of the views materialized by the solution.

Equations in (13) ensure that view j can be obtained from view i only and only if view i is

materialized. Equation (14) ensures that a maximum of ‘T’ views will be materialized.

Equations in (15) compute the weighted number of pages retrieved to obtain each view j.

Equations in (16) ensure that the optimal Z is greater than equal to all weighted number

of pages retrieved for all of the views. The constraints in (17) make sure that queries

requiring view j is answered by using the appropriate materialized view. If xij = 1, it

implies that queries on view j is answered using view i and 0 otherwise. xii = 1 implies

that view i is materialized and 0 implies that it is not materialized.

Example 2:

For the data cube shown in Figure 2.1, and the associated required views

described in it, the Pij matrix is shown in Table 2.1. Let T = 5. Solve this example using

the formulation given in Problem 3.

 A B C D E F G H

A 1 0 1 1 0 0 0 1

B 0 1 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 0 1 0 0 0

F 0 0 0 0 0 1 0 0

G 0 0 0 0 0 0 1 0

H 0 0 0 0 0 0 0 0

Table 2.3: The Xij Solution Matrix for Example 2

29

Example 2 is solved using MS Excel and obtained the solution shown in Table

2.3. The solution indicates that views A, B, E, F, and G should be chosen for

materialization to minimize the maximum weighted number of pages to be retrieved. The

objective function value for this solution is 600. In addition it tells us that views C, D,

and H should be obtained from view A. This accounts for all of the ‘T’ views to be

materialized. This problem typically has alternate optimal solutions.

Problem 4:

ZMin : (18)

Such that:

jx
i

ij ∀=∑ ,1 (19)

jixx iiij ≠∀≤ , (20)

SPx
i

iiii ≤∑ (21)

jZPxw jij

i

ijj ∀=∑ , (22)

jZZ j ∀≥ , (23)

01 orxij = (24)

Where:

},,3,2,1{ totalTN K=

Nji ∈,

 ijP = Number of pages associated with view i, if view i is an ancestor of j

 = M otherwise

30

 S = Maximum number of pages that can be stored

 jw = Weight of view j

 jZ = Weighted number of pages that must be retrieved to obtain view j

 Z = Maximum weighted number of pages that must be retrieved to obtain any

of the required views in a given data cube

totalT = Total number of required views in a given data cube

Explanation:

The objective function in (18) requires the minimization of the maximum

weighted number of pages to be retrieved to obtain all the views in the data cube.

Equations in (19) ensure that every required view can be obtained, and each is obtained

from exactly one source. This will in general be the most economical view. However, if

there are alternate solutions, this view may be any of the views materialized by the

solution. Equations in (20) ensure that view j can be created from view i only when view

i is materialized. Equation (21) ensures that the number of pages that can be stored does

not exceed ‘S’. Equations in (22) compute the weighted number of pages retrieved to

obtain each view. Equations in (23) ensure that the optimal Z is greater than equal to all

weighted number of pages retrieved for all of the views. The constraints in (24) make

sure that queries requiring view j is answered by using the appropriate materialized view.

If xij = 1, it implies that queries on view j is answered using view i and 0 otherwise. xii = 1

implies that view i is materialized and 0 implies that it is not materialized.

In the next section, we present the heuristic procedures developed for various

versions of the MVS problem.

31

2.5 Heuristic Procedures for the MVS Problem

In this section, we present the heuristic procedures for Problem 3 and Problem 4

defined in Section 2.3.

2.5.1 Selection of Views Under the Number of Views to be

Materialized Constraint

We have employed the lattice framework (as used by the HRU heuristic) to

capture the dependencies among the views to formulate our heuristic procedures for

various versions the MVS problem. Below, we present a heuristic procedure for Problem

3 defined in Section 2.3:

Bottleneck Heuristic 1:

Step 1. Let k be the maximum number of views that may be materialized. Let |N|

denote the cardinality of the set N. Let set N be the set of all views under

consideration, which will initially be all views except the root view A. Let M be

the set of views to be materialized. Initially, let M = {A} where view A is the

root view which is required to be materialized. Let wj be the weight associated

with view j and let nj be the number of pages required to represent

materialization of view j. For each view j, calculate fj = wj * (minimum number

of pages to be retrieved to answer queries related to view j in the current

32

solution which has materialized all views in M). Let the objective function value

Z = Max (fj for MNj U∈).

Step 2. For each view Nj∈ , calculate Zj for Nj∈ , where Zj is the objective function

value if view j were to be materialized in addition to all the views in M. Let

view Nj ∈′ be such that it maximizes (Z- Zj) for Nj∈ and (Z- Zj) >0. If there

is no such j′ , go to Step 3. Otherwise, let jMM ′= U , jNN ′−= . Set jZZ ′= .

If |M| = k go to Step 3 else repeat Step 2.

Step 3. Views to be materialized are given by the set M. Z gives the objective function.

Example 3:

Applying Algorithm 1 to the problem whose lattice diagram is shown in Figure

2.1, we get the following:

Step 1. Let M = {A} and N = {B, C, D, E, F, G, H}. The set of weights associated with

views A through H be {1, 10, 2, 3, 20, 15, 10, 5}. Initial value of the objective

function Z = Max{1*100, 10*100, 2*100, 3*100, 20*100, 15*100, 10*100,

5*100} = 2000.

Step 2. For each node j calculate Zj. Next, details of the calculation of ZB corresponding

to materializing view B is given by ZB = Max{1*100, 10*50, 2*100,3*100,

20*50, 15*50, 10*100,5*100} = 1000. Similarly, Zj for nodes C through H is

given by {2000, 2000, 1500, 2000, 2000, 2000}. So j′ will be B. So M = {A,

B}. N = {C, D, E, F, G, H}. Z = 1000.

33

Repeat Step 2. Calculate Zj for nodes C through H = {1000, 1000, 1000, 1000,

1000, 1000}. Since there is no such node j that satisfies (Z- Zj) >0 for

Nj∈ , we go to Step 3.

Step 3. Applying Step 3, the solution is: M = {A, B}, and Z = 1000.

2.5.2 Selection of Views Under the Storage Space Constraint

Below, we present the stepwise procedure for Bottleneck Heuristic 2 for Problem

4 defined in Section 2.3:

Bottleneck Heuristic 2:

Step 1. Let S be the total storage space available before materializing the root view. Let

set N be the set of all views under consideration, which will initially be all

views except the root view A. Let M be the set of views to be materialized.

Initially, let M= {A} where view A is the root view which is required to be

materialized and this will be the current solution. Let Q be the set of views that

may not be considered. Initially Q will be empty. Let wj be the weight

associated with view j and let nj, Sj respectively be the number of pages

required, and space required to materialize view j. Let SM be the space required

to materialize all the views in the set M. For each node j, calculate fj = wj *

34

(min. # or rows to be retrieved to answer queries related to view j in the current

solution). Let the objective function value Z = Max (fj for MNj U∈).

Step 2. For each view QNj −∈ , calculate Zj for QNj −∈ where Zj is the objective

function value if view j were to be materialized in addition to all other views in

M. Let view QNj −∈′ be such that it maximizes (Z- Zj) for QNj −∈ and

(Z- Zj) >0. If there is no such j′ , go to Step 4 else go to Step 3.

Step 3. If there is such a j′ and if 0≥−− ′jM SSS , then let jMM ′= U , jNN ′−= .

Set jZZ ′= . Go to Step 2. In case there are ties between more than one such j',

they are broken arbitrarily. Else if 0<−− ′jM SSS , that implies that there is not

enough space left to accommodate view j′ . Reset jQQ ′= U . Go to Step 2.

Step 4. Views to be materialized are given by the set M. Z gives the objective function.

In the next section, we discuss and compare the results obtained using HRU

heuristics and Bottleneck heuristics (Bottleneck Heuristic 1 and Bottleneck Heuristic 2)

with the results obtained using the 0-1 Integer Programming models.

2.6 Experimental Results

We randomly generated 10 instances of data cubes each with 32 required views

and 64 required views. The procedure of generating problem instances is described in

brief below.

35

For our experiments, we have generated problem instances for a given number of

dimensions. We have not used any levels in those dimensions. For a given number of

dimensions with no levels present in them, the number of cuboids present in a given data

cube will be given by n2 , where n is the number of dimensions.

Figure 2.2: Data Cube Problem Instance

For example, let’s say n = 3. So we will be having eight cuboids. Following

diagram denotes the data cube and the associated cuboids.

We will name the root view as View 1 having data aggregated by three

dimensions i.e. 1, 2 and 3, and assume that it will consist of 10000 rows. Next we will

find all the possible combinations of two dimensions out of these three. So the possible

combinations are View 2 having data aggregated by dimensions 1 and 2, View 3 having

data aggregated by dimensions 2 and 3 and View 4 having data aggregated by 1 and 3

and all of them are answered from the root view 123. For each of these views, we will

36

assume the number of rows will be drawn from a uniform distribution

UNFI(0.6,1)*Min(number of rows in the set of immediate parents of the node). In this

case, it has only one parent and it is the root view with 10,000 rows. Number of rows

present in each of these views is shown in Figure 1.2. Next we will find all the possible

combination of one dimension out of the three, which will result in the View 5, View 6

and View 7. Again in each of these views, the number of rows is generated as explained

above. The last view will be having just one row which will be having data

summarization by all the dimensions.

Next, we generated the 0-1 Integer Programming model for each of the problems

defined in Section 2.3 and found the cost of optimal solution for each instance of these

problems using LINGO software. Finally, we found the cost of solution to each of these

problem instances using HRU Heuristics 1 and 2 (refer to Section 2.2), and the

Bottleneck Heuristics 1 and 2 (refer to Section 2.5).

In Table 2.4, we have presented the cost comparison between the optimal

solution, which is the number of pages to be retrieved, for the special case of Problem 1

described in Section 2.3, and the corresponding cost of solution obtained by the HRU

Heuristic 1 under the number of views to be materialized constraint. Here, we have

limited the number of views to be materialized to 10 and 20 for problems with 32

required views and 64 required views respectively. We found that the HRU Heuristic 1

comes within 1% of the optimal solution in all of the 20 problem instances. Furthermore,

the HRU Heuristic 1 found the optimal solution for 10 of the 20 problem instances. For

the size and complexity of problems tested here, the HRU Heuristic 1 seems to be a good

method for solving Problem 1.

37

Cost of Solution

(no. of Pages to be

retrieved)

Problem

Instance

Number

Number of

Required

Views

Number of

Views to be

Materialized

Optimal

HRU

Heuristic 1

%

Deviation

1.1 32 10 163400 163500 0.06

1.2 32 10 153200 154250 0.69

1.3 32 10 131900 132000 0.08

1.4 32 10 138850 138850 0.00

1.5 32 10 164400 164400 0.00

1.6 32 10 171400 173000 0.93

1.7 32 10 176500 176640 0.08

1.8 32 10 182200 182200 0.00

1.9 32 10 159600 159600 0.00

1.10 32 10 134900 134900 0.00

1.11 64 20 262070 262070 0.00

1.12 64 20 224625 225715 0.49

1.13 64 20 248900 248900 0.00

1.14 64 20 232900 232900 0.00

1.15 64 20 250600 250600 0.00

1.16 64 20 264850 264990 0.05

1.17 64 20 303455 303455 0.00

1.18 64 20 230320 231600 0.56

1.19 64 20 269720 270440 0.27

1.20 64 20 305715 305995 0.09

Table 2.4: Cost Comparison Between Optimal Solution and HRU Heuristic 1 Solution for

the Special Case of Problem 1

38

Cost of Solution

(no. of Pages to be

retrieved) Problem

Instance

Number

Number of

Required

Views

Available Space

as Proportion of

Total Space

Optimal

HRU

Heuristic 2

%

Deviation

2.1 32 0.5 150431 151491 0.70

2.2 32 0.5 141811 142021 0.15

2.3 32 0.5 122016 122251 0.19

2.4 32 0.5 126451 126651 0.16

2.5 32 0.5 154481 154706 0.15

2.6 32 0.5 158201 158641 0.28

2.7 32 0.5 160801 160801 0.00

2.8 32 0.5 167741 167741 0.00

2.9 32 0.5 147701 147701 0.00

2.10 32 0.5 126101 126351 0.20

2.11 64 0.5 246025 246169 0.06

2.12 64 0.5 208958 208969 0.01

2.13 64 0.5 232896 233194 0.13

2.14 64 0.5 217278 217486 0.10

2.15 64 0.5 234274 234797 0.22

2.16 64 0.5 244027 244036 0.00

2.17 64 0.5 279617 280481 0.31

2.18 64 0.5 209525 210121 0.28

2.19 64 0.5 247951 248126 0.07

2.20 64 0.5 287368 288394 0.36

Table 2.5: Cost Comparison Between Optimal Solution and HRU Heuristic 2 Solution for

the Special Case of Problem 2

39

Cost of Solution

(weighted number of pages

to be retrieved)
Problem

Instance

Number

Number of

Required

Views

Number of

Views to be

Materialized

Optimal

Bottleneck

Heuristic 1

%

Deviation

3.1 32 10 810000 810000 0.00

3.2 32 10 930000 930000 0.00

3.3 32 10 768000 768000 0.00

3.4 32 10 648000 648000 0.00

3.5 32 10 855000 855000 0.00

3.6 32 10 910000 910000 0.00

3.7 32 10 770000 770000 0.00

3.8 32 10 400500 436500 8.99

3.9 32 10 950000 950000 0.00

3.10 32 10 680000 680000 0.00

3.11 64 20 810000 810000 0.00

3.12 64 20 810000 980000 20.99

3.13 64 20 830000 830000 0.00

3.14 64 20 970000 970000 0.00

3.15 64 20 846000 980000 15.84

3.16 64 20 570000 570000 0.00

3.17 64 20 651000 960000 47.47

3.18 64 20 950000 950000 0.00

3.19 64 20 930000 930000 0.00

3.20 64 20 980000 980000 0.00

Table 2.6: Cost Comparison Between Optimal solution and Bottleneck Heuristic 1

Solution for Problem 3

40

Cost of Solution

(weighted number of pages

to be retrieved)
Problem

Instance

Number

Number of

Required

Views

Available Space

as Proportion of

Total Space

Optimal

Bottleneck

Heuristic 2

% Deviation

4.1 32 0.5 810000 810000 0.00

4.2 32 0.5 930000 930000 0.00

4.3 32 0.5 768000 768000 0.00

4.4 32 0.5 648000 648000 0.00

4.5 32 0.5 855000 855000 0.00

4.6 32 0.5 910000 910000 0.00

4.7 32 0.5 770000 770000 0.00

4.8 32 0.5 400500 400500 0.00

4.9 32 0.5 950000 950000 0.00

4.10 32 0.5 680000 880000 29.41

4.11 64 0.5 810000 810000 0.00

4.12 64 0.5 810000 980000 20.99

4.13 64 0.5 830000 960000 15.66

4.14 64 0.5 970000 970000 0.00

4.15 64 0.5 846000 980000 15.84

4.16 64 0.5 570000 950000 66.67

4.17 64 0.5 651000 960000 47.47

4.18 64 0.5 950000 950000 0.00

4.19 64 0.5 930000 930000 0.00

4.20 64 0.5 980000 980000 0.00

Table 2.7: Cost Comparison Between Optimal solution and Bottleneck Heuristic 2
Solution for Problem 4

41

However, it is not possible to generalize this observation for situations where

there are more required views and perhaps more complex dependencies. Harinarayan et

al. (1999) have identified problem structures where their heuristic will not perform well.

Furthermore, they have found an upper bound to the extent of the error. For situations

requiring three views to be materialized (including the base cuboid), this upper bound is

25%.

The cost comparison between the optimal solution and the corresponding cost of

solution obtained by the HRU Heuristic 2 under the storage space constraint for the

special case of Problem 2 (refer to Section 2.3) is shown in Table 2.5. The amount of

space available is assumed to be 50% of the total space required to materialize all the

required views including the root view in the given data cube. We found that the HRU

Heuristic 2 again comes within 1% of the optimal solution. However, in this case the

HRU Heuristic 2 found the optimal solution only in 20% of the problem instances as

compared to 50% of the problem instances in Problem 1 using HRU Heuristic 1.

 Table 2.6 shows the cost comparison between the optimal solution and the cost of

solution obtained by the Bottleneck Heuristic 1 under the number of views to be

materialized constraint for Problem 3 (refer to Section 2.3). We found that the

Bottleneck Heuristic 1 reached the optimal solution in all but four instances. In these

instances the deviation varied between 8.99% and 47.47%. This is probably due to the

heuristic’s premature stopping condition as implemented in our computer program.

The cost comparison between the optimal solution and the cost of solution

obtained by the Bottleneck Heuristic 2 under the storage space constraint for Problem 4

(refer to Section 2.3) appears in Table 2.7. We found that the heuristic did not find the

42

optimal solution in six instances. In these instances the deviation from the optimal varied

between 15.66% and 66.67%. Furthermore, our experimental evaluation of Problem 1

through Problem 4 points to the fact that the space constrained environment is more

demanding on the heuristic; i.e., it seems to find the optimal solution in fewer instances.

In the next section, we conclude this chapter and suggest future research

directions.

2.7 Conclusions and Future Research

In this chapter, we have presented two heuristic procedures for solving two

versions of the MVS problem. In the first heuristic procedure (Bottleneck Heuristic 1),

the constraint is the maximum number of views that can be materialized. In the second

heuristic (Bottleneck Heuristic 2), the constraint is the total storage space available for

materialization of views. We have also developed the 0-1 Integer Programming models

for four different versions of the MVS problem. We used these formulations to solve 10

problem instances each with 32-node and 64-node data cubes. We then compared the

cost of optimal solution with the corresponding cost of solution obtained by applying

various heuristic procedures.

Our findings indicate that the heuristics used to solve the problem instances come

very close to the optimal solutions. Even though the problem is NP-complete, we could

solve 64 node problems within 10 seconds for Problem 1 and Problem 3, and within 90

seconds for Problems 2 and Problem 4 on a 466 MHz machine (refer to Section 2.3)

43

using our formulation. It takes more time to solve problems with the storage space

constraint as it puts higher burden on the system to check each possible combination to

find the best set of views to materialize for obtaining optimal solution.

Further research in this area should perhaps be focused upon some of the related

practical aspects of data warehouse management. For example, how well do the

problems defined here address the real life problems faced by data warehouse

administrators? The formulations presented here do not consider view maintenance

costs. Further research is needed in this area. In the heuristic procedures developed here,

weight for each node in a given lattice structure is generated randomly. In further

research, one can also pursue the issues concerning developing a systematic process for

defining the weights for views and performing sensitivity analysis of weights on the

heuristics solutions.

44

CHAPTER 3: STATISTICAL SAMPLING TO
INSTANTIATE MVS PROBLEM INSTANCES

3.1 Introduction

As described in the previous chapter, materialized views can speed up the

execution of many queries (Gupta 1999, Harinarayan et al. 1999). For complex queries

involving large volumes of data, the scope for speeding up using materialized views is

very high. The HRU heuristics (HRU Heuristic 1 and HRU Heuristic 2) as well as the

heuristic procedures reported in Chapter 2 assume that the number of pages (surrogate for

rows) present in each node in a given lattice structure is known prior to applying the

heuristic. In a large multidimensional data cube, there may be a large number of nodes in

a lattice structure. Determining the number of rows in each of these nodes (views) may

also be a time-consuming process. In these days of on-line real-time decision making, the

data warehouse administrator may not be able to afford the necessary time of this

magnitude before he/she applies a heuristic to determine the views to be materialized.

In this chapter, we explore the use of statistical sampling methodologies to

estimate the number of rows present in each node in a given lattice structure. Here, we

estimate the rows, which is a surrogate measure for the pages used in previous chapter.

We assume that the root node is always materialized as were the cases in Harinarayan,

Rajaraman, and Ullman’s work (1996, 1999). The root node is assumed to contain the

45

lowest level of aggregated data and the keys to appropriate levels of the dimensions of a

cube. Thus, it is possible to take a sample from it and estimate the number of rows that is

expected to be in a particular derived node.

In the database related literature, several researchers have developed a number of

sampling techniques to estimate the number of unique rows in a relation. We employ

three of these sampling techniques to estimate the number of rows present in each node

of a 27-node lattice structure. Subsequently we apply appropriate HRU heuristic (HRU

Heuristic 1 or HRU Heuristic 2) to solve the MVS problem (Problem 1 with equal

weights or Problem 2 with equal weights, respectively) twice: once with the actual

number of rows, and once with the estimated number of rows. We also apply the 0-1

Integer Programming model to solve Problem 1 with equal weights, and actual number of

rows to determine the optimal solution. Finally we compare the solutions obtained by

applying the HRU heuristics on the actual as well as the estimated data with the optimal

solution obtained by applying the 0-1 Integer Programming model on the actual data set.

In the next section, we present the sampling literature related to finding the

number of unique rows in a relation. In Section 3.3, we present the methodology adopted

for estimating the number of rows for the MVS problem instances for two realistic data

warehouses. In Section 3.4, we discuss two realistic lattice instances that we generated

for testing purposes, and present the results of our experiments. The overall results are

briefly discussed in Section 3.5. We conclude the chapter with possible future research

directions in Section 3.6.

46

3.2 Sampling Literature Related to the Number of Unique Rows

Suppose that the root node View0 contains the monthly sales data for different

cities in different countries. Also, suppose that the SQL query for a descendant view

View1 is “SELECT SUM (sales) FROM View0 GROUP BY country.” If View0 contains

n unique countries, it is clear that View1 will also contain exactly n rows. Thus,

estimating the number of rows in a view of a data cube is essentially the same as

estimating the number of distinct values of an attribute in a relation. Since the root view

contains the least aggregated data, and since it is always materialized, it can be used to

estimate the number of rows in all other views.

In the statistics literature, the problem of estimating the number of classes is a

well-studied problem that is equivalent to the distinct-value estimation problem in the

data warehouses (Bunge and Fitzpartick 1993). This problem has also been extensively

researched in the database literature. For a thorough analysis refer to the work by Hass et

al. (1995). They have devised several new estimators including the hybrid estimator that

appears to outperform the estimators developed in prior literature, both for real and

synthetic data set. This hybrid estimator first uses a chi-squared test to decide whether the

data has low skew or high skew. Accordingly, it applies a smoothed jackknife estimator in

the former case and the Shlosser Estimator in the latter case. In this dissertation, we will

denote this as HYBSHLO estimator. Hass and Stokes (1998) have done an extensive

study of several generalized jackknife estimators, relating previously known estimators

and proposing new ones.

47

Charikar et al. (2000) have devised an estimator called Guaranteed-Error

Estimator (GEE). They pointed out that the GEE performed well for data with high skew

or with relative few low frequency elements, which was demonstrated in their

experimental results. By the same reasoning, they pointed out that the GEE would not

perform as well (in fact will severely underestimate) for data which has both low skew

and a large number of distinct values; again, this was demonstrated in their experimental

results. In case of high-skew real-world data as well as synthetic data, they found that the

GEE outperforms the Shlosser Estimator. So they suggested a modified version of

HYBSHLO estimator which substitutes the GEE for the Shlosser estimator in the case of

high-skew data. This is denoted as the HYBGEE (for Hybrid with the GEE). Their

experimental results show that HYBGEE gives a significant reduction in error compared

to HYBSHLO.

Charikar et al. (2000) through their extensive empirical evaluation, further

pointed out that to ensure accuracy, the estimation procedure needs to take into account

characteristics of the input distribution. Keeping this in mind, they analytically derived an

estimator called the Adaptive Estimator (AE), a modified version of the GEE that adapts

to the input distribution of data so as to avoid the problem faced by the GEE for data

having both low skew and large number of distinct values.

In this dissertation, we have investigated three estimators. These are the Shlosser

Estimator (Shlosser 1981, Hass et al. 1995), the GEE (Charikar et al. 2000), and the AE

(Charikar et al. 2000). The details of these estimators are available in the respective

referenced papers. In this section, we will simply include the computational expressions

that have been used to estimate these three statistics.

48

Let,

n = number of rows in a relation,

r = number of rows in a sample drawn from a relation,

d = number of distinct values of an attribute or of a composite attribute that

 appears in the sample

D̂ = estimate for the number of distinct values of an attribute or a composite

attribute that exists in the population.

For ri ≤≤1 , let fi be the number of attribute values that appear exactly i times in

the sample of size r. Thus, ∑ =
=

r

i ifd
1

 and ∑ =
=

r

i iifr
1

We applied sanity bounds to all the estimators used to ensure that nDd ≤≤
∧

; i.e.,

if nD >
∧

, we set
∧

D to n and if
∧

D < d, we set
∧

D to d (Charikar et al. 2000). With the

above notations, we have computed the relevant estimates using the following

computational expressions.

Shlosser Estimator: (Ref: Hass et al. 1995, and Shlosser 1981)

�
∑

∑

=

−

=

−

−
+=

r

i i

i

r

i i

i

Shloss

fqiq

fqf
dD

1

1

11

)1(

)1(
ˆ

49

where, q = r/n (is the probability with which each tuple is included in the sample,

independently of all other tuples.)

GEE: The Guaranteed-Error Estimator: (Ref: Charikar et al. 2000)

� ∑
=

+=
r

i

iGEE ff
r

n
D

2

1)(ˆ

AE (The Adaptive Estimator): (Ref: Charikar et al. 2000)

�

∑

∑

=

+−−

=

+−−

++

+

=−−
r

i

mff

i

i

r

i

mff

i

i

efffie

mefe

fffm

3

/)2(

21

3

/)2(

121

21

21

)2(

� 21
ˆ ffmdDAE −−+=

where m is the number of low frequency values.

In the next section, we briefly outline the methodology adopted in our
experiments.

50

3.3 Methodology

Consider a lattice with n views named v0, v1, v2 … vn-1. Let ri and ir̂ be the actual

and estimated number of rows in vi, respectively. We can employ the HRU heuristics

(HRU Heuristic 1 and HRU Heuristic 2) to solve Problem 1 with equal weights or

Problem 2 with equal weights (refer Chapter 2), as warranted, using the values of ri’s.

Our objective is to investigate if we can use the estimated values of the ri’s and get an

acceptable solution. To accomplish the objective, we have employed the following

procedures:

1. Use the HRU heuristics to solve an instance of Problem 1 with equal weights or

Problem 2 with equal weights, as warranted, using the actual number of rows in

the views.

2. Employ three alternative estimators to estimate the number of rows in the views.

Apply these estimates to solve the problem instances generated using each

estimating method.

3. Use the 0-1 Integer Programming model to determine the optimal solution (with

the actual number of rows in each view).

4. Finally compare the above solutions.

For generating problem instances, we need a lattice structure. For our

investigation, we have constructed two 27-node lattice instances viz. Lattice Instance 1

(TPCH database) and Lattice Instance 2 (AANS database). These lattice instances are

discussed briefly below.

51

3.3.1 Lattice Instance 1 (TPCH Database)

In this case, we have first populated a 1-GB TPCH Benchmark database

(http://www.tpc.org/tpch/spec/h130.pdf). Then we populated the root node from this

database using the Customer (C), Part (P), Month (M) dimensions, and the “Sale”

measure.

Figure 3.1: Lattice Instance 1 with Actual Number of Rows

(Source: TPCH Benchmark Database)*
* To keep the diagram simple, many dependencies have not been shown

Last Cuboid

or Last View

Base Cuboid

or Root View

52

The actual number of rows in each view was counted from the root node. In the

remainder of the chapter we will refer to this database as the TPCH database. With three

dimensions and two levels in each dimension, we have a 27-node lattice instance. This

lattice diagram along with the row counts is shown in Figure 3.1.

3.3.2 Lattice Instance 2 (AANS Database)

At 1-GB level, the TPCH database does not represent a realistic transaction

database. For example, no customer appears to have ordered the same product more than

once. Thus some of the higher level nodes tend to have the same number of records as do

their parents (see Figure 3.1). This is not a shortcoming of the TPCH database. We

assume that if the root node were instantiated from a very large database (like 100 GB),

perhaps it would have behaved differently. However, the limitations on our

hardware/software configuration forced us not to go beyond a 1-GB database. This is

why we created our own 1-GB database. In the remainder of the chapter we will refer to

this database as the AANS database. In this database, the daily transactions were created

randomly from certain predefined probability distributions with the expectation that the

number of rows in a descendent view would be in general be somewhat less than the

number of rows in its ancestor view. Again we have considered the same three

dimensions as were the case in TPCH database. This 27-node instance of the lattice along

with row counts is shown in Figure 3.2

53

Figure 3.2: Lattice Instance 2 with Actual Number of Rows

(source: AANS Database) *
* To keep the diagram simple, many dependencies have not been shown

3.3.3 Problem Instances for Experimentation

Table 3.1 briefly defines the experimental setup that we have used in our

experimentation. As defined earlier in this section, we have used two different lattice

instances i.e. Lattice Instance 1 and Lattice Instance 2.

Base Cuboid

or Root View

Last Cuboid

or Last View

5
4

S
a
m
p
le
 S
iz
e

2
0
%

1
0
%

5
%

S
h
lo
s
s
e
r

G
E
E

A
E

S
h
lo
s
s
e
r

G
E
E

A
E

S
h
lo
s
s
e
r

G
E
E

A
E

V
ie
w
s

C
o
n
s
t*

S
p
a
c
e

C
o
n
s
t*
*

V
ie
w
s

C
o
n
s
t

S
p
a
c
e

C
o
n
s
t

V
ie
w
s

C
o
n
s
t

S
p
a
c
e

C
o
n
s
t

V
ie
w
s

C
o
n
s
t

S
p
a
c
e

C
o
n
s
t

V
ie
w
s

C
o
n
s
t

S
p
a
c
e

C
o
n
s
t

V
ie
w
s

C
o
n
s
t

S
p
a
c
e

C
o
n
s
t

V
ie
w
s

C
o
n
s
t

S
p
a
c
e

C
o
n
s
t

V
ie
w
s

C
o
n
s
t

S
p
a
c
e

C
o
n
s
t

V
ie
w
s

C
o
n
s
t

S
p
a
c
e

C
o
n
s
t

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

L
a
tt
ic
e

In
s
ta
n
c
e
 1

(T
P
C
H

D
a
ta
b
a
s
e
)

2
0

 _
_
**
*

2
0

_
_

2
0

 _
_

2
0

_
_

2
0

_
_

2
0

_
_

2
0

 _
_

2
0

_
_

2
0

_
_

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

5

6
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

1
0

7
0
%

L
a
tt
ic
e

In
s
ta
n
c
e
 2

(A
A
N
S

D
a
ta
b
a
s
e
)

2
0

 _
_

2
0

 _
_

2
0

_
_

2
0

_
_

2
0

_
_

2
0

_
_

2
0

_
_

2
0

 _
_

2
0

 _
_

*
 V
ie
w
s
C
o
n
st
 –
 N
u
m
b
er
 o
f
v
ie
w
s
to
 b
e
m
at
er
ia
li
ze
d
 c
o
n
st
ra
in
t

*
*
S
p
ac
e
C
o
n
st
 –
 S
to
ra
g
e
sp
ac
e
co
n
st
ra
in
t

*
*
*
S
p
ac
e
C
o
n
st
ra
in
t
p
ro
b
le
m
 i
n
st
an
ce
s
w
er
e
li
m
it
ed
 t
o
 t
w
o
 l
ev
el

T
ab
le
 3
.1
:
E
x
p
er
im
en
ta
l
P
ar
am
et
er
s
U
se
d
 t
o
 G
en
er
at
e
P
ro
b
le
m
 I
n
st
an
ce
s

55

To generate problem instances, estimated rows for each view were obtained by

drawing random samples without replacement with three different sample sizes, viz.

20%, 10% and 5%. Here 20% sample size, for example, represents 20% of the total

number of rows available in the root view for each lattice instance. As shown in Table

3.1, for each sample size we have employed three different estimators, i.e. the Shlosser

Estimator, the GEE and the AE, to estimate the number of rows present in each view in

the given lattice instance for both lattice instances.

For each sample size, and within that for each applied estimator, we have solved

two versions of the MVS problem i.e. Problems 1 and 2 with equal weights (refer

Chapter 2).

For the number of views to be materialized constraint (Problem 1 with equal

weights), we have solved it for three different settings, viz. 5 views to be materialized, 10

views to be materialized, and 20 views to be materialized, out of 27 views in a given

lattice instance for both lattice instances. The number of views to be materialized

includes the root view. So if we are materializing five views, we will find the other four

potential views to be materialized besides the root view which is always assumed to be

materialized.

For the storage space constraint (Problem 2 with equal weights), we have solved

the MVS problems for two different settings. For the first setting, we assumed that 60%

of the total space is available for materialization of views, while for the second setting,

we assumed that 70% of the total space is available for materialization of views. Here,

total space is the space occupied if all the views in a given 27-node lattice instance were

materialized.

56

For example, let ‘S’ be the total space required if all the views were materialized

including the root view, ‘r’ be the space occupied by the root view, and ‘N’ be net space

available for materializing other views besides the root view. For 60% space constraint,

‘N’ will be given as:

N = 0.6*S – r

Hence, all the other views in a given 27-node lattice instance besides the root

view will be considered as potential candidates for selection for materialization till the

space ‘N’ gets filled.

Our extensive empirical evaluation points to the fact that the root view itself

occupies almost 40% to 55% of the total space available by itself as it holds the lowest

level of aggregated data. This is the main reason we have selected 60% and 70% of the

total space as sample size, respectively. As one travels down from the base cuboid to the

last cuboid in a given lattice instance (refer to Figure 3.1 and 3.2), the number of rows

present in each view decreases by at least one order of magnitude for each level. In some

instances, the reduction may be more drastic.

For each lattice instance, we first applied the 0-1 integer programming model to

the actual data for each formulations (Problems 1 and 2 with equal weights) to find the

cost of optimal solution for various previously mentioned settings (refer to Table 3.1) for

each resource constraints. For the same settings, we then applied the HRU heuristics

(Problems 1 and 2 with equal weights) to the actual data to find the cost of the solutions

for each lattice instance. Then we applied the HRU heuristics to the estimated data for all

the previously mentioned settings (refer to Table 3.1) to find the cost of solutions. Finally

we compared the cost of solutions obtained by applying the HRU heuristics on the actual

57

as well as on the estimated data with the optimal solution obtained by applying the 0-1

Integer Programming model on the actual data.

So that we can compare the cost of the solutions obtained by the appropriate HRU

heuristic with the cost of the optimal solutions obtained by the 0-1 Integer Programming

model, we used the following procedure: Let ri be the actual number of rows present in a

view v and ir
∧

 be the estimated number of rows present in a view v.

1. First, the appropriate HRU heuristic was employed to solve problem instances

with ri. Let us refer to this solution as XH, which is the set of views to be

materialized.

2. Then, the appropriate HRU heuristic was employed to solve problem instances

with ir
∧

. Let us refer to this solution as HX
∧

, which is the set of views to be

materialized.

3. Then, the 0-1 Integer Programming model was employed to solve problem

instances with ri. Let us refer to this solution as XIP, which is the optimal set of

views to be materialized.

4. Let Z(XH), Z(HX
∧

) and Z(XIP) be the objective function values using ri and

solutions XH, HX
∧

 and XIP, respectively.

5. Finally, we compared Z(XH), Z(HX
∧

) and Z(XIP) and reported the deviations of

cost of solutions for all problem instances (refer to Table 3.1).

In the next section, we report and briefly discuss the experimental results for

various mentioned settings.

58

3.4 Experimental Results

The root nodes of both lattice instances were populated from their respective

database in Microsoft’s SQL Sever database. Then we applied three estimators (refer to

Section 3.2) to estimate the number of rows present in the remainder of the views for

both lattice instances. In all estimating procedures, we have used three different sample

sizes, viz. 20%, 10% and 5% for drawing random samples without replacement from the

respective population (i.e. root view). For each lattice instance, all estimates were

computed using the same sample for respective sample sizes. The actual and estimated

numbers of rows for both lattice instances for different sample sizes are shown in Tables

3.2 through 3.7. In these tables, we have also shown the Absolute Deviation Proportion

(ADP) for these estimates.

From these tables, it appears that all three estimators tend to estimate the number

of rows fairly accurately for the views that contain high levels of aggregated data. These

methods, in general, tend to lose their accuracy as the number of dimensions and levels in

each dimension in the aggregation increases. One can notice the increase in variations in

the ADP as the sample size decreases. One reason for this could be as sample size

decreases, variation in the respective estimation increases. Also one can notice that in

both lattice instances, the variations in the case of the GEE were more while the variation

in the case of the AE were the least. One reason for this could be, as mentioned earlier,

that the AE adopts itself to the input data distribution. But the GEE performs well only

for the data with high skew. In our case, data in both the databases, viz. TPCH and

59

AANS, are lowly skewed; with TPCH database having large number of low frequency

elements while AANS database having small number of low frequency elements.

N
o
d
e

View

Actual

Rows (A)

Shlosser

(S)

Abs Dev

|A-S|

ADP

|A-S|/A

GEE

(G)

Abs Dev

|A-G|

ADP

|A-G|/A

AE

(E)

Abs Dev

|A-E|

MAD

|A-E|/A

0 CPM* 6,001,192 6,001,192 0 0.000 6,001,192 0 0.000 6,001,192 0 0.000

1 CPY 6,001,028 6,001,107 79 0.000 2,683,791 3,317,237 0.553 6,001,192 164 0.000

2 NPM 5,710,004 5,858,214 148,210 0.026 2,642,931 3,067,073 0.537 6,001,192 291,188 0.051

3 CTM 5,873,146 5,937,209 64,063 0.011 2,665,567 3,207,579 0.546 6,001,192 128,046 0.022

4 NPY 5,510,833 5,753,234 242,401 0.044 2,612,666 2,898,167 0.526 6,001,192 490,359 0.089

5 CTY 5,746,207 5,873,933 127,726 0.022 2,647,446 3,098,761 0.539 6,001,192 254,985 0.044

6 NTM 45,000 45,000 0 0.000 45,000 0 0.000 45,000 0 0.000

7 NTY 26,250 26,250 0 0.000 26,250 0 0.000 26,250 0 0.000

8 CP 6,000,127 6,000,570 443 0.000 2,683,638 3,316,489 0.553 6,001,192 1,065 0.000

9 PM 2,199,959 3,337,699 1,137,740 0.517 1,841,899 358,060 0.163 2,723,921 523,962 0.238

10 CM 1,126,591 1,680,661 554,070 0.492 1,164,430 37,839 0.034 1,224,216 97,625 0.087

11 NP 3,494,158 4,510,793 1,016,635 0.291 2,236,494 1,257,664 0.360 5,473,028 1,978,870 0.566

12 PY 1,378,602 2,266,261 887,659 0.644 1,429,477 50,875 0.037 1,616,643 238,041 0.173

13 CY 617,446 793,585 176,139 0.285 675,558 58,112 0.094 642,939 25,493 0.041

14 NM 300 300 0 0.000 300 0 0.000 300 0 0.000

15 CT 4,804,917 5,355,939 551,022 0.115 2,496,101 2,308,816 0.481 6,001,192 1,196,275 0.249

16 TM 1,800 1,800 0 0.000 1,800 0 0.000 1,800 0 0.000

17 NY 175 175 0 0.000 175 0 0.000 175 0 0.000

18 NT 3,750 3,750 0 0.000 3,750 0 0.000 3,750 0 0.000

19 TY 1,050 1,050 0 0.000 1,050 0 0.000 1,050 0 0.000

20 C 99,996 100,250 254 0.003 100,723 727 0.007 100,136 140 0.001

21 P 199,996 201,990 1,994 0.010 203,213 3,217 0.016 200,754 758 0.004

22 M 12 12 0 0.000 12 0 0.000 12 0 0.000

23 N 25 25 0 0.000 25 0 0.000 25 0 0.000

24 T 150 150 0 0.000 150 0 0.000 150 0 0.000

25 Y 7 7 0 0.000 7 0 0.000 7 0 0.000

26 ALL* 1 1 0 0.000 1 0 0.000 1 0 0.000

 Sum 2.459 4.445 1.566

* Values are already known

Table 3.2: Actual and Estimated Number of Rows for Lattice Instance 1 for

Sample Size of 20%

60

N
o
d
e

View

Actual

Rows (A)

Shlosser

(S)

Abs Dev

|A-S|

ADP

|A-S|/A

GEE

(G)

Abs Dev

|A-G|

ADP

|A-G|/A

AE

(E)

Abs Dev

|A-E|

ADP

|A-E|/A

0 CPM* 6,001,192 6,001,192 0 0.000 6,001,192 0 0.000 6,001,192 0 0.000

1 CPY 6,001,028 6,001,192 164 0.000 1,897,745 4,103,283 0.684 6,001,192 164 0.000

2 NPM 5,710,004 5,920,750 210,746 0.037 1,881,898 3,828,106 0.670 6,001,192 291,188 0.051

3 CTM 5,873,146 5,966,203 93,057 0.016 1,890,862 3,982,284 0.678 6,001,192 128,046 0.022

4 NPY 5,510,833 5,862,811 351,978 0.064 1,870,433 3,640,400 0.661 6,001,192 490,359 0.089

5 CTY 5,746,207 5,931,072 184,865 0.032 1,883,936 3,862,271 0.672 6,001,192 254,985 0.044

6 NTM 45,000 45,002 2 0.000 45,004 4 0.000 45,000 0 0.000

7 NTY 26,250 26,250 0 0.000 26,250 0 0.000 26,250 0 0.000

8 CP 6,000,127 6,000,894 767 0.000 1,897,686 4,102,441 0.684 6,001,192 1,065 0.000

9 PM 2,199,959 4,295,787 2,095,828 0.953 1,541,146 658,813 0.299 2,617,761 417,802 0.190

10 CM 1,126,591 2,692,036 1,565,445 1.390 1,150,181 23,590 0.021 1,154,898 28,307 0.025

11 NP 3,494,158 5,118,531 1,624,373 0.465 1,718,979 1,775,179 0.508 5,339,332 1,845,174 0.528

12 PY 1,378,602 3,392,439 2,013,837 1.461 1,329,734 48,868 0.035 1,569,089 190,487 0.138

13 CY 617,446 1,413,377 795,931 1.289 763,687 146,241 0.237 623,693 6,247 0.010

14 NM 300 300 0 0.000 300 0 0.000 300 0 0.000

15 CT 4,804,917 5,633,370 828,453 0.172 1,824,588 2,980,329 0.620 6,001,192 1,196,275 0.249

16 TM 1,800 1,800 0 0.000 1,800 0 0.000 1,800 0 0.000

17 NY 175 175 0 0.000 175 0 0.000 175 0 0.000

18 NT 3,750 3,750 0 0.000 3,750 0 0.000 3,750 0 0.000

19 TY 1,050 1,050 0 0.000 1,050 0 0.000 1,050 0 0.000

20 C 99,996 107,730 7,734 0.077 109,729 9,733 0.097 101,304 1308 0.013

21 P 199,996 282,162 82,166 0.411 254,149 54,153 0.271 210,225 102,29 0.051

22 M 12 12 0 0.000 12 0 0.000 12 0 0.000

23 N 25 25 0 0.000 25 0 0.000 25 0 0.000

24 T 150 150 0 0.000 150 0 0.000 150 0 0.000

25 Y 7 7 0 0.000 7 0 0.000 7 0 0.000

26 ALL* 1 1 0 0.000 1 0 0.000 1 0 0.000

 Sum 6.367 6.138 1.411

* Values are already known

Table 3.3: Actual and Estimated Number of Rows for Lattice Instance 1 for

Sample Size of 10%

61

N
o
d
e

View

Actual

Rows (A)

Shlosser

(S)

Abs Dev

|A-S|

ADP

|A-S|/A

GEE

(G)

Abs Dev

|A-G|

ADP

|A-G|/A

AE

 (E)

Abs Dev

|A-E|

ADP

|A-E|/A

0 CPM* 6,001,192 6,001,192 0 0.000 6,001,192 0 0.000 6,001,192 0 0.000

1 CPY 6,001,028 6,001,192 164 0.000 1,341,908 4,659,120 0.776 6,001,192 164 0.000

2 NPM 5,710,004 5,958,474 248,470 0.044 1,335,952 4,374,052 0.766 6,001,192 291,188 0.051

3 CTM 5,873,146 5,982,663 109,517 0.019 1,339,326 4,533,820 0.772 6,001,192 128,046 0.022

4 NPY 5,510,833 5,930,291 419,458 0.076 1,332,012 4,178,821 0.758 6,001,192 490,359 0.089

5 CTY 5,746,207 5,964,613 218,406 0.038 1,336,808 4,409,399 0.767 6,001,192 254,985 0.044

6 NTM 45,000 46,122 1,122 0.025 46,311 1,311 0.029 45,078 78 0.002

7 NTY 26,250 26,259 9 0.000 26,267 17 0.001 26,252 2 0.000

8 CP 6,000,127 6,001,078 951 0.000 1,341,892 4,658,235 0.776 6,001,192 1,065 0.000

9 PM 2,199,959 5,022,564 2,822,605 1.283 1,201,010 998,949 0.454 2,529,270 329,311 0.150

10 CM 1,126,591 3,856,728 2,730,137 2.423 1,018,658 107,933 0.096 1,077,018 49,573 0.044

11 NP 3,494,158 5,523,824 2,029,666 0.581 1,274,377 2,219,781 0.635 5,294,604 1,800,446 0.515

12 PY 1,378,602 4,418,421 3,039,819 2.205 1,108,624 269,978 0.196 1,496,721 118,119 0.086

13 CY 617,446 2,556,057 1,938,611 3.140 788,230 170,784 0.277 582,933 34,513 0.056

14 NM 300 300 0 0.000 300 0 0.000 300 0 0.000

15 CT 4,804,917 5,803,177 998,260 0.208 1,314,156 3,490,761 0.726 6,001,192 1,196,275 0.249

16 TM 1,800 1,800 0 0.000 1,800 0 0.000 1,800 0 0.000

17 NY 175 175 0 0.000 175 0 0.000 175 0 0.000

18 NT 3,750 3,750 0 0.000 3,750 0 0.000 3,750 0 0.000

19 TY 1,050 1,050 0 0.000 1,050 0 0.000 1,050 0 0.000

20 C 99,996 198,386 98,390 0.984 152,001 52,005 0.520 104,579 4,583 0.046

21 P 199,996 833,421 633,425 3.167 387,862 187,866 0.939 227,855 27,859 0.139

22 M 12 12 0 0.000 12 0 0.000 12 0 0.000

23 N 25 25 0 0.000 25 0 0.000 25 0 0.000

24 T 150 150 0 0.000 150 0 0.000 150 0 0.000

25 Y 7 7 0 0.000 7 0 0.000 7 0 0.000

26 ALL* 1 1 0 0.000 1 0 0.000 1 0 0.000

 Sum 14.19 8.490 1.493

* Values are already known

Table 3.4: Actual and Estimated Number of Rows for Lattice Instance 1 for

Sample Size of 5%

62

N
o
d
e

Views

Actual

Rows (A)

Shlosser

(S)

Abs Dev

|A-S|

ADP

|A-S|/A

GEE

(G)

Abs Dev

|A-G|

ADP

|A-G|/A

AE

(E)

Abs Dev

|A-E|

ADP

|A-E|/A

0 CPM* 9,275,377 9,275,377 0 0 9,275,377 0 0 9,275,377 0 0

1 CPY 3,722,050 5,050,036 1,327,986 0.357 2,801,702 920,348 0.247 4,289,960 567,910 0.153

2 NPM 1,208,341 1,246,332 242,887 0.242 1,047,691 44,246 0.044 1,016,862 13,417 0.013

3 CTM 406,941 1,570,251 361,910 0.3 1,246,307 37,966 0.031 1,238,163 29,822 0.025

4 NPY 1,003,445 352,443 25,472 0.078 344,281 17,310 0.053 329,426 2,455 0.008

5 CTY 326,971 451,995 45,054 0.111 438,316 31,375 0.077 416,636 9,695 0.024

6 NTM 73,697 74,295 598 0.008 75,125 1,428 0.019 73,939 242 0.003

7 NTY 61,055 61,436 381 0.006 62,052 997 0.016 61,178 123 0.002

8 CP 609,926 729,032 119,106 0.195 676,665 66,739 0.109 639,527 29,601 0.049

9 PM 21,576 17,980 0 0 17,980 0 0 17,980 0 0

10 CM 53,002 53,005 3 0 53,066 64 0.001 53,002 0 0

11 NP 110,228 1,200 0 0 1,200 0 0 1,200 0 0

12 PY 17,980 43,549 54 0.001 43,841 346 0.008 43,535 40 0.001

13 CY 43,495 111,299 1,071 0.01 112,822 2,594 0.024 110,749 521 0.005

14 NM 840 841 1 0.001 841 1 0.001 863 23 0.027

15 CT 34,223 21,576 0 0 21,576 0 0 21,576 0 0

16 TM 1,200 6,151 1 0 6,152 2 0 6,153 3 0

17 NY 699 34,238 15 0 34,264 41 0.001 34,237 14 0

18 NT 6,150 699 0 0 699 0 0 699 0 0

19 TY 1,000 1,000 0 0 1,000 0 0 1,000 0 0

20 C 4,417 4,417 0 0 4,417 0 0 4,417 0 0

21 P 1,798 12 0 0 12 0 0 12 0 0

22 M 12 100 0 0 100 0 0 100 0 0

23 N 70 1,798 0 0 1,798 0 0 1,798 0 0

24 T 100 70 0 0 70 0 0 70 0 0

25 Y 10 10 0 0 10 0 0 10 0 0

26 ALL* 1 1 0 0 1 0 0 1 0 0

 Sum 1.309 0.633 0.31

* Values are already known

Table 3.5: Actual and Estimated Number of Rows for Lattice Instance 2 for

Sample Size of 20%

63

N
o
d
e

Views

Actual

Rows (A)

Shlosser

(S)

Abs Dev

|A-S|

ADP

|A-S|/A

GEE

(G)

Abs Dev

|A-G|

ADP

|A-G|/A

AE

(E)

Abs Dev

|A-E|

ADP

|A-E|/A

0 CPM* 9,275,377 9,275,377 0 0 9,275,377 0 0 9,275,377 0 0

1 CPY 3,722,050 6,450,148 2,728,098 0.733 2,339,522 1,382,528 0.371 3,879,718 157,668 0.042

2 NPM 1,208,341 2,110,140 1,106,695 1.103 1,153,541 150,096 0.15 953,626 49,819 0.05

3 CTM 406,941 2,619,232 1,410,891 1.168 1,325,427 117,086 0.097 1,147,385 60,956 0.05

4 NPY 1,003,445 462,005 135,034 0.413 393,809 66,838 0.204 319,085 7,886 0.024

5 CTY 326,971 644,579 237,638 0.584 508,797 101,856 0.25 405,828 1,113 0.003

6 NTM 73,697 76,950 3,253 0.044 80,237 6,540 0.089 73,488 209 0.003

7 NTY 61,055 63,077 2,022 0.033 65,938 4,883 0.08 60,969 86 0.001

8 CP 609,926 1,186,693 576,767 0.946 787,416 177,490 0.291 623,295 13,369 0.022

9 PM 21,576 17,980 0 0 17,980 0 0 17,980 0 0

10 CM 53,002 53,408 406 0.008 54,103 1,101 0.021 53,096 94 0.002

11 NP 110,228 1,200 0 0 1,200 0 0 1,200 0 0

12 PY 17,980 43,889 394 0.009 45,196 1,701 0.039 43,397 98 0.002

13 CY 43,495 117,359 7,131 0.065 122,197 11,969 0.109 110,176 52 0

14 NM 840 839 1 0.001 839 1 0.001 839 1 0.001

15 CT 34,223 21,576 0 0 21,576 0 0 21,576 0 0

16 TM 1,200 6,152 2 0 6,163 13 0.002 6,150 0 0

17 NY 699 34,383 160 0.005 34,693 470 0.014 34,275 52 0.002

18 NT 6,150 699 0 0 699 0 0 699 0 0

19 TY 1,000 1,000 0 0 1,000 0 0 1,000 0 0

20 C 4,417 4,417 0 0 4,417 0 0 4,417 0 0

21 P 1,798 12 0 0 12 0 0 12 0 0

22 M 12 100 0 0 100 0 0 100 0 0

23 N 70 1,798 0 0 1,798 0 0 1,798 0 0

24 T 100 70 0 0 70 0 0 70 0 0

25 Y 10 10 0 0 10 0 0 10 0 0

26 ALL* 1 1 0 0 1 0 0 1 0 0

 Sum 5.111 1.718 0.203

* Values are already known

Table 3.6: Actual and Estimated Number of Rows for Lattice Instance 2 for
Sample Size of 10%

64

N
o
d
e

Views

Actual

Rows (A)

Shlosser

(S)

Abs Dev

|A-S|

ADP

|A-S|/A

GEE

(G)

Abs Dev

|A-G|

ADP

|A-G|/A

AE

(E)

Abs Dev

|A-E|

ADP

|A-E|/A

0 CPM* 9,275,377 9,275,377 0 0 9,275,377 0 0 9,275,377 0 0

1 CPY 3,722,050 7,616,304 3,894,254 1.046 1,834,523 1,887,527 0.507 3,600,477 121,573 0.033

2 NPM 1,208,341 3,781,522 2,778,077 2.769 1,186,226 182,781 0.182 870,772 132,673 0.132

3 CTM 406,941 4,366,060 3,157,719 2.613 1,297,470 89,129 0.074 1,033,276 175,065 0.145

4 NPY 1,003,445 858,533 531,562 1.626 467,840 140,869 0.431 294,015 32,956 0.101

5 CTY 326,971 1,286,073 879,132 2.16 604,712 197,771 0.486 376,842 30,099 0.074

6 NTM 73,697 95,670 21,973 0.298 95,681 21,984 0.298 72,556 1,141 0.015

7 NTY 61,055 73,847 12,792 0.21 76,558 15,503 0.254 59,959 1,096 0.018

8 CP 609,926 2,382,030 1,772,104 2.905 889,752 279,826 0.459 576,479 33,447 0.055

9 PM 21,576 17,980 0 0 17,980 0 0 17,980 0 0

10 CM 53,002 59,295 6,293 0.119 61,362 8,360 0.158 53,478 476 0.009

11 NP 110,228 1,200 0 0 1,200 0 0 1,200 0 0

12 PY 17,980 48,159 4,664 0.107 50,848 7,353 0.169 43,244 251 0.006

13 CY 43,495 165,457 55,229 0.501 150,021 39,793 0.361 108,596 1,632 0.015

14 NM 840 838 2 0.002 838 2 0.002 838 2 0.002

15 CT 34,223 21,576 0 0 21,576 0 0 21,576 0 0

16 TM 1,200 6,155 5 0.001 6,219 69 0.011 6,139 11 0.002

17 NY 699 36,369 2,146 0.063 37,965 3,742 0.109 34,473 250 0.007

18 NT 6,150 702 3 0.004 709 10 0.014 704 5 0.007

19 TY 1,000 1,000 0 0 1,000 0 0 1,000 0 0

20 C 4,417 4,417 0 0 4,417 0 0 4,417 0 0

21 P 1,798 12 0 0 12 0 0 12 0 0

22 M 12 100 0 0 100 0 0 100 0 0

23 N 70 1,798 0 0 1,798 0 0 1,798 0 0

24 T 100 70 0 0 70 0 0 70 0 0

25 Y 10 10 0 0 10 0 0 10 0 0

26 ALL* 1 1 0 0 1 0 0 1 0 0

 Sum 14.424 3.516 0.621

* Values are already known

Table 3.7: Actual and Estimated Number of Rows for Lattice Instance 2 for
Sample Size of 5%

65

Also one can notice that for all sample sizes, variations were less in the case of

AANS database compared to TPCH database. One reason for these could be that AANS

database data is comparatively less skewed than the data in TPCH database or it could be

the presence of small number of low frequency elements in AANS database. Also, as

discussed earlier, TPCH database for 1 GB size does not represent a realistic picture. For

example, in seven years of data, no customer has ordered the same product more than

once. Because of this, some of the derived views have the same number of rows as their

immediate parent.

We have tabulated the cost of optimal and heuristic solutions for both lattice

instances for different sample sizes viz. 20%, 10% and 5%, and resource constraints.

Tables 3.8 through 3.10 tabulate the results for the number of views to be materialized

constraint. We have solved the MVS problem (Problem 1 with equal weights) for three

different problem instances. In the first problem instance, we imposed a constraint of 5

views to be materialized; in the second problem instance, we set it to 10 views; in the

third problem instance, we set it to 20 views.

As one can observe from these tables (Table 3.8, 3.9 and 3.10), the heuristic failed

to identify the optimal solutions in certain cases. That means that in these cases it

recommended a materialization scheme that is different from the optimal materialization

scheme. One interesting point to notice here is that even a sample size as low as 5%

produced acceptable results and hence it was not necessary to run 10% or 20% sample

size experiments especially if we use AE method for sampling.

66

Solutions by HRU Heuristic 1: Set of Materialized Views

Lattice

Instance

Problem

Instance

Optimal Solution

(Set of Materialized

Views)
With Actual

Number of Rows

With Shlosser

Estimates

With GEE

Estimates With AE Estimates

1:
Materialize
5 views

0,6,9,10,11 0,6,9,10,11 0,6,9,10,21 0,1,2,6,10 0,6,9,10,21

2:
Materialize
10 views

0,2,6,9,10,11,
12,15,20,21

0,2,6,9,10,11,
12,15,20,21

0,6,9,10,11,12,
13,15,20,21

0,1,2,3,6,9,
10,13,20,21

0,6,9,10,11,12,
13,14,20,21

1: TPCH

3:
Materialize
20 views

0,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,
16,18,20,21,24

0,2,3,4,5,6,7,8,9,
10,11,12,13,14,15
,16,18,20,21,24

0,2,3,4,5,6,7,9,10,
11,12,13,14,15,16
,18,19,20,21,24

0,1,2,3,4,5,6,7,9,
10,11,12,13,14,15
,16,18,20,21,24

0,6,7,9,10,11,12,13,
14,16,17,18,19,20,21
,22,23,24,25,26

1:
Materialize
5 views

0,1,2,3,9 0,1,2,3,9 0,2,3,8,9 0,1,2,3,9 0,1,2,3,9

2:
Materialize
10 views

0,1,2,3,6,8,
9,10,11,15

0,1,2,3,6,8,
9,10,11,15

0,1,2,3,6,8,
9,10,11,15

0,1,2,3,6,8,
9,10,11,15

0,1,2,3,6,8,
9,10,11,15

2: AANS

3:
Materialize
20 views

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,
15,16,18,20,21

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,
15,16,18,20,21

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,
15,16,18,20,21

0,1,2,3,4,5,6,7,8,9
,10,11,12,13,14,1
5,16,18,20,21

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,
15,16,18,20,21

Table 3.8: Views to be Materialized for Three Problems in Lattice Instances 1 and 2 for

Sample Size of 20% Under the Number of Views to be Materialized Constraint

Solutions by HRU Heuristic 1: Set of Materialized Views

Lattice

Instance

Problem

Instance

Optimal Solution

(Set of Materialized

Views)
With Actual

Number of Rows

With Shlosser

Estimates

With GEE

Estimates With AE Estimates

1:
Materialize
5 views

0,6,9,10,11 0,6,9,10,11 0,6,9,10,21 0,1,2,3,6 0,6,9,10,21

2:
Materialize
10 views

0,2,6,9,10,11,
12,15,20,21

0,2,6,9,10,11,
12,15,20,21

0,6,9,10,11,12,
13,15,20,21

0,1,2,3,6,9,
10,13,20,21

0,6,9,10,11,12,
13,14,20,21

1: TPCH

3:
Materialize
20 views

0,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,
16,18,20,21,24

0,2,3,4,5,6,7,8,9,
10,11,12,13,14,15
,16,18,20,21,24

0,2,3,4,5,6,7,9,10,
11,12,13,14,15,16
,18,19,20,21,24

0,1,2,3,4,5,6,7,9,
10,11,12,13,14,15
,16,18,20,21,24

0,6,7,9,10,11,12,13,
14,16,17,18,19,20,21
,22,23,24,25,26

1:
Materialize
5 views

0,1,2,3,9 0,1,2,3,9 0,2,3,8,9 0,1,2,3,9 0,1,2,3,9

2:
Materialize
10 views

0,1,2,3,6,8,
9,10,11,15

0,1,2,3,6,8,
9,10,11,15

0,1,2,3,6,8,
9,10,11,15

0,1,2,3,6,8,
9,10,11,15

0,1,2,3,6,8,
9,10,11,15

2: AANS

3:
Materialize
20 views

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,15,

16,18,20,21

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,
15,16,18,20,21

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,
15,16,18,20,21

0,1,2,3,4,5,6,7,8,9
,10,11,12,13,14,1
5,16,18,20,21

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,
15,16,18,20,21

Table 3.9: Views to be Materialized for Three Problems in Lattice Instances 1 and 2 for

Sample Size of 10% Under the Number of Views to be Materialized Constraint

67

Solutions by HRU Heuristic 1: Set of Materialized Views

Lattice

Instance

Problem

Instance

Optimal Solution

(Set of Materialized

Views)
With Actual

Number of Rows

With Shlosser

Estimates

With GEE

Estimates With AE Estimates

1:
Materialize
5 views

0,6,9,10,11 0,6,9,10,11 0,6,13,20,21 0,1,2,3,6 0,6,9,10,21

2:
Materialize
10 views

0,2,6,9,10,
11,12,15,20,21

0,2,6,9,10,
11,12,15,20,21

0,6,9,10,11,
12,13,14,20,21

0,1,2,3,6,
9,10,14,20,21

0,6,9,10,11,
12,13,14,20,21

1: TPCH

3:
Materialize
20 views

0,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,
16,18,20,21,24

0,2,3,4,5,6,7,8,9,
10,11,12,13,14,15
,16,18,20,21,24

0,2,3,4,5,6,7,9,10,
11,12,13,14,15,16
,18,19,20,21,24

0,1,2,3,4,5,6,7,9,
10,11,12,13,14,15
,16,18,20,21,24

0,6,7,9,10,11,12,13,
14,16,17,18,19,20,21
,22,23,24,25,26

1:
Materialize
5 views

0,1,2,3,9 0,1,2,3,9 0,2,3,8,9 0,1,2,3,9 0,1,2,3,9

2:
Materialize
10 views

0,1,2,3,6,
8,9,10,11,15

0,1,2,3,6,
8,9,10,11,15

0,1,2,3,6,
8,9,10,11,15

0,1,2,3,6,
8,9,10,11,15

0,1,2,3,6,
8,9,10,11,15

2: AANS

3:
Materialize
20 views

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,15,

16,18,20,21

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,
15,16,18,20,21

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,
15,16,18,20,21

0,1,2,3,4,5,6,7,8,9
,10,11,12,13,14,1
5,16,18,20,21

0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,
15,16,18,20,21

Table 3.10: Views to be Materialized for Three Problems in Lattice Instances 1 and 2 for

Sample Size of 5% Under the Number of Views to be Materialized Constraint

Tables 3.11 through 3.13 tabulate the results for both lattice instances for different

sample sizes, viz. 20%, 10% and 5%, for the storage space constraint. We have solved the

MVS problem (Problem 2 with equal weights) for two different problem instances: in

first problem instance, we assume that only 60% of the total space is available for

materialization of views, while in second problem instance, we assumed this percentage

to be 70%.

68

Solutions by HRU Heuristic 2: Set of Materialized Views

Lattice

Instance

Problem

Instance

Optimal Solution

(Set of Materialized

Views)
With Actual

Number of Rows

With Shlosser

Estimates

With GEE

Estimates With AE Estimates

1:

60% of
Total Space

0,2,3,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,5,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,1,2,3,6,7,9,
10,13,14,16,17,
18,19,20,21,22,
23,24,25,26

0,6,7,9,10,11,
12, 13,14,16,17,
18,19,20,21,22,
23, 24,25,26

1: TPCH

2:
70% of

Total Space

0,2,3,4,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,4,5,6,7,9,10,
11,12,13,14,15,16
,17,18,19,20,21,2
2,23,24,25,26

0,2,4,5,6,7,9,10,
11,12,13,14,15,16
,17,18,19,20,21,
22,23,24,25,26

0,1,2,3,6,7,9,10,
11,12,13,14,16,17
,18,19,20,21,22,
23,24,25,26

0,6,7,9,10,11,
12,13,14,16,17,
18,19,20,21,22,
23,24,25,26

1:

60% of
Total Space

0,3,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,3,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,3,6,9,10,11,
14,15,16,18,
20,21,22,23,
24,25,26

0,6,7,9,10,11,12,
13,14,15,16,17,
18,19,20,21,22,
23,24,25,26

0,3,6,9,10,11,
14,15,16,18,
20,21,22,23,
24,25,26

2: AANS

2:

70% of
Total Space

0,2,3,6,7,8,9,10,
11,12,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,3,6,8,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,3,6,8,9,10,
11,14,15,16,
18, 20,21,22,
23,24,25,26

0,2,3,6,7,9,10,
11,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,3,5,6,7,9,
10,11,12,15,16,
17,19,21,22,23,

24,25,26

Table 3.11: Views to be Materialized for Two Problems in Lattice Instances 1 and 2 for

Sample Size of 20% Under the Storage Space Constraint

Solutions by HRU Heuristic 2: Set of Materialized Views

Lattice

Instance

Problem

Instance

Optimal Solution

(Set of Materialized

Views)
With Actual

Number of Rows

With Shlosser

Estimates

With GEE

Estimates With AE Estimates

1:

60% of
Total Space

0,2,3,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,5,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,22
,23,24,25,26

0,2,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,1,2,3,6,7,9,10,
13,14,16,17,

18,19,20,21,22,
23,24,25,26

0,6,7,9,10,11,
12, 13,14,16,17,
18,19,20,21,22,
23, 24,25,26

1: TPCH

2:
70% of

Total Space

0,2,3,4,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,4,5,6,7,9,10,
11,12,13,14,15,16
,17,18,19,20,21,
22,23,24,25,26

0,2,5,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,1,2,3,6,7,9,10,
12,13,14,16,17,
18,19,20,21,22,
23,24,25,26

0,6,7,9,10,11,12,
13,14,16,17,18,
19,20,21,22,23,

24,25,26

1:

60% of
Total Space

0,3,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,3,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,3,6,9,10,11,
14,15,16,18,
20,21,22,23,
24,25,26

0,6,7,9,10,11,12,1
3,14,15,16,17,
18,19,20,21,22,
23,24,25,26

0,3,6,7,9,10,11,
12,13,14,15,16,17,
18,19,20,21,22,23,

24,25,26

2: AANS

2:

70% of
Total Space

0,2,3,6,7,8,9,10,
11,12,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,3,6,8,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,3,6,8,9,10,
11,14,15,16,
18, 20,21,22,
23,24,25,26

0,3,5,6,7,8,9,10,
11,14,15,16,17
,18,19,20,21,22,
23,24,25,26

0,2,3,6,8,9,10,
11,13,14,15,

16,18,20,21,22,
23,24,25,26

Table 3.12: Views to be Materialized for Two Problems in Lattice Instances 1 and 2 for

Sample Size of 10% Under the Storage Space Constraint

69

Solutions by HRU Heuristic 2: Set of Materialized Views

Lattice

Instance

Problem

Instance

Optimal Solution

(Set of

Materialized

Views)
With Actual

Number of Rows

With Shlosser

Estimates

With GEE

Estimates

With AE

Estimates

1:

60% of
Total Space

0,2,3,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,5,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,5,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,1,2,3,6,7,10,
13,14,16,17,

18,19,20,21,22,
23,24,25,26

0,6,7,9,10,11,
12, 13,14,16,17,
18,19,20,21,22,
23, 24,25,26

1: TPCH

2:
70% of

Total Space

0,2,3,4,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,4,5,6,7,9,10,
11,12,13,14,15,16,
17,18,19,20,21,22,

23,24,25,26

0,4,5,6,7,9,10,11,
12,13,14,15,16,1
7,18,19,20,21,22,

23,24,25,
26

0,1,2,3,6,7,9,10,
12,13,14,16,17,
18,19,20,21,22,
23,24,25,26

0,6,7,9,10,11,
12,13,14,16,17,
18,19,20,21,22,
23,24,25,26

1:

60% of
Total Space

0,3,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,3,6,7,9,10,11,
12,13,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,3,6,9,10,11,
14,15,16,18,
20,21,22,23,
24,25,26

0,6,7,9,10,13,
14,15,16,17,18,
19,20,21,22,
23,24,25,26

0,6,7,9,10,11,12,
13,14,15,16,17,
18,19,20,21,22,
23,24,25,26

2: AANS

2:

70% of
Total Space

0,2,3,6,7,8,9,10,
11,12,14,15,16,
17,18,19,20,21,
22,23,24,25,26

0,2,3,6,8,9,10,11,
12,13,14,15,16,

17,18,19,20,21,22,
23,24,25,26

0,2,3,6,8,9,10,
11,14,15,16,
18, 20,21,22,
23,24,25,26

0,3,6,7,8,9,10,11,
12,14,15,16,17,
18,19,20,21,22,
23,24,25,26

0,2,3,5,6,7,9,10,
11,12,13,14,15,

16,17,18,19,20,21,
22,23,24,25,26

Table 3.13: Views to be Materialized for Two Problems in Lattice Instances 1 and 2 for

Sample Size of 5% Under the Storage Space Constraint

As one can see from these tables (Tables 3.11 through 3.13), in some cases

heuristic gave the optimal solutions while in other cases it failed to produce the optimal

solutions and recommended a different materialization scheme than the optimal view

materialization scheme. Again one can notice the same trend as observed in the case of

the number of views to be materialized constraint. Even the sample size as low as 5%

produced acceptable results making sample of sizes 10% and 20% somewhat unnecessary

except for the most important applications.

Appropriate comparisons between the two approaches call for calculating the

following objective function values and making a critical evaluation of the differences.

Let Z(1
ˆ

ShlX) be the objective function value using actual data but using solution obtained

by solving problem instances generated using the Schlosser estimates for Problem 1 with

equal weights using HRU Heuristic 1. Similarly, Z(1
ˆ

GEEX) and Z(1
ˆ

AEX) are defined. Let

70

Z(XIP1) be the objective function value using actual data obtained by solving problem

instances generated using the 0-1 Integer Programming model and Z(XHRU1) be the

objective function value using actual data but using solution obtained by HRU Heuristic

1 with actual data for Problem 1 with equal weights. Tables 3.14 through 3.16 present the

values for Z(XHRU1), Z(1
ˆ

ShlX), Z(
1

ˆ
GEEX), Z(

1
ˆ

AEX) along with corresponding deviations

from Z(XIP1) for three problem instances for both lattice instances for the number of

views to be materialized constraint .

One way to look at these deviations is to split it into two components, the

difference caused by the use of estimated data and by the use of heuristics as defined in

the following equation, where the first part in the RHS of the equation is the difference

caused by the use of estimated data and the second part is caused by the use of heuristics.

Z(1
ˆ

ShlX) - Z(XIP1) = (Z(1
ˆ

ShlX) - Z(XHRU1)) + (Z(XHRU1) - Z(XIP1))

Cost of Solution

with Real Data Cost of Solution With Estimated Data Using HRU Heuristic 1

Lattice

Instance

Problem

Instance

Optimal

Cost

Z(XIP1)

HRU

Heuristic 1

Z(
1HRUX)

%

Dev*

Shlosser

Z(
1

ˆ
ShlX)

%

Dev*

GEE

Z(
1

ˆ
GEEX)

%

Dev*

AE

Z(
1

ˆ
AEX)

%

Dev*

1 62,023,340 62,023,340 0.00 62,530,420 0.82 74,186,290 19.61 62,530,420 0.82

2 56,396,780 56,396,780 0.00 56,470,010 0.13 59,736,640 5.92 57,398,080 1.78
1

3 54,844,770 54,844,766 0.00 54,845,080 0.00 54,845,500 0.00 57,204,800 4.30

1 25,421,980 25,421,980 0.00 27,264,760 7.25 25,421,980 0.00 25,421,980 0.00

2 17,638,620 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00
2

3 16,989,310 16,989,312 0.00 16,989,310 0.00 16,989,310 0.00 16,989,310 0.00

 * % Dev stands for the deviation of the cost of solution (in % of the optimal cost)

Table 3.14: Deviation of the Cost of Heuristic Solution from the Optimal Solution for
Sample Size of 20% Under the Number of Views to be Materialized Constraint

71

Cost of Solution with

Real Data Cost of Solution With Estimated Data Using HRU Heuristic 1

Lattice

Instance

Problem

Instance

Optimal

Cost

Z(XIP1)

HRU

Heuristic 1

Z(
1HRUX)

%

Dev*

Shlosser

Z(
1

ˆ
ShlX)

%

Dev*

GEE

Z(
1

ˆ
GEEX)

%

Dev*

AE

Z(
1

ˆ
AEX)

%

Dev*

1 62,023,340 62,023,340 0.00 62,530,420 0.82 88,042,150 41.95 62,530,420 0.82

2 56,396,780 56,396,780 0.00 56,470,010 0.13 59,736,640 5.92 57,398,080 1.78
1

3 54,844,770 54,844,766 0.00 54,845,080 0.00 54,845,500 0.00 57,204,800 4.30

1 25,421,980 25,421,980 0.00 27,264,760 7.25 25,421,980 0.00 25,421,980 0.00

2 17,638,620 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00
2

3 16,989,310 16,989,312 0.00 16,989,310 0.00 16,989,310 0.00 16,989,310 0.00

 * % Dev stands for the deviation of the cost of solution (in % of the optimal cost)

Table 3.15: Deviation of the Cost of Heuristic Solution from the Optimal Solution for
Sample Size of 10% Under the Number of Views to be Materialized Constraint

Cost of Solution with

Real Data Cost of Solution With Estimated Data Using HRU Heuristic 1

Lattice

Instance

Problem

Instance

Optimal

Cost

Z(XIP1)

HRU

Heuristic 1

Z(
1HRUX)

%

Dev*

Shlosser

Z(
1

ˆ
ShlX)

%

Dev*

GEE

Z(
1

ˆ
GEEX)

%

Dev*

AE

Z(
1

ˆ
AEX)

%

Dev*

1 62,023,340 62,023,340 0.00 73,471,740 18.46 88,042,150 41.95 62,530,420 0.82

2 56,396,780 56,396,780 0.00 57,398,080 1.78 59,977,590 6.35 57,398,080 1.78
1

3 54,844,770 54,844,766 0.00 54,845,080 0.00 54,845,500 0.00 57,204,800 4.30

1 25,421,980 25,421,980 0.00 27,264,760 7.25 25,421,980 0.00 25,421,980 0.00

2 17,638,620 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00 17,638,620 0.00
2

3 16,989,310 16,989,312 0.00 16,989,310 0.00 16,989,310 0.00 16,989,310 0.00

 * % Dev stands for the deviation of the cost of solution (in % of the optimal cost)

Table 3.16: Deviation of the Cost of Heuristic Solution from the Optimal Solution for
Sample Size of 5% Under the Number of Views to be Materialized Constraint

72

Let Z(2
ˆ

ShlX) be the objective function value using actual data but using solution

obtained by solving problem instances generated using the Schlosser estimates for

Problem 2 with equal weights using HRU Heuristic 2. Similarly, Z(2
ˆ

GEEX) and Z(2
ˆ

AEX)

are defined. Let Z(XIP2) be the objective function value using actual data obtained by

solving problem instances generated using the 0-1 Integer Programming model and

Z(XHRU2) be the objective function value using actual data but using solution obtained by

HRU Heuristic 2 with actual data for Problem 2 with equal weights. Tables 3.17 through

3.19 present the values for Z(
2HRUX), Z(

2
ˆ

ShlX), Z(
2

ˆ
GEEX), Z(

2
ˆ

AEX) along with

corresponding deviations from Z(XIP2)) for two problem instances for both lattice

instances for the storage space constraint .

Cost of Solution

with Real Data Cost of Solution With Estimated Data Using HRU Heuristic 2

Lattice

Instance

Problem

Instance

Optimal

Cost

Z(XIP2)

HRU

Heuristic 2

Z(
2HRUX)

%

Dev*

Shlosser

Z(
2

ˆ
ShlX)

%

Dev*

GEE

Z(
2

ˆ
GEEX)

%

Dev*

AE

Z(
2

ˆ
AEX)

%

Dev*

1 55,170,060 55,171,168 0.00 55,426,150 0.46 59,275,160 7.44 57,204,800 3.69
1

2 54,970,890 54,971,997 0.00 54,972,000 0.00 56,237,960 2.30 57,204,800 4.06

1 47,622,320 47,622,320 0.00 47,648,410 0.05 65,359,190 37.24 47,648,410 0.05
2

2 22,832,300 22,835,439 0.01 22,848,880 0.07 31,491,840 37.93 22,848,880 0.07

* % Dev stands for the deviation of the cost of solution (in % of the optimal cost)

Table 3.17: Deviation of the Cost of Heuristic Solution from the Optimal Solution for
Sample Size of 20% Under the Storage Space Constraint

73

Cost of Solution

with Real Data Cost of Solution With Estimated Data Using HRU Heuristic 2

Lattice

Instance

Problem

Instance

Optimal

Cost

Z(XIP2)

HRU

Heuristic 2

Z(
2HRUX)

%

Dev*

Shlosser

Z(
2

ˆ
ShlX)

%

Dev*

GEE

Z(
2

ˆ
GEEX)

%

Dev*

AE

Z(
2

ˆ
AEX)

%

Dev*

1 55,170,060 55,171,168 0.00 55,426,150 0.46 59,275,160 7.44 57,204,800 3.69
1

2 54,970,890 54,971,997 0.00 55,171,170 0.36 58,453,810 6.34 57,204,800 4.06

1 47,622,320 47,622,320 0.00 47,648,410 0.05 65,359,190 37.24 47,622,320 0.00
2

2 22,832,300 22,835,439 0.01 22,848,880 0.07 38,890,000 70.33 22,839,380 0.03

 * % Dev stands for the deviation of the cost of solution (in % of the optimal cost)

Table 3.18: Deviation of the Cost of Heuristic Solution from the Optimal Solution for
Sample Size of 10% Under the Storage Space Constraint

Cost of Solution

with Real Data Cost of Solution With Estimated Data Using HRU Heuristic 2

Lattice

Instance

Problem

Instance

Optimal

Cost

Z(XIP2)

HRU

Heuristic 2

Z(
2HRUX)

%

Dev*

Shlosser

Z(
2

ˆ
ShlX)

%

Dev*

GEE

Z(
2

ˆ
GEEX)

%

Dev*

AE

Z(
2

ˆ
AEX)

%

Dev*

1 55,170,060 55,171,168 0.00 55,753,540 1.06 66,295,260 20.17 57,204,800 3.69
1

2 54,970,890 54,971,997 0.00 55,263,180 0.53 58,453,810 6.34 57,204,800 4.06

1 47,622,320 47,622,320 0.00 56,804,050 19.28 74,527,940 56.50 65,359,190 37.24
2

2 22,832,300 22,835,439 0.01 22,848,880 0.07 38,966,380 70.66 31,408,280 37.56

 * % Dev stands for the deviation of the cost of solution (in % of the optimal cost)

Table 3.19: Deviation of the Cost of Heuristic Solution from the Optimal Solution for
Sample Size of 5% Under the Storage Space Constraint

Careful review of Tables 3.14 through 3.19 reveals some important observations.

In the case of the number of views to be materialized constraint (Tables 3.14 through

3.16), the following points were observed:

1. The HRU Heuristic 1 always produced the optimal solution when applied on the

actual data set.

74

2. In the case of Lattice Instance 1, performance of the Shlosser Estimator and the

AE was good. In the case of the Shlosser Estimator, the maximum deviation of

the cost of solution from optimal solution was 0.82 for sample sizes 20% and

10%. But for sample size of 5%, for Problem Instance 1, the deviation of the cost

of solution from the optimal solution was as high as 18.46%.

3. In the case of Lattice Instance 1, performance of the GEE was poor for Problem

Instance 1 and 3. The performance was worse as the sample size went down from

20% to 5%. It did produce the optimal solutions for all sample sizes for Problem

Instance 3.

4. The performance of the AE is observed to be the best for all sample sizes. The

maximum deviation of the cost of solution from the optimal solution was 4.3% in

the case of Problem Instance 3 in Lattice Instance 1 for all sample sizes.

5. In the case of Lattice Instance 2, all the estimators performed pretty well. The

only deviation of the solution from the optimal solution was the case of Shlosser

Estimator, which was 7.25% for Problem Instance 1 for all sample sizes.

6. One can also notice the improved performance of all the estimators as the number

of views to be materialized increased from 5 views to 20 views. The only

exception was in the case of the AE for Lattice Instance 1 for all sample sizes

where the maximum deviation observed was 4.3%.

7. One interesting point to note is that the performance of the estimators was not

highly sensitive to the sample size. Even a sample size of as low as 5% produced

acceptable results. Many times, it was not essential to go for sample sizes of 10%

and 20%.

75

In the case of the storage space constraint (Tables 3.17 through 3.19), following

points were observed:

1. The HRU Heuristic 2 always produced the optimal solution except in one case

when applied to the actual data set. In the case of Lattice Instance 2, for Problem

Instance 2, for all the different sample sizes, deviation of the cost of solution from

the optimal solution was 0.01, which is very close to the optimal solution.

2. In the case of Lattice Instance 1, the Shlosser Estimator and the AE performed

well. For the Shlosser Estimator, maximum deviation of the cost of solution from

the optimal solution was 1.06% when the sample size was 5% for Problem

Instance 1. For the AE, maximum deviation of the cost of solution from the

optimal solution was 4.06% for all sample sizes for Problem Instance 2.

Performance of the GEE was comparatively not good. It deteriorated further as

the sample size went down. In the case of Problem Instance 1 for a sample size of

5%, the deviation was as high as 20%.

3. In the case of Lattice Instance 2, the Shlosser Estimator and the AE performed

well. Their performance was comparatively poor for sample size of 5%. The

maximum deviation of the cost of solution from the optimal solution in the case of

the Shlosser Estimator was 19% for Problem Instance 1, for the sample size of

5%, and in the case of the AE it was 37.56% for Problem Instance 2, for sample

size of 5%. Again the GEE did not perform well. Its performance further

deteriorated as the sample size went down from 20% to 5%. For sample size of

5%, the deviation was as high as 70.66%.

76

4. In general, again, the performance of the estimators was not too sensitive to the

sample size except in a few cases. In fact, in the case of sample size of 10%, the

AE produced better results than compared to the results obtained from sample size

of 20%. In the former case, maximum deviation was 0.03% while in the later

case, it was 0.07% for Lattice Instance 2, and for Problem Instance 2. But the

deviation was more in the case of sample size of 5% – it was 37% in the case of

the AE and 19% in the case of the Shlosser Estimator.

5. If one carefully reviews tables from Table 3.11 through Table 3.13, one can

observe that for both lattice instances, even for 60% storage space constraint

setting, the system materialized most of the views out of 27 views. The main

reason for this could be the root view, which always occupies the maximum

space. Almost 45% of the total space in the case of AANS database and 55% of

the total space in the case of TPCH database was taken by the root view.

6. If one compares the performance of estimators in the case of the storage space

constraint with the performance of estimators in the case of the number of views

to be materialized constraint, the deviation of the cost of solution from the optimal

solution was always high in the case of the storage space constraint for all

settings. One reason for this could be that space constraint puts higher burden on

the system when it comes to finding the optimal solution, as the system has to try

many more combinations than in the case of the number of views to be

materialized constraint. As was discussed in Chapter 2, the 64-node MVS

problems with the storage space constraint took almost 90 seconds to find the

77

optimum solution, while in the case of the number of views to be materialized

constraint, it took just 10 seconds to find the optimum solution using LINGO.

3.4.1 Computational Times

The sampling procedures have two major computational components:

1. Drawing the sample from the root view in a given lattice instance.

2. Computing the estimates for the number of rows present in a view in a given

lattice instance.

To simplify the computer codes, we drew the sample and populated the sample

table on hard disk. We used simple random sampling without replacement method for

drawing the samples from the root view. The main purpose of employing statistical

sampling to data warehouse is to reduce the computational time needed to count the

actual number of records in a table to the minimum possible extent without

compromising the accuracy of the solution. One can perform more robust random

sampling techniques, but it may proportionately increase the sampling time.

The second part of computational time was computing the estimates from the

sample table populated. There were three sub-components in it. First, we need to find the

distinct attributes values present in the sample, then compute the frequencies of their

occurrence and then apply the three estimators to estimate the number of unique rows

present in a view under consideration in a given lattice instance.

78

The computational times taken by various sampling techniques are shown in

Table 3.20. We have collected computational time for both lattice instances, i.e. TPCH

and AANS database. In Table 3.20, the second column, named “Actual Number of

Rows,” shows the total time needed for computing the actual number of rows present in

all other views in a given lattice instance from the root view. In the case of Lattice

Instance 1, it took 690 seconds in total to count the actual number of rows in all 26 nodes

excluding the root view while in the case of Lattice Instance 2, it took 248 seconds. Even

though AANS database has more records in the root view (more than nine million) than

the number of records in the root view in TPCH database (slightly more than six million),

the time taken in the case of AANS database was much less. The main reason for this

could be that in AANS database, most key fields are numeric which enables database

engine to process the records faster. In columns 4, 5 and 6, we have shown the time

needed to compute the Shlosser, the GEE and the AE estimates, respectively.

Computational Time (in Seconds)

Lattice

Instance Using Actual

Number of

Rows

Sample

Size
Shlosser GEE AE

20% 241.47 221.68 238.26

10% 120.37 108.64 117.62
1

(TPCH)
690

5% 66.28 59.62 63.9

20% 142.85 114.96 141.01

10% 73.89 56.51 68.67
2

(AANS)
248

5% 42.54 31.66 37.75

Table 3.20: Computational Times

79

In the case of Lattice Instance 1, even with a 20% sample size, average time

savings were almost 66%, with the GEE taking the minimum time (221.68 seconds). For

a sample size of 5%, the savings were as high as 91%, with the GEE again giving the best

results (59.62 seconds). But as discussed earlier, the performance of the AE was

comparatively best when it comes to estimating the number of rows present in a view in a

given lattice instance. In Table 3.20, one can notice that the time taken by the AE is very

much comparable with that taken by the GEE.

In the case of Lattice Instance 2, with 20% sample size, time savings in terms of

percentage were 42%, 53%, and 43% for the Shlosser, the GEE and the AE estimators

respectively. Again, though the GEE took the least time to estimate, its performance in

terms of prediction accuracy was not good at all. For the sample size of 5%, the savings

were as high as 87% with the GEE and 85% with the AE estimator. As seen earlier, the

performance of the AE estimator was best when it comes to prediction accuracy. Based

on the above results, the AE has given the best performance in our experimental

evaluation both in terms of prediction accuracy and savings in time.

The above statistics clearly indicate the worth of using statistical sampling

techniques in generating problem instances for a the data warehouse as it results in

significant savings in terms of time without compromising the accuracy in terms of

deviation of the cost of solution from the optimal solution. Even a sample size of as low

as 5% produced good results. We must also point out that the times taken by the sampling

techniques in our experimentation have certain built-in penalties because the necessary

data were read from the disk for certain parts of the experimentation. Also as pointed out

earlier, most of the DBMS available gather statistics on the table. With appropriate

80

computer programming code, one can use this table statistics and compute the

estimations from there. This could definitely result in further savings in terms of time.

In the next section, we briefly discuss the use of statistical sampling techniques

and the final results.

3.5 Discussion

Since counting the actual number of unique rows from a very large root node may

be time-consuming, the major motivation of our study was to investigate the feasibility of

using estimated number of rows using sampling techniques to generate problem instances

representative of the actual problem. In our experiment, we use three different sample

sizes, viz. 20%, 10% and 5%, to draw the samples from the root view for each Lattice

Instance. Then we use two different resource constraints: the first constraint is the

number of views to be materialized constraint and second constraint is the storage space

constraint. For problems with number of views to be materialized constraints, with these

ranges of sample size, all three estimating techniques were able to generate representative

problem instances with reasonable accuracy. The deviations between optimal objective

function value with actual data and heuristic solution with estimated data were relatively

small. In the case of the storage space constraint, the differences in the objective function

values using optimal procedure with actual data and heuristic procedure with estimated

data were comparatively higher. One reason for this could be that the storage space

constraint puts higher burden on the system when it comes to finding the optimal solution

81

as the system has to try all the possible combinations of views that could fit in the

available space.

The frequency of occurrence of various attributes or composite attributes was

mostly very lowly skewed in both databases. If we consider the sum of absolute deviation

proportion of the estimates from the respective actual measures, then we can conclude

that the AE sampling method has performed best in both lattice instances for both

Problem 1 with equal weights and Problem 2 with equal weights (Table 3.14 through

Table 3.19). One can surely conclude that there is a considerable amount of savings in

terms of time by employing such statistical sampling techniques to estimate the actual

number of rows present in each view in a given lattice structure without compromising

the accuracy of the solution (refer to Table 3.20).

In the next section, we provide conclusions and directions for future research.

3.6 Conclusions and Future Research

In this chapter, we have used three different sampling methodologies to generate

problem instances representative of the original MVS problem and then we applied the

HRU heuristics to solve the problems. The problem instances were generated from two

different realistic databases. We have demonstrated that the HRU heuristics perform very

well when it is employed with the actual number of rows in each node of the underlying

lattice structure. In fact, it produced the optimal solution in almost every problem

instance in our investigation.

82

Subsequently, we applied the appropriate HRU heuristic (HRU Heuristic 1 or

HRU Heuristic 2) to solve the MVS problem (Problem 1 with equal weights or Problem 2

with equal weights, respectively) by replacing the actual number of rows present in each

view in a given lattice instance with the estimated number of rows. HRU heuristics with

the estimated rows provided the optimal solutions in some cases while it failed to find the

optimal solutions in others (Table 3.14 through Table 3.19). However, the maximum

deviation of the cost of heuristic solution with estimated data from the optimal solution

was found to be 71% while the least being 0%. The deviation of 71% was with the GEE

estimator which does not perform well in most instances. The maximum deviation with

the AE estimator was 38%. Our experimental evaluation shows that the HRU heuristics

performed best with the AE estimator. We assume that for a large problem, this loss of

accuracy would be acceptable given that the MVS problem is NP-complete (Harinarayan

et al. 1999).

Whenever an estimated value is used instead of the actual value, certain level of

inaccuracies in the solution process is introduced. However, the success of using

estimates in solving the MVS problem may depend on the internal characteristics of the

MVS problem itself. In certain lattices, introduction of minor variations in the values of

the parameters may not make significant differences. Further research is needed to

identify the sensitivity of a solution for a given MVS problem or for a given class of the

MVS problems.

 In this chapter we have demonstrated that employing sampling methodologies can

provide acceptable solution to the MVS problem. Obviously, further research is needed

83

to explore more refined data structures so that the sample table can be rapidly constructed

inside the memory instead of writing it in a secondary storage device.

84

CHAPTER 4: SIMULATION MODEL AND ANALYSIS OF A
DATA WAREHOUSE

4.1 Introduction

A data warehouse can be defined as a database of databases. It brings together a

wide range of information from many different heterogeneous independent data sources

into one centralized data repository to support business analysis activities and decision-

making tasks. In Chapter 2 we presented two heuristic procedures for solving a special

case of the MVS problem. We also presented 0-1 Integer Programming models to address

four different versions of the MVS problems. In Chapter 3, we explored the use of

statistical sampling techniques to estimate the number of rows present in each view in a

given lattice structure and examined the difference in the objective function values

between heuristic solutions to estimated problem instances and the optimal solutions to

corresponding actual problem instances.

In this chapter, we explore the application of a systems dynamics approach and

simulation to model a data warehouse and estimate its performance. Data warehouses are

large complex systems with many interacting non-linear components. A small change in

any one component may have a dramatic impact elsewhere in the system. Consequently

the behavior of data warehouse is often unpredictable (Hillard et al. 1999). Data

warehouse managers may find a simulation model useful in identifying critical

85

components, diagnosing problems and optimizing the overall design. It will allow users

to pinpoint performance issues or troubleshoot performance problems that may have

occurred hours or days earlier.

The next section briefly describes the systems dynamics approach to data

warehouse modeling. In Section 4.3, we briefly review the related literature. Section 4.4

describes the conceptual framework of the simulation model. In Section 4.5, we discuss

the simulation model developed using the ARENA simulation package along with its

results. In Section 4.6, we discuss the experimental design for conducting experiments in

brief. Experimental results are discussed in Section 4.7. In Section 4.8, we conclude this

chapter and discuss future research to be pursued.

4.2 Systems Dynamics Approach to Data Warehouse

Data warehouses are large complex systems with many non-linear interacting

components (Hillard et al. 1999). Many different technologies are needed to assemble an

effective data warehouse. For example, one needs Extract-Transform-Load (ETL) tools

that will fetch the data from multiple heterogeneous data sources spread across

geographical boundaries. These tools help to extract information, transform information

from different domains into one standard domain, and then load that information into the

data warehouse. These tools are very complex in nature. Secondly since the data is spread

across different locations, one often needs a high speed network that will support fast

data communication between the data sources and the data warehouse. Hence network

86

bandwidth plays a crucial role in determining the response time faced by data warehouse

users.

Once the information is loaded into the data warehouse, one needs to materialize a

set of views to improve query performance. This process, as seen in the last two chapters,

is very involved and time intensive. Once the views are materialized, they need to be

maintained to reflect the latest information, as the information at the data sources keep

changing over time. Maintaining views is again a very time-consuming process. Many

researchers have addressed this issue (Colby et al. 1997, Gupta 1999, Kalnis 2002,

Mumick et al. 1997).

Once the data warehouse is properly set up, the data warehouse users need various

query-and-reporting tools, multidimensional analysis tools, and statistical tools to mine

the data warehouse for valuable information. There are several tools available in the

market, such as Actuate’s Enterprise Reporting Applications (http://www.actuate.com),

Panorama’s Business Intelligence Platform (http://www.panoramasoftware.com),

Microsoft OLAP tools, Oracle Discoverer, and Oracle Reports. Though these tools are

powerful, they are seldom comprehensive. Often companies need to customize them to

suit their requirements. This can be proved to be a very tedious task. Furthermore, data

warehouse end users may be spread over geographically diverse locations, which may

necessitate the use of high speed network to support faster data communication. Hence

network bandwidth may again become critical a factor influencing the response time

experienced by the end users.

87

Last but not the least, data warehouse performance also depends on the capacity

and speed of the disk farm, the indexing and partitioning strategy used to optimize the

database efficiency, the CPU capacity, and the RDBMS engine.

In summary, the performance of a data warehouse is difficult to predict because:

(i) the data warehouse is comprised of a number of different and interacting components,

(ii) the data warehouse is dependent on other systems for its data and (iii) the usage that

will be made of the system by end-users is often difficult to predict.

In today’s decision support environment where time is a very critical factor, the

data warehouse manager must make sure that end-users are getting reliable answers to

their questions within a reasonable time. One method of ensuring timeliness and

reliability is to experiment with real system components. Experimenting with real

components is a risky venture as a small change may has profound impact on system

performance.

When dealing with such a complex system, a simulation model could be a viable

approach to predict the behavior and performance of a data warehouse system. The

simulation approach to data warehouse performance applies the principles of systems

dynamics, used in real-world simulation applications such as biological, engineering, and

nuclear research. It can be used to simulate the behavior and performance of the data

warehouse system based on its overall design. Such a simulation approach can have a

number of benefits:

i. Data warehouse managers can improve the performance of their systems. They can

walk through various scenarios and as a result can configure their new or updated

systems to be more reliable and efficient.

88

ii. Data warehouse managers can manage risk better and plan better capacity utilization.

They can justify or negate investment decisions and can accurately predict when they

need to update, add or replace system parts.

iii. Data warehouse managers will have more complete understanding of the

interrelationships between components in an existing data warehouse configuration,

and how multiple factors influence the data warehouse performance. This provides an

ability to understand both opportunities for synergies within the design and areas of

inefficiencies.

In the next section, we briefly discuss one related research work in this area.

4.3 Related Work

Considering that data warehouse technology itself is a budding technology, there

is not much published research with regard to simulating the behavior and performance

of data warehouse systems. One study by Robert Hillard, Peter Blecher and Peter

O’Donnell (1999) applies the concept of Chaos Theory to the operation of data

warehouses. First a brief explanation of chaos theory follows.

Chaos theory is used to understand and make predictions about apparently

random behavior of complex systems that have many interacting non-linear components.

The key aspect of chaotic systems is that they are very sensitive to even small changes in

initial conditions (Gleick 1987, Medio 1992). This means that nearly identical systems,

with only slight differences, may behave very differently.

89

Hillard et al. (1999) argued that data warehouses are large complex systems with

many non-linear interacting elements. This creates a tendency for periods of chaotic

behavior. The application of chaos theory will help in developing an understanding of the

variability of data warehouse performance commonly experienced by the developers and

managers of data warehouses. They further argued that chaos theory could be used to

minimize the impact of such erratic performance on the users of the system.

In the next section, we briefly discuss the conceptual framework for simulating

the behavior and performance of a data warehouse system.

4.4 Conceptual Framework for Simulating Data Warehouse

Operation

In general the operational performance of a data warehouse depends on the

interaction of various parameters, like the length of time required for the uploading cycle,

the types of ad-hoc queries posed to data warehouse, the frequency of these queries, the

mean time between the failures of the equipment, user behavior and the performance of

the database management system itself. The network of influences between and within

these parameters is very complex. We have developed a conceptual framework of the

simulation model for simulating the behavior and performance of a data warehouse. The

details of this model are shown in Figure 4.1. The major components of the conceptual

model are:

90

a. Design Criteria

Performance of a data warehouse largely depends on the number of views

materialized. Given a set of materialized views, if a query is answered directly from

the materialized views, it will be executed quickly with minimum response delay. On

the other hand, there might be queries which could not be directly answered from the

materialized views, but could be answered indirectly using one or more of the

materialized views. Such queries might take more time to execute compared to the

former ones. Some queries may need to refer back to the root view (base cuboid),

which will always be materialized and which has the lowest level of summarization

with all possible dimensions and levels in those dimensions. In this case the query

would likely to take a long time to execute. Therefore, we have various categories of

business queries that are directly related to the views materialized in the data

warehouse.

b. View Materialization Policy

There are two view materialization policies possible. The first policy is the fixed view

materialization policy, which uses a model to decide the set of views to be

materialized and once such views are materialized they are never changed. Such

views are updated periodically to reflect the changes in the source information, so that

the end users always get current data. The second policy is the dynamic view

materialization policy, which assumes that over time, business requirements change,

resulting in a change in the query pattern. This could lead to dynamically changing

91

the views to be materialized (Kalnis 2002). In this work, we have focused on the fixed

view materialization policy. However, from a simulation perspective, this is not a

serious limitation, since our query arrival behavior captures both types of queries. The

only limitation may be that we are not accounting for query processing time lost due

to change in the number or sets of views materialized.

c. Environmental Variables

Certain environmental variables have profound effects on the performance of a data

warehouse. One such environmental variable is equipment failure. There could be

many causes of equipment failure including power failure, server crashing and

computer hardware failure like hard-disk or RAM or router. When such instances

occur, data warehouse systems fail and all the queries in the system are lost.

d. View Maintenance Practices

The materialized views need to be maintained so as to reflect changes in the source

information. The data may be loaded into the system on a monthly, weekly or daily

basis depending on the organization’s requirements. During the start of the uploading

cycle queries already being processed are generally allowed to execute to completion;

but waiting queries are lost. No new queries are accepted during the uploading

process.

9
2

D
a
ta
 W
a
re
h
o
u
se

S
im
u
la
to
r

D
es
ig
n
 C
ri
te
ri
a

M
a
te
ri
a
li
ze
d

V
ie
w
s

Q
u
er
y

C
a
te
g
o
ri
es

V
ie
w
s

M
a
te
ri
a
li
za
ti
o
n

P
o
li
cy

�

F
ix
ed

�

D
y
n
a
m
ic

E
n
v
ir
o
n
m
en
ta
l

V
a
ri
a
b
le

V
ie
w

M
a
in
te
n
a
n
ce

Q
u
er
y
 P
ro
ce
ss
in
g
 P
o
li
ci
es

�

M
a
x
im
u
m
 n
u
m
b
er
 o
f
si
m
u
lt
a
n
eo
u
s
q
u
er
ie
s

p
ro
ce
ss
ed

�

Q
u
e
u
e
d
is
ci
p
li
n
e

�

P
re
e
m
p
ti
o
n
 p
o
li
ci
es

�

E
q
u
ip
m
e
n
t

F
a
il
u
re

�

U
p
lo
a
d
in
g

C
y
cl
e

R
es
p
o
n
se
 T
im
e

S
er
v
er
 U
ti
li
za
ti
o
n

N
u
m
b
e
r
o
f
Q
u
er
ie
s

D
ec
li
n
ed

�

O
v
er
a
ll
 R
es
p
o
n
se

T
im
e

�

R
es
p
o
n
se
 T
im
e
b
y

Q
u
er
y
 C
a
te
g
o
ry

�

9
0
th
 P
er
ce
n
ti
le

R
es
p
o
n
se
 T
im
e

F
ig
u
re
 4
.1
:
C
o
n
ce
p
tu
al
 F
ra
m
ew
o
rk
 f
o
r
S
im
u
la
ti
n
g
 D
at
a
W
ar
eh
o
u
se
 P
er
fo
rm
an
ce

93

e. Query Processing Policies

If only one query is being processed at the data warehouse, it will be faster since all

the resources (CPU, RAM, etc.) are devoted to that single query. If more than one

query is being processed simultaneously, the processing of all queries will be slowed

because of the sharing of resources.

In the next section, we briefly discuss and provide a model for implementation of

the conceptual framework discussed in this section using ARENA simulation package.

4.5 Implementation of Conceptual Framework in ARENA

In the previous section, we discussed the conceptual framework of the simulation

model for simulating the behavior and performance of a data warehouse. In this section,

we present the implementation of the conceptual framework of the simulation model

using ARENA simulation package. Our objective is to predict the performance of a data

warehouse under varying design conditions and query processing policies in terms of the

average time to process a query, the average time to process each category of query, the

server utilization and the number of queries declined.

As discussed in Chapter 3, we have populated a 1 GB data warehouse from the

Transaction Processing Council (www.tpc.org) website. The Transaction Processing

Council website provides the data to populate big experimental data warehouses (ranging

from 1 to 1000 GB) and has been widely used by industries for benchmarking purposes.

94

Running this data warehouse on our computer system, we gained some insight into the

parameters relevant for simulation model building such as query processing time, delays

experienced by queries because of simultaneous processing, and the relationship between

these parameters and the views materialized in this data warehouse.

Figure 4.2 shows the main features of the simulation model developed using

ARENA simulation package. The major components of the ARENA simulation model

are discussed below:

a. Design Criteria Based on Materialized Views: Query Categories

This block generates queries that the users pose to the data warehouse. There are two

create modules. The first generates queries (entities) that could be directly answered

from the materialized views. The second generates queries that could not be directly

answered from the materialized views. The inter-arrival rate is assumed to be

exponentially distributed and the processing time is assumed to be normally

distributed for both query types. The specific parameter values used are presented in

Table 4.1. The type of distribution used for the inter-arrival time and service was

broadly justified from general queuing and database literature as well as our

experience with the TCPH and AANS database.

b. Decision Block and Waiting Queue

As mentioned earlier, the server in this case can handle at most three queries

simultaneously. Details of this construct and the justification are given under query

processing policies. This is modeled using three process modules in ARENA. Each

95

incoming query checks the availability of one of the three process modules. If three

queries are already being processed, then all arriving queries wait in a queue. As soon

as the server becomes available, queries in the queue may proceed for processing.

c. Data Warehouse Simulator with Query Processing Policies

The data warehouse simulator is the engine that processes the incoming queries based

on their critical attribute values. Modeling the processor of the data warehouse was

somewhat difficult since a typical computer can process several queries at a time

while a processor construct in ARENA can handle only one query at a time. We

decided to allow at most three queries to be processed simultaneously. We do this by

first creating three process modules, and then activating them one at a time as the

number of queries in the system goes from 0 to 3, after which the number of active

process modules stays at three satisfying the condition of processing a maximum of

three simultaneous queries. Finally, the processing time of each query gets increased

as the number of simultaneous queries in process increases. The following describes

the way query processing takes place in the simulator:

i. As the number of simultaneous queries under process increases, the processing

time of all queries under process increases. This approximately mimics the

simultaneous processing of queries by a real CPU. In this version of the

simulation model, only three queries are allowed to be processed simultaneously.

In general, the higher the number of simultaneous queries, the higher the delay in

response will be. Queries arriving while all three process modules are busy will be

held in the queue until one of the process modules becomes free.

96

ii. The number of queries being processed simultaneously determines the appropriate

delay factor to be applied to the remaining processing time of all queries under

process. This is done each time a process module begins or completes a query.

The delay factors used in our simulation are given in Table 4.1. The function of

the delay factor is simply to linearly increase or decrease the remaining

processing time as the number of queries in process changes by 1. For example, at

simulation time t, if the system is currently processing two simultaneous Type 1

queries (which implies that there are no waiting queries) with remaining

processing time t1 and t2, and if a third Type 2 query arrives with a simulated

processing time of t3, then using the delay factors given in Table 4.1, the new

processing time of the three queries will be (1.5/1.25)* t1, (1.5/1.25)* t2 and 2*t3,

respectively. Suppose at time t', processing of Type 2 query is completed, that is

t2 becomes 0, and no new query arrives (note that waiting line must be empty,

since only two process modules are active at time t'), the new processing time for

Type 1 query will be (1/1.25)*t1 . That is the factors given in Table 4.1 applies to

the original simulated time and since some of the original times have already been

increased when the number of simultaneous queries processed increased from 1 to

2, it must now be adjusted suitably when it goes from 2 to 3. All of this is

achieved by first preempting the current queries under process, changing the

remaining processing time and resuming the processing by the respective servers

from the point of preemption.

iii. At the time of arrival of the uploading task, queries already in-process will be

processed. But the queries waiting in the queue, if any, will be lost. Queries that

97

arrive after the arrival of the uploading task will also be lost. Once uploading is

complete, normal query processing will resume.

iv. During the failure of equipment, all incoming queries as well as queries

in-process or waiting at that instance will be lost.

v. If the system fails during the uploading cycle, uploading will fail and the system

will revert back to earlier status. The time required to put the system back to work

will include the time needed for the uploading task as well, so that data warehouse

users access the latest information. As soon as the system is up, the incoming

queries will follow the previous mentioned rules.

d. View Maintenance Practices: Uploading Cycle

Here, this is modeled by a single query that seizes the server for a certain period of

time, thus simulating the time required for loading the latest information from the

data sources to the data warehouse. The uploading cycle query first checks if there are

any queries that have already seized the server. In that case, the uploading cycle query

will wait in the queue until the queries that seize the server are released out of the

system. At this instance all the waiting queries if any will be lost. Then the uploading

query will seize the server for certain specified time and during this time, all the

incoming queries will be lost. As soon as the uploading is complete, the incoming

queries will be allowed to enter the server as per the earlier mentioned policies.

98

e. Environmental Variable: System Failure

Here, this is modeled by a single query that enters the server and seizes it for a

specified period of time. When the system failure occurs, all the queries in the system

as well as those waiting in the queue are lost. Incoming queries are also disposed off

immediately. If update is going on during the time of failure, it will fail and data

warehouse will be reverted back to its original state. As soon as the failure query

leaves the systems, the server will be up and the incoming queries will be entertained

in the server as per previously mentioned rules.

f. Disposing Policies

The departing query has to perform a check on the server before being disposed off.

This accomplishes the delaying or speeding up of the queries under process, if any,

based on certain pre-emption policies (refer to Section 4.5.c.ii).

In the next section, we discuss the experimental results obtained for a simulated

run of one week.

9
9

D
is

p
o

s
e

1

A
s

s
ig

n
_

H
o

ld
V

a
r

R
e

le
a

s
e

1

R
e

s
o

u
r

c
e

_
2

P
r

e
e

m
p

t
R

e
le

a
s

e

4

D
e

c
id

e
_

H
o

ld
Q

1

T
r

u
e

F
a

ls
e

D
e

c
id

e
_

H
o

ld
Q

2

T
r

u
e

F
a

ls
e

A
s

s
ig

n
_

F
a

ilV
a

r
R

e
le

a
s

e
1

a
t

r
_

H
o

ld
=

=
1

E
ls

e

D
e

c
id

e
_

F
a

ilH
o

ld
1

a
t

r
_

H
o

ld
=

=
1

E
ls

e

A
s

s
ig

n
_

H
o

ld
V

a
r

R
e

le
a

s
e

2

D
e

c
id

e
_

F
a

ilH
o

ld
2

A
s

s
ig

n
_

F
a

ilV
a

r
R

e
le

a
s

e
2

D
e

c
id

e
_

Q
r

y
L

e
a

v
1

T
r

u
e

F
a

ls
e

D
e

c
id

e
_

Q
r

y
L

e
a

v
2

T
r

u
e

F
a

ls
e

H
o

ld
_

U
p

d
a

t
e

Q
r

y
C

r
e

a
t

e
_

U
p

d
a

t
e

Q
r

y
A

s
s

ig
n

_
Q

u
e

r
y

U
p

lo
a

d

P
r

o
c

e
s

s
_

2

a
t

r
_

I
s

D
e

la
y

_
2

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

P
r

o
c

e
s

s
_

1

a
t

r
_

I
s

D
e

la
y

_
2

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

a
t

r
_

I
s

D
e

la
y

_
2

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

a
t

r
_

I
s

D
e

la
y

_
2

R
B

=

=
0

I
f

E
n

d
I

f

E
ls

e

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

A
s

s
ig

n
_

P
r

o
c

e
s

s
o

r
1

1

a
t

r
_

I
s

D
e

la
y

_
2

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

a
t

r
_

I
s

D
e

la
y

_
2

R
B

=

=
0

I
f

E
n

d
I

f

E
ls

e

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

R
e

le
a

s
e

5

C
r

e
a

t
e

_
F

a
ilu

r
e

Q
r

y
A

s
s

ig
n

_
Q

u
e

r
y

F
a

il

R
e

s
o

u
r

c
e

_
1

P
r

e
e

m
p

t

R
e

s
o

u
r

c
e

_
2

P
r

e
e

m
p

t

R
e

le
a

s
e

6

R
e

le
a

s
e

7

0
.

0

D
e

la
y

R
e

s
o

u
r

c
e

_
2

P
r

e
e

m
p

t

C
r

e
a

t
e

_
Q

u
e

r
ie

s
T

y
p

e
1

C
r

e
a

t
e

_
Q

u
e

r
ie

s
T

y
p

e
2

D
e

c
id

e

9

F
a

ls
e

D
is

p
o

s
e

5

A
s

s
ig

n
_

Q
u

e
r

ie
s

A
r

r
iv

a
l

A
s

s
ig

n
_

Q
u

e
r

ie
s

A
r

r
iv

a
l1

H
o

ld
_

Q
u

e
r

ie
s

U
p
lo
a
d
in
g
 C
y
c
le

V
ie
w
s
 M

a
in
te
n
a
n
c
e
 P
ra
c
ti
c
e
s
:

Q
u
e
ry
 C
a
te
g
o
ri
e
s

D
e
s
ig
n
 C
ri
te
ri
a
:

Q
u
e
ry
 W

a
it
in
g
 Q
u
e
u
e

D
e
c
is
io
n
 B
lo
c
k
 a
n
d

S
y
s
te
m
 F
a
il
u
re

E
n
v
ir
o
n
m
e
n
ta
l
V
a
ri
a
b
le
:

P
ro
c
e
s
s
in
g
 P
o
li
c
ie
s

S
im

u
la
to
r
w
it
h
 Q
u
e
ry

D
a
ta
 W

a
re
h
o
u
s
e

D
is
p
o
s
in
g
 a
n
d
 P
re
e
m
p
ti
o
n
 R
u
le
s

P
r

o
c

e
s

s
_

3

a
t

r
_

I
s

D
e

la
y

_
2

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

a
t

r
_

I
s

D
e

la
y

_
2

R
B

=
=

0

I
f

E
n

d
I

f

E
ls

e

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

a
t

r
_

I
s

D
e

la
y

_
2

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

a
t

r
_

I
s

D
e

la
y

_
3

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

E
ls

e

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

E
n

d
I

f

a
t

r
_

I
s

D
e

la
y

_
3

R
B

=
=

0

I
f

a
t

r
_

I
s

D
e

la
y

_
2

R
B

a
t

r
_

I
s

D
e

la
y

_
3

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

a
t

r
_

I
s

D
e

la
y

_
3

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

E
ls

e

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

E
n

d
I

f

a
t

r
_

I
s

D
e

la
y

_
3

R
B

=
=

0

I
f

a
t

r
_

I
s

D
e

la
y

_
2

R
B

a
t

r
_

I
s

D
e

la
y

_
3

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

a
t

r
_

I
s

D
e

la
y

_
3

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

E
ls

e

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

E
n

d
I

f

a
t

r
_

I
s

D
e

la
y

_
3

R
B

=
=

0

I
f

a
t

r
_

I
s

D
e

la
y

_
2

R
B

a
t

r
_

I
s

D
e

la
y

_
3

R
B

a
t

r
_

P
r

o
T

im
e

A
s

s
ig

n

D
e

c
id

e
_

P
r

o
c

e
s

s
B

u
s

y

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
1

)

=
=

I

D
L

E
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

2
)

=

=

B
U

S
Y

_
R

E
S

&

&

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
3

)

=
=

I

D
L

E
_

R
E

S

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
1

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

2
)

=

=

B
U

S
Y

_
R

E
S

&

&

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
3

)

=
=

I

D
L

E
_

R
E

S
S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

1
)

=

=

B
U

S
Y

_
R

E
S

&

&

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
2

)

=
=

I

D
L

E
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

3
)

=

=

B
U

S
Y

_
R

E
S

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
1

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

2
)

=

=

I
D

L
E

_
R

E
S

&

&

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
3

)

=
=

I

D
L

E
_

R
E

S

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
1

)

=
=

I

D
L

E
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

2
)

=

=

B
U

S
Y

_
R

E
S

&

&

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
3

)

=
=

B

U
S

Y
_

R
E

S
S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

1
)

=

=

I
D

L
E

_
R

E
S

&

&

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
2

)

=
=

I

D
L

E
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

3
)

=

=

B
U

S
Y

_
R

E
S

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
1

)

=
=

I

D
L

E
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

2
)

=

=

I
D

L
E

_
R

E
S

&

&

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
3

)

=
=

I

D
L

E
_

R
E

S

E
ls

e

A
s

s
ig

n
_

P
r

o
c

e
s

s
o

r
1

2
R

e
le

a
s

e

8

R
e

s
o

u
r

c
e

_
3

P
r

e
e

m
p

t

R
e

s
o

u
r

c
e

_
2

P
r

e
e

m
p

t
R

e
le

a
s

e

9
A

s
s

ig
n

_
P

r
o

c
e

s
s

o
r

1
3

1

D
u

p
lic

a
t

e

R
e

s
o

u
r

c
e

_
3

P
r

e
e

m
p

t
R

e
le

a
s

e

1
0

A
s

s
ig

n
_

P
r

o
c

e
s

s
o

r
2

1
R

e
le

a
s

e

1
1

R
e

s
o

u
r

c
e

_
1

P
r

e
e

m
p

t

R
e

s
o

u
r

c
e

_
1

P
r

e
e

m
p

t
R

e
le

a
s

e

1
2

A
s

s
ig

n
_

P
r

o
c

e
s

s
o

r
2

2

1

D
u

p
lic

a
t

e

R
e

s
o

u
r

c
e

_
3

P
r

e
e

m
p

t
R

e
le

a
s

e

1
3

R
e

s
o

u
r

c
e

_
1

P
r

e
e

m
p

t
R

e
le

a
s

e

1
4

A
s

s
ig

n
_

P
r

o
c

e
s

s
o

r
3

1

1

D
u

p
lic

a
t

e

R
e

s
o

u
r

c
e

_
2

P
r

e
e

m
p

t
R

e
le

a
s

e

1
5

D
e

c
id

e
_

R
1

R
2

R
3

B
B

u
s

y
1

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
2

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

3
)

=

=

B
U

S
Y

_
R

E
S

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
2

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

3
)

=

=

I
D

L
E

_
R

E
S

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
3

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

2
)

=

=

I
D

L
E

_
R

E
S

E
ls

e

R
e

s
o

u
r

c
e

_
3

P
r

e
e

m
p

t
R

e
le

a
s

e

1
6

R
e

s
o

u
r

c
e

_
2

P
r

e
e

m
p

t
R

e
le

a
s

e

1
7

1

D
u

p
lic

a
t

e

R
e

s
o

u
r

c
e

_
3

P
r

e
e

m
p

t
R

e
le

a
s

e

1
8

R
e

s
o

u
r

c
e

_
1

P
r

e
e

m
p

t
R

e
le

a
s

e

1
9

R
e

s
o

u
r

c
e

_
3

P
r

e
e

m
p

t
R

e
le

a
s

e

2
0

R
e

s
o

u
r

c
e

_
1

P
r

e
e

m
p

t
R

e
le

a
s

e

2
1

1

D
u

p
lic

a
t

e

R
e

s
o

u
r

c
e

_
3

P
r

e
e

m
p

t
R

e
le

a
s

e

2
2

D
e

c
id

e
_

R
1

R
2

R
3

B
B

u
s

y
2

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
1

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

3
)

=

=

B
U

S
Y

_
R

E
S

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
1

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

3
)

=

=

I
D

L
E

_
R

E
S

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
3

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

1
)

=

=

I
D

L
E

_
R

E
S

E
ls

e

D
e

c
id

e
_

H
o

ld
Q

3

T
r

u
e

F
a

ls
e

a
t

r
_

H
o

ld
=

=
1

E
ls

e

A
s

s
ig

n
_

H
o

ld
V

a
r

R
e

le
a

s
e

3

D
e

c
id

e
_

F
a

ilH
o

ld
3

A
s

s
ig

n
_

F
a

ilV
a

r
R

e
le

a
s

e
3

D
e

c
id

e
_

Q
r

y
L

e
a

v
3

T
r

u
e

F
a

ls
e

R
e

s
o

u
r

c
e

_
1

P
r

e
e

m
p

t
R

e
le

a
s

e

2
3

R
e

s
o

u
r

c
e

_
2

P
r

e
e

m
p

t
R

e
le

a
s

e

2
4

R
e

s
o

u
r

c
e

_
1

P
r

e
e

m
p

t
R

e
le

a
s

e

2
5

1

D
u

p
lic

a
t

e

R
e

s
o

u
r

c
e

_
2

P
r

e
e

m
p

t
R

e
le

a
s

e

2
6

D
e

c
id

e
_

R
1

R
2

R
3

B
B

u
s

y
3

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
1

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

2
)

=

=

B
U

S
Y

_
R

E
S

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
1

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

2
)

=

=

I
D

L
E

_
R

E
S

S
T

A
T

E
(

R
e

s
o

u
r

c
e

_
2

)

=
=

B

U
S

Y
_

R
E

S

&
&

S

T
A

T
E

(
R

e
s

o
u

r
c

e
_

1
)

=

=

I
D

L
E

_
R

E
S

E
ls

e

R
e

s
o

u
r

c
e

_
3

P
r

e
e

m
p

t
R

e
le

a
s

e

2
7

1 1

D
u

p
lic

a
t

e

D
is

p
o

s
e

1

1

D
is

p
o

s
e

1

2

D
is

p
o

s
e

1

3

D
is

p
o

s
e

1

4

D
is

p
o

s
e

1

5

R
e

c
o

r
d

_
W

T
im

e
_

Q
r

y
T

_
1

R
e

c
o

r
d

_
V

A
T

im
e

_
Q

r
y

T
_

1

R
e

c
o

r
d

_
W

T
im

e
_

Q
r

y
T

_
2

R
e

c
o

r
d

_
V

A
T

im
e

_
Q

r
y

T
_

2
R

e
a

d
W

r
it

e
_

Q
r

y
T

y
p

e
_

2

R
e

c
o

r
d

_
W

T
im

e
_

Q
r

y
H

o
ld

R
e

c
o

r
d

_
V

A
T

im
e

_
Q

r
H

o
ld

R
e

a
d

W
r

it
e

_
Q

r
y

H
o

ld

R
e

c
o

r
d

_
V

A
T

im
e

_
Q

r
y

F
a

il
R

e
a

d
W

r
it

e
_

Q
r

y
F

a
il

D
e

c
id

e

2
4

a
t

r
_

Q
r

y
T

y
p

e
=

=
1

a
t

r
_

Q
r

y
T

y
p

e
=

=
2

a
t

r
_

H
o

ld
=

=
1

E
ls

e

D
is

p
o

s
e

1

6

D
is

p
o

s
e

1

7

R
e

a
d

W
r

it
e

_
N

u
m

O
f

Q
r

y
I

n
S

y
s

_
E

x
it

A
s

s
ig

n

2
5

D
e

c
id

e

2
5

a
t

r
_

Q
r

y
T

y
p

e
=

=
1

a
t

r
_

Q
r

y
T

y
p

e
=

=
2

a
t

r
_

Q
r

y
T

y
p

e
=

=
3

E
ls

e

R
e

c
o

r
d

_
F

a
ilu

r
e

D
is

c
a

r
d

T
y

p
e

1

R
e

c
o

r
d

_
F

a
ilu

r
e

D
is

c
a

r
d

T
y

p
e

2

R
e

c
o

r
d

_
F

a
ilu

r
e

D
is

c
a

r
d

U
p

d
a

t
e

Q
r

y

D
e

c
id

e

2
6

T
r

u
e

F
a

ls
e

R
e

c
o

r
d

_
U

p
d

a
t

e
D

is
c

a
r

d
Q

r
y

T
y

p
e

1

R
e

c
o

r
d

_
U

p
d

a
t

e
D

is
c

a
r

d
Q

r
y

T
y

p
e

2

D
is

p
o

s
e

1

8

D
e

c
id

e

2
7

T
r

u
e

F
a

ls
e

A
s

s
ig

n

3
0

R
e

a
d

W
r

it
e

_
N

u
m

O
f

Q
r

y
I

n
S

y
s

_
E

x
it

2

A
s

s
ig

n

3
2

R
e

a
d

W
r

it
e

_
N

u
m

O
f

Q
r

y
I

n
S

y
s

_
E

n
t

r
y

2

R
e

a
d

W
r

it
e

_
N

u
m

O
f

Q
r

y
I

n
S

y
s

_
E

n
t

r
y

1

A
s

s
ig

n

3
4

R
e

a
d

W
r

it
e

_
N

u
m

O
f

Q
r

y
I

n
S

y
s

_
E

x
it

3

A
s

s
ig

n
_

H
o

ld
V

a
r

R
e

le
a

s
e

4

A
s

s
ig

n

2
4

R
e

a
d

W
r

it
e

_
Q

r
y

T
y

p
e

_
1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F
ig
u
re
 4
.2
:
Im
p
le
m
en
ta
ti
o
n
 o
f
C
o
n
ce
p
tu
al
 F
ra
m
ew
o
rk
 o
f
S
im
u
la
ti
o
n
 M
o
d
el
 i
n
 A
R
E
N
A

100

4.6 Experimental Design

The simulation experiments were designed to demonstrate the usefulness of

simulation model in a data warehouse design context. For each experimental setting,

model was run for a simulated period of eight days. Data for the first day was discarded

to let the system reach steady state conditions. Table 4.1 shows various model input

parameters with corresponding values.

Delay Factors
Sr.

No.
Query Type

Arrival Time

Distribution

(in minutes)

Processing Time

Distribution

(in minutes) No

Delay

First

Delay

Second

Delay

1 Query Type 1 EXPO(x)* NORM(10,2) 1 1.25 1.5

2 Query Type 2 EXPO(y)* NORM(20,3) 1 1.5 2

3 Failure XPO(7200) EXPO(500) – – –

4 Update CONSTANT 1440 CONSTANT 60 – – –

 * “x” and “y” are specified in Table 4.2

Table 4.1: Experimental Parameters

In many service oriented simulation models, we hypothesize a Poisson arrival

process, which leads to exponentially distributed inter-arrival times. To reduce variance

of the difference between outcomes (such as average waiting time, average turnaround

time, etc.) of different experimental settings, we used common random number

generators for various random processes in the model. Processing times for the queries

are assumed to come from the Normal distribution with a mean of 10 and 20 minutes, and

standard deviation of 2 and 3, respectively. As mentioned earlier, these were estimates

derived on the basis of our experiments running the TPCH and AANS databases in

101

several servers. Table 4.1 also shows the Delay Factors used for each type of query. The

values for First Delay and Second Delay are 1.25 and 1.5, respectively, for Query Type 1,

and 1.5 and 2, respectively, for Query Type 2. First Delay occurs when two queries are

being processed by the server simultaneously. Second Delay occurs when three queries

are being processed by the server simultaneously. Please refer to section 4.5.c.ii for

details.

The time between failures is assumed to come from the Exponentially

Distribution with a mean value of 7200 minutes. The time to repair a failure is also

assumed to be exponentially distributed with a mean of 500 minutes. Data uploading is

assumed to take place daily starting at mid-night. This process is assumed to take 60

minutes.

Inter Arrival Time (minutes)

Query Type 1 (x) Query Type 2 (y)

Sr.

No.

Experimental

Setting

 [Proc = NORM(10,2)] [Proc = NORM(20,3)]

Query Mix

(y/x)

1 a 20 50 2.50

2 b 15 30 2.00

3 c 16 44 2.75

4 d 15 40 2.67

5 e 14 36 2.57

6 f 13 32 2.46

7 g 12 28 2.33

8 h 11 24 2.18

9 i 10 20 2.00

Table 4.2: Experimental Settings

102

To achieve a variety of operating conditions, we kept the processing time

parameters unchanged while the inter-arrival rate was varied. Table 4.2 shows the nine

different experimental settings used in our experiment. For example, in setting “a,” the

mean inter-arrival time for Query Type 1 is assumed to be 20 minutes and for Query

Type 2, it is assumed to be 50 minutes. Again all inter-arrival times follow exponential

distribution. Since Query Type 2 queries cannot be directly answered from the

materialized views, they have a longer processing time and they are also presumed to

occur less frequently since they system is hopefully designed with appropriate set of

views materialized. With the query mix combination and mean arrival rate, we maintain a

server utilization of 75% to almost 99%. The query mix is selected to be between 2.00

and 2.75.

 In traditional queuing analysis, server utilization is given by λ/µ for single server

systems and (λ/s)*µ for a multi server system with s servers, λ is the arrival rate and µ is

the service rate. The system in this simulation is little tricky in that the number of active

servers changes from 1 to 3 and the service time and hence the service rate of all servers

changes as the number of active servers changes. As described earlier, this helps us

mimic the processor of a data warehouse server more accurately. We calculated the

approximate utilization rate by judiciously combining simulated probability of system

having 0, 1, 2, 3 or more queries in the system, types of queries in the system, and the

corresponding rates at which each active server is working. For example, if there are two

Type 1 queries in the system, and the experimental setting is “b,” inter arrival time of

Query Type 1 is Expo(15), Query Type 2 is Expo(30), and service time is Normal (10,2)

for Query Type 1 and Normal(20,2) for Query Type 2. The delay factors will make the

103

simulated remaining service time of the queries in process and/or the new arrival to go to

1.25*(whatever was remaining from the original service time at the time of arrival of the

second query). This will help us estimate the instantaneous service rate of the system

when the system has two Type I queries. There are many combinations of system states

each of which will have its own instantaneous service rate as calculated above. Weighted

average of these service rates will be used as an estimate for the average service rate. The

average inter-arrival rate is known for setting “b”. Since the service rate already

incorporates the expected service time for each type of query and calculates its rate using

that, the arrival rate used is simply the sum of the two arrival rates. Ratio of the arrival to

service rates gives the estimated utilization. The system gets emptied everyday at 12.00

midnight to process the update query. The simulated system is thus a series of one day

simulations. This midnight emptying process also allows us to slightly overload the

system and still not experience total clogging of the system, which would have happened

in settings “h” and “i”.

4.7 Experimental Results

Table 4.3, Table 4.4 and Table 4.5 present the system performance obtained from

our model for all the experimental combinations and each query type. For each

experimental setting, Tables 4.3 through 4.5 show the simulated server utilization, the

average query waiting time, the average query processing time, the average query

turnaround time and the 90th percentile of the query turnaround time. As expected, we

104

observe that as the mean inter-arrival time decreases in the subsequent experimental

setting from “a” through “i” the simulated server utilization, the waiting time, the average

turnaround time and the 90th percentile turnaround time increase. Mean processing time

increases modestly. This increase is a result of the inherent delay in simultaneous

processing of queries as modeled here by the use of delay factors. As sever utilization

increases, larger values of the delay factor are applied more frequently thereby increasing

the time to process queries.

Query Type 1

Experimental

Settings

Simulated

Server

Utilization Average

Waiting

Time

Average

Processing

Time

Average

Turnaround

time

90 percentile of

Turnaround

Time

a 0.75 2.55 12.48 15.03 23.45

b 0.89 7.67 13.59 21.26 39.35

c 0.84 3.93 12.87 16.80 26.91

d 0.85 5.98 13.17 19.15 36.17

e 0.89 6.10 13.43 19.54 35.32

f 0.91 13.39 13.86 27.24 59.84

g 0.91 17.90 14.28 32.17 57.18

h 0.91 42.83 14.52 57.34 147.70

i 0.99 90.87 14.71 105.60 188.10

Table 4.3: Query Type 1 Statistics

105

Query Type 2

Experimental

Settings

Simulated

Server

Utilization
Average

Waiting

Time

Average

Processing

Time

Average

Turnaround

time

90 percentile of

Turnaround

Time

a 0.75 2.77 31.18 33.95 47.96

b 0.89 8.69 34.58 43.27 70.99

c 0.84 5.10 32.78 37.88 59.67

d 0.85 6.01 34.22 40.24 60.13

e 0.89 6.95 34.24 41.19 62.69

f 0.91 13.33 34.40 47.73 85.91

g 0.91 17.94 36.26 54.20 85.92

h 0.91 40.14 38.35 78.49 146.30

i 0.99 93.69 39.70 133.40 221.30

Table 4.4: Query Type 2 Statistics

Overall

Experimental

Settings

Simulated

Server

Utilization
Average

Waiting

Time

Average

Processing

Time

Average

Turnaround

time

90 percentile

of Turnaround

Time

a 0.75 2.61 17.80 20.41 30.42

b 0.89 7.98 20.02 28.00 49.04

c 0.84 4.23 18.00 22.24 35.35

d 0.85 5.99 18.58 24.57 42.33

e 0.89 6.33 19.01 25.34 42.66

f 0.91 13.37 19.50 32.86 67.00

g 0.91 17.91 20.28 38.19 65.04

h 0.91 42.04 21.51 63.55 147.32

i 0.99 91.76 22.65 114.42 198.64

Table 4.5: Overall Statistics

106

Figures 4.3 and 4.4 represent parts of these data as bar charts. They show the

comparison between the average turnaround time and the 90th percentile turnaround time

respectively for Query Type 1, Query Type 2 and Overall for experimental settings of “a”

through “i” along with the corresponding simulated server utilization. One can see that as

the value of inter-arrival time decreases the average turnaround time and the 90th

percentile turnaround time increases. As one can notice from these figures, after

experimental setting “f” the performance of system deteriorates considerably. A data

warehouse manager could use such information to plan future expansion of the system to

improve and protect performance levels.

Figure 4.3: Bar Chart Showing Comparison of Average Turnaround Time Between

Query Type 1, Query Type 2 and Overall

Average Turnaround Time

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

a (75%) b (89%) c (84%) d (85%) e (89%) f (91%) g (91%) h (91%) I (99%)

Experimental Settings

T
im

e
 (
m
in
u
te
s
)

Avg. Turnaround time - Qry Type 1

Avg. Turnaround time - Qry Type 2

Avg. Turnaround time - Overall

107

Table 4.6 shows the number of queries discarded due to data warehouse update

and data warehouse failure for Query Type 1, Query Type 2 and the total number of

queries discarded. Again one can notice the increase in the number of queries discarded

as the query inter-arrival time decreases. Since update takes place every day, this has

direct effect on the number of queries discarded during that time. But queries discarded

due to data warehouse failure do not seem to be affected considerably.

Figure 4.4: Bar Chart Showing Comparison of 90th Percentile Turnaround Time Between

Query Type 1, Query Type 2 and Overall

90th Percentile Turnaround Time

0.00

50.00

100.00

150.00

200.00

250.00

a (75%) b (89%) c (84%) d (85%) e (89%) f (91%) g (91%) h (91%) I (99%)

Experimental Settings

T
im

e
(m

in
u
te
s
)

90 %tile of turnaround time - Qry Type 1

90 %tile of turnaround time - Qry Type 2

90 %tile of turnaround time - Overall

108

Queries Discarded due

to Data Warehouse

Update

Queries Discarded due

to Data Warehouse

Failure Sr. No.
Experimental

Settings
Query

Type 1

Query

Type 2

Query

Type 1

Query

Type 2

Total Queries

Discarded

1 A 33 7 4 1 45

2 B 36 19 3 3 61

3 C 37 10 5 0 52

4 D 37 10 6 2 55

5 E 44 9 0 5 58

6 F 52 12 3 4 71

7 G 66 27 4 3 100

8 H 86 36 11 3 136

9 I 173 78 32 13 296

Table 4.6: Number of Queries Discarded

In the next section, we conclude this chapter and provide directions for future

research.

4.8 Conclusions and Future Research

Data warehouses are large complex systems with many different interacting

components. A small change in any one component may produce dramatic changes

somewhere else in the system. As such a data warehouse environment is very dynamic

and sensitive and can exhibit periodic chaotic behavior. In this chapter, we presented a

conceptual framework for simulating the operation of data warehouses. We have also

109

developed a simulation model that will predict the behavior and performance of a data

warehouse system given initial values for some parameters. We used the TPCH

benchmark database to obtain insights into some critical parameters like queries

processing times, effect of simultaneous processing on queries processing time, and their

relationship to the views materialized.

The simulation model is built using the ARENA simulation package. In this

simulation model, we have provided the provisions for different query categories with

different processing times, effect of equipment failure on the system, and uploading cycle

to upload the current information from the data sources to make the model more realistic.

We have also provided the provisions for delaying and speeding up of the query

processing depending upon the number of simultaneous query occupying the data

warehouse processor.

Our experimental evaluation points to the fact that a simulation model can be used

to model a data warehouse environment, thus providing a justification for the technical

feasibility. Data warehouse managers can use such models to enhance the performance

reliability of the data warehouses. Our experimentation also shows that different query

types (those which could be directly answered from the materialized views and those

which could not be directly answered from the materialized views) have significant

impact on the system’s performance. Future research could focus on validating the model

against some real-world data warehouses. Also one can extend the simulation model

discussed here to incorporate more features making the model more realistic.

110

CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH

Data warehouses are seen as strategic weapon to gain competitive advantage for

businesses. A data warehouse extracts, integrates, and stores the “relevant” information

from multiple, independent, and heterogeneous data sources into one centralized data

repository to support the decision making information needs of knowledge workers and

decision makers in the form of Online Analytical Processing (OLAP). Business analysts

then run complex business queries over the data stored at the data warehouse to mine the

valuable information and identify hidden business trends. Results of such queries are

generally pre-computed and stored ahead of time at the data warehouse in the form of

materialized views. This drastically reduces the query execution time to minutes or

seconds which otherwise may take hours or even days to complete.

There are many architectural issues involved concerning the design of a data

warehouse. In this dissertation, we have concentrated on three such issues. The first issue

concerns the selection of views to be materialized. Selecting the right set of views to

materialize is a non-trivial task. This problem has been shown to be NP-Complete in data

warehouse literature (Harinarayan et al. 1999). We have developed two heuristic

procedures to solve two different versions of the MVS problem. We have also developed

the 0-1 Integer Programming models to find the optimum solutions to four different

versions of the MVS problem. We compared the results obtained by using the heuristic

111

procedures with that obtained by using the 0-1 Integer Programming models and reported

the findings. Future research in this area could focus on validating these heuristic

procedures against some real-world data warehouse systems. One could also focus on

performing sensitivity analysis of weights associated with materialized views and their

relationship to optimal and/or heuristic solutions.

The second issue deals with employing statistical sampling procedures to generate

problems instances given a huge root view (least aggregated data view) and an associated

lattice structure. Most of the heuristic procedures available in the data warehouse

literature, including ours, assume that the number of rows present in each view in a given

lattice structure is known ahead of time. But actual counting of the number of rows

present in each view takes considerable time. Such delays are not permissible in today’s

decision support environment. We have explored the use of statistical sampling

techniques to address this issue. We have applied three well know estimators from the

database sampling literatures to two realistic data warehouses. The estimators used are

the Shlosser Estimator (Hass et al. 1995, and Shlosser 1981), the Guaranteed Error

Estimator (Charikar et al. 2000, Chaudhuri et al. 1998) and the Adaptive Estimator

(Charikar et al. 2000). Then we have employed the 0-1 Integer Programming model as

well as the heuristic procedures developed by Harinarayan et al. (1999) to the actual as

well as to the estimated data and compared the results. Our findings suggest substantial

computational time savings without compromising the accuracy of the solution. Future

research in this area could focus on performing the sensitivity analysis of a solution for a

given class of the MVS problems and developing more refined data structures to store

sampled tables in the computer memory to further reduce the computational time. One

112

can also address the confidence interval issues associated with the difference between the

objective function values of estimated and actual problems.

The third issue deals with simulating the behavior and performance of a data

warehouse system based on its overall design. A data warehouse system is a large

complex system with many interacting non-linear components. The data warehouse

environment is said to be very dynamic and sensitive and exhibit periodic chaotic

behavior. We have provided a conceptual framework for simulating the operation of data

warehouses. We have also developed a simulation model using ARENA simulation

package that will simulate the behavior and performance of the data warehouse system

given initial values for some system parameters. Our experimentation shows that

simulation can be used to construct a realistic model of a data warehouse, thus providing

justification for the technical feasibility. Future research in this area could focus on

validating this model against some real-world data warehouse systems. One can also

focus on extending this model and incorporating more features to make the model more

realistic.

113

BIBLIOGRAPHY

1. Adiba, M. E. & Lindsay, B. (1980). Database Snapshots, Proceedings of the Sixth

International Conference on Very Large Databases, Montreal, Canada, pp. 86-91.

2. Blakeley, J. A., & Martin, N. L. (1990). Join Index, Materialized View, and Hybrid

Hash Join: A Performance Analysis, Proceedings of the 6th IEEE Conference on Data

Engineering, Los Angeles, CA, pp. 256-263.

3. Bunge, J. and Fitzpatrick M. (1993). Estimating the Number of Species: A Review.

Journal of the American Statistical Association 88, pp. 364-373.

4. Burnham, K. P. & Overton, W. S. (1978). Estimation of the Size of a Closed

Population When Capture Probabilities Vary Among Animals. Biometrica, 65(3), pp.

625-33.

5. Burnham, K. P. & Overton, W. S. (1979). Robust Estimation of Population Size

When Capture Probabilities Vary Among Animals. Ecology, 60(5), pp. 927-936.

6. Charikar, M., Chaudhuri, S., Motwani, M. & Narasayya, V. (2000). Towards

Estimation Error Guarantees for Distinct Values. Proceedings of the Nineteenth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Dallas,

TX, pp. 268-279.

114

7. Chaudhuri, S., Motwani, R., & Narasayya, V. (1998). Using Random Sampling for

Histogram Construction. Proceedings of the 1998 ACM SIGMOD Conference on

Management of Data, pp. 436-447.

8. Chaudhuri, S. and Shim, K. Including Group-by in Query Optimization. (1994).

Proceedings of the 20th International Conference on Vary Large Databases, Santiago,

Chile, pp. 354-366.

9. Colby, L., Kawaguchi, A., Lieumen, D., Mumick, I. and Ross, K. (1997). Supporting

Multiple View Maintenance Policies. Proceedings of ACM SIGMOD 1997,

International Conference on Management of Data, pp. 405-416.

10. England, Ken (2001). Microsoft SQL Server 2000 – Performance, Optimization and

Tuning Handbook. Digital Press.

11. Gleick, J. (1987). Chaos: Making a New Science. Sphere Books: London, UK.

12. Gray, J., Chaudhuri, S., Bosworth, A., Layman, D., Reichart, D., & Venkatrao, M.

(1997). Data Cube: A Relational Aggregation Operator Generalizing Group-by,

Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery, 1, pp. 29-54.

13. Gray, P. and Watson, H. J. (1998). Decision Support in the Data Warehouse. Data

Warehousing Institute Series from Prentice Hall.

14. Grover, R. (1998). Identification of Factors Affecting the Implementation of Data

Warehouse. Ph.D. dissertation, School of Management, Auburn University Graduate

School.

115

15. Gupta, A., Harinarayan, V. and Quass, D. (1995). Generalized Projections: A

Powerful Approach to Aggregation. 21st International Conference on Very Large

Databases, Zurich, Switzerland, pp. 358 – 369.

16. Gupta, H. (1999). Selection and Maintenance of Views in a Data Warehouse. Ph.D.

dissertation, Department of Computer Science, Stanford University.

17. Gupta, H. (1997). Selection of Views to Materialize in a Data Warehouse,

Proceedings of the Sixth International Conference on Database Theory, Delphi,

Greece, pp. 98-112.

18. Haag, S., Cummings M. and McCubbrey D. (2005). Management Information

Systems for the Information Age. McGraw-Hill Irwin.

19. Han, J. & Kamber, M. (2001). Data Mining – Concepts and Techniques. Morgan

Kaufmann.

20. Harinarayan, V., Rajaraman, A. & Ullman J.D. (1996). Implementing Datacubes

Efficiently, Proceedings of the ACM-SIGMOD International Conference on

Management of Data, Montreal, Canada, pp. 205-216.

21. Harinarayan, V., Rajaraman A. & Ullman J.D. (1999). Implementing Datacubes

Efficiently, Materialized Views: Techniques, Implementation and Applications, Ed.

Gupta, A. and Mumick, I. MIT Press, pp. 343-360.

22. Hass, P. J., Naughton, J. F., Seshadri, S., & Stokes, L. (1995). Sampling-Based

Estimation of the Number of Distinct Values of an Attribute. Proceedings of the 21st

VLDB Conference, Zurich, Switzerland, pp. 311-322.

116

23. Haas, P. J. & Stokes, L. (1998). Estimating the Number of Classes in a Finite

Population. Journal of the American Statistical Association, 93(444). Theory and

Methods, pp.1475-1487.

24. Hillard, R., Blecher, P. and O’Donnell, P. (1999). The Implications of Chaos Theory

on the Management of a Data Warehouse. International Society for Decision Support

Systems.

25. International Data Corporation (1996). Financial Impact of Data Warehousing.

26. Inmon, W. H. (2002). Building the Data Warehouse. John Wiley & Sons, Inc.

27. Jacobson, R. (2000). Microsoft SQL Server 2000 Analysis Services – Step by Step.

Microsoft Press.

28. Kalnis, Panagiotis (2002). Static and Dynamic View Selection in Distributed Data

Warehouse System. Ph.D. dissertation, Computer Science, The Hong Kong

University of Science and Technology.

29. Kelly S. (1997). Data Warehousing in Action. Wiley, New York.

30. Kimball, Ralph (2002). The Data Warehouse Toolkit. John Wiley & Sons, Inc.

31. Kimball, Ralph (1998). The Data Warehouse Lifecycle Toolkit. John Wiley & Sons,

Inc.

32. Kelton, W. D., Sadowski, R. P., Sadowski, D. A. (2002). Simulation with Arena.

33. Medio, A. (1992). Chaotic Dynamics: Theory and Applications to Economics.

Cambridge University Press, Cambridge, UK.

117

34. Mumick, I. Quass, D. and Mumick, B. (1997). Maintenance of Data Cubes and

Summary Tables in a Warehouse. Proceedings of ACM SIGMOD International

Conference of Management of Data, Tucson, Arizona.

35. Olken, F. (1993). Random Sampling from Databases. Ph.D. dissertation, Department

of Computer Science, University of California at Berkeley.

36. O’Neil, P. and Graefe, G. (1995). Multi-table Joins through Bitmapped Join Indices.

SIGMOD Record, 24(3), pp.8-11.

37. Qian, X. and Wiederhold, G. (1991). Incremental Recomputation of Active Relational

Expressions, IEEE Transaction on Knowledge and Data Engineering, 3(3), 337-341.

38. Ross, K. A., Srivastava, D. & Sudharshan, S. (1996). Materialized View Maintenance

and Integrity Constraint Checking: Trading Space for Time. Proceedings of the ACM

SIGMOD International Conference on Management of Data, Montreal, Canada.

39. Shlosser, A. (1981). On Estimation of the Size of the Dictionary of a Long Text on

the Basis of a Sample. Engineering Cybernatics, 19, pp. 97-102.

40. Segev, A. & Fang, W. (1991). Optimal Update Policies for Distributed Materialized

Views. Management Science, 37(7), pp. 851-870.

41. Shukla, A., Deshpande, P., & Naughton, J. (1998). Materialized View Selection for

Multidimensional Datasets. Proceedings of the 24th Very Large Databases

Conference, New York, USA, pp. 488-499.

42. Shukla, A., Deshpande, P., Naughton, J. & Ramasamy, K (1996). Storage Estimation

for Multidimensional Aggregates in the Presence of Hierarchies. Proceedings of the

22nd Very Large Databases Conference, Mumbai, India, pp. 522-531.

118

43. Walton, H., Goodhue, D. L., & Wixom, B. H. (2002). The Benefits of Data

Warehousing: Why Some Organizations Realize Exceptional Payoffs. Information &

Management; 39, pp. 491-502.

44. Watson, H. J. and Haley, B. J. (1997). Data Warehousing: A Framework for Analysis

and a Survey of Current Practices. Journal of Data Warehousing, 2(1), pp.10-17.

45. Whalen, E., Garcia, M., DeLuca, S., and Thompson, D. (2001). Microsoft SQL

Server 2000 – Performance Tuning. Microsoft Press.

46. Yan, W., & Larson, P. (1995). Eager Aggregation and Lazy Aggregation.

Proceedings of the Twenty-First International Conference on Very Large Databases,

pp.345-357.

