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Abstract

Spatial regression relationships typically specify the structure of spatial
relationships among observations using a fixed n by n weight matrix, where
n denotes the number of observations. For computational convenience, this
weight matrix is usually assumed to represent fixed sample information,
making inferences conditional on the particular spatial structure embodied
in the weight matrix used in the model. In an economic context, where the
spatial structure can arise from externalities or spillovers, the magnitude
and extent of influence from one observation or spatial location on other
observations at nearby locations may be a subject of interest and inference.
To address the dual goals of improving inference and understanding spatial
structure, we set forth a flexible specification for the spatial weights that al-
lows hyperparameters to control the number of neighboring entities as well
as decay of influence over space. This specification is combined with the ma-
trix exponential spatial specification (MESS) introduced in Pace and LeSage
(2000) leading to a Bayesian model that allows posterior inferences regard-
ing the magnitude and extent of spatial influence. We illustrate the method
in an application that examines the role of geographical proximity in the
economic growth of 219 urban zip-code areas in northeast Ohio. Inferences
regarding the magnitude and extent of spatial influence in this setting may
be of interest because theories of economic growth have increasingly stressed
technological spillovers as a source of growth (see Romer, 1994; Grossman
and Helpman, 1994).

KEYWORDS: spatial statistics, spatial autoregression, nearest neigh-
bor, Bayesian Markov Chain Monte Carlo estimation, spatial econo-
metrics.



1 Introduction

Spatial autoregressive models typically specify the spatial dependence among
observations using a n by n weight matrix, where n denotes the number of
observations. Traditional specifications treat the weight matrix as fixed sam-
ple information for computational convenience and to avoid problems such
as multimodality in the likelihood. This results in inferences that are con-
ditional on the specific form of weight matrix used to specify the model. In
many applications interest centers upon the spatial structure itself. For ex-
ample, economic constructs such as spillovers or externalities imply that an
economic unit at one point in space exerts an influence upon other economic
units. Both the magnitude of influence and its decay with distance are im-
portant. To address this need for a model of spatial structure we set forth
a flexible specification for the spatial weights that allows hyperparameters
to control the number of neighboring entities as well as decay of influence
over space. This specification combined with the matrix exponential spa-
tial specification (MESS) introduced in Pace and LeSage (2000) leads to
a Bayesian model that allows posterior inferences regarding the magnitude
and extent of spatial influence.

We argue that this spatial specification has computational advantages
over more traditional specifications and allows simultaneous inference re-
garding the usual parameters in the model as well as the nature and extent
of the spatial relationships involved. Pace and LeSage (2000) introduce
an approach to maximum likelihood estimation of spatial regression mod-
els based on the matrix exponential covariance specification introduced by
Chiu, Leonard, and Tsui (1996). They show that matrix exponentials can
spatially transform the dependent and/or independent variables so that the
determinant of the matrix exponential transformation identically equals 1.
This eliminates the computationally troublesome log-determinant term from
the log-likelihood and reduces maximum likelihood estimation to minimiz-
ing a quadratic form subject to a polynomial constraint. Further, they show
that the resulting minimization problem has a unique, closed-form interior
solution. Thus, maximum likelihood for the MESS model reduces to non-
linearly constrained least squares.

The MESS model introduced in Pace and LeSage (2000) relies on a
flexible specification of the spatial weight structure involved in the model
that allows hyperparameters to control various aspects of the spatial weight
specification. In a maximum likelihood setting, this complicates the op-
timization problem and Pace and LeSage (2000) examine a profile of the
likelihood surface with respect to estimates based on varying values of the
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hyperparameters and use likelihood ratio tests to draw inferences.
This paper introduces a Bayesian variant of the MESS model. This vari-

ant can produce estimates identical to those from the maximum likelihood
MESS model, if implemented with a diffuse prior. Estimation of the model
proceeds via Markov Chain Monte Carlo (MCMC), making it more com-
putationally demanding than maximum likelihood estimates, but one that
provides a number of other advantages.

First, the MCMC method can handle the problem of local optima, that
often arise in spatial modeling. In the presence of local optima and other
erratic behavior of the likelihood, conventional likelihood methods may pro-
vide misleading inference whereas the ability of Bayesian MCMC methods
to directly sample from the posterior can avoid some of these problems. Sec-
ond, Bayesian methods can more gracefully address the problem of nuisance
parameters (Wolpert (2000, p. 771-772)). Third, Bayesian models usually
are advantageous in situations involving parameters that take on discrete
values, as is the case with the hyperparameter controlling the number of
nearest neighbors in the MESS model.

Finally, and most importantly, Bayesian models based upon MCMC pro-
vide greater modeling flexibility in many circumstances than alternative
approaches. For example, MCMC methods can accommodate missing or
censored data samples.1 Censoring often arises in spatial modeling prob-
lems because governmental agencies employ censoring for confidentiality
purposes. In addition, Bayesian methods can formally incorporate relevant
prior information. This flexibility also allows relatively simple modifications
to produce robust estimates that address spatially idiosyncratic behavior
sometimes displayed by aberrant observations or spatial enclaves.

While MCMC provides a number of important advantages, a naive im-
plementation for traditional spatial autoregressive models would involve cal-
culating the log-determinant of an nxn matrix on each pass through the
sampler (see LeSage, 2000). The use of MESS, where the log-determinant
term vanishes, greatly accelerates the MCMC computations. Another de-
sirable aspect of the MESS model is the availability of the likelihood which
greatly facilitates Bayesian inference. This is in contrast to other specifi-
cations that have been introduced to overcome computational problems in
spatial models such as the generalized-moments (GM) estimation techniques

1The Bayesian MESS model could easily be extended to the case of limited or censored
dependent variables. Following LeSage (2000), we need only add one additional conditional
distribution to the MCMC sampler that produces a latent variable reflecting the limited
or truncated dependent variable distribution. This results in a model where posterior
inference can proceed as in the case of continuous dependent variables.
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proposed by Kelejian and Prucha (1998,1999).
In the Bayesian MESS model introduced here, MCMC estimation meth-

ods produce posterior distributions for the hyperparameters used in the
weight specification. This easily implementable approach provides an ele-
gant solution to replace the profile likelihood grid search over hyperparam-
eter values. Another advantage to the Bayesian MESS model is that prior
information regarding the regression parameters, spatial weight hyperpa-
rameters, spatial dependence parameter and disturbance variance can be
introduced. Spatial modeling often involves large samples, so prior informa-
tion regarding regression parameters will probably not have much influence
on the estimation outcome. However, priors placed on the spatial weight
specification parameters, the spatial dependence parameter, or the robust-
ness parameter may exert an important influence.

Section 2 sets forth relevant aspects of the MESS model from Pace and
LeSage (2000) and section 3 introduces the Bayesian version of the model
along with estimation via Markov Chain Monte Carlo methods. Computa-
tional considerations are also discussed in this section. In section 4 we illus-
trate the method in an application that examines the role of geographical
proximity in the economic growth of 219 urban zip-code areas in northeast
Ohio. Inferences regarding the magnitude and extent of spatial influence in
this setting may be of interest because theories of economic growth have in-
creasingly stressed technological spillovers as a source of growth (see Romer,
1994; Grossman and Helpman, 1994). We use this illustrative application to
demonstrate inference regarding the spatial structure of employment growth
relations in urban zip-code areas that may arise from knowledge spillovers.

2 The MESS model

The computational difficulties associated with estimation of spatial econo-
metric regression models discussed in Anselin (1988) are well-known. Direct
estimation via maximum likelihood for spatial models requires computation
of a determinant involving an nxn matrix. Brute force implementation of
maximum likelihood methods become prohibitively expensive for very large
data sets that are the focus of recent spatial statistical applications.

Advances for the particular case of nearest neighbor spatial dependence
described in Pace and Zou (2000) provide a closed-form solution that pro-
duces maximum likelihood estimates. Another alternative that also leads to
closed-form maximum likelihood estimates is presented in Pace and LeSage
(2000). They introduce the matrix exponential spatial specification (MESS)
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that relies on a matrix exponential spatial transformation of the dependent
variable. They show that this leads to a situation where the troublesome
log determinant term vanishes from the log likelihood function.

The MESS model holds an important advantage over other attempts to
eliminate the computational burden of estimating spatial models, such as
the GM estimation technique proposed by Kelejian and Prucha (1998,1999).
The availability of the likelihood in the MESS model allows both classical
and Bayesian inference. This is in contrast to the GM methods that require
adopting another inferential paradigm.

Consider estimation of models where the dependent variable y undergoes
a linear transformation Sy as in (1).

Sy = Xβ + ε (1)

The vector y contains the n observations on the dependent variable, X
represents the nxk matrix of observations on the independent variables, S
is a positive definite nxn matrix, and the n-element vector ε is distributed
N(0, σ2In). The log-likelihood for the MESS model in (1) is,

L = C + ln|S| − (n/2)ln(y′S′MSy) (2)

where C represents a scalar constant and both M = I − H and H =
X(X ′X)−1X ′ are idempotent matrices. The term |S| is the Jacobian of
the transformation from y to Sy. Pace and LeSage (2000) use the matrix
exponential defined in (3) to model S as:

S = eαW =
∞∑
i=0

αiW i

i!
(3)

where W represents an nxn non-negative matrix with zeros on the diagonal
and α represents a scalar real parameter. While a number of ways exist to
specify W , a common specification sets Wij > 0 for observations j = 1 . . . n
sufficiently close (as measured by some metric) to observation i. By con-
struction, Wii = 0 to preclude an observation from directly predicting itself.
If Wij > 0 for the nearest neighbors of observation i, W 2

ij > 0 contains neigh-
bors to these nearest neighbors for observation i. Similar relations hold for
higher powers of W which identify higher-order neighbors. Thus the matrix
exponential S, associated with matrix W , can be interpreted as assigning
rapidly declining weights for observations involving higher-order neighbor-
ing relationships. That is, observations reflecting higher-order neighbors
(neighbors of neighbors) receive less weight than lower-order neighbors.
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Pace and LeSage (2000) rely on a property of the matrix exponential,
|eαW | = etrace(αW ) to simplify the MESS log-likelihood. Since trace(W ) = 0
and by extension |eαW | = etrace(αW ) = e0 = 1, the log-likelihood takes the
form: L = C − (n/2)ln(y′S′MSy). This produces a situation where maxi-
mizing the log-likelihood is equivalent to minimizing (y′S′MSy) with respect
to S. Note that S always appears in expressions involving pre-multiplication
of y or X, eliminating the need for computation involving high-order opera-
tion counts. Computing Sy or SX involves low-order matrix-vector product
computations that require little time for sparse weight matrices such as W .

The MESS model in (1) can be extended to allow for spatial dependence
in the explanatory variables matrix X as shown in (4).

X = [ι U WU . . . W q−1U ] (4)

Where U represents a matrix of observations on p non-constant independent
variables and q is an integer large enough for convergence in the Taylor series
expansion.

In this case, X approximately spans SU and thus the MESS model
based on (4) nests a spatial autoregression in the errors. Hence, a set of
linear restrictions on the parameters associated with the columns of X could
yield the error autoregression. This allows the MESS model to effectively
accommodate different structures for the spatial lags of Y and U (Anselin
(1988), p. 225-230).

Additional flexibility can be introduced by specifying a spatial weight
that includes a decay parameter ρ that lies between 0 and 1, along with a
variable number of nearest neighbor spatial weight matrices Ni, where the
subscript i indexes the ith nearest neighbor. The weight structure specifi-
cation is shown in (5), where m denotes the maximum number of neighbors
considered.

W =
m∑

i=1

(
ρiNi∑m
i=1 ρi

)
(5)

In (5), ρi weights the relative effect of the ith individual neighbor matrix,
so that S depends on the parameters ρ as well as m in both its construction
and the metric used. By construction, each row in N sums to 1 and has
zeros on the diagonal. To see the role of the spatial decay hyperparameter
ρ, consider that a value of ρ = 0.87 implies a decay profile where the 6th
nearest neighbor exerts less than 1/2 the influence of the nearest neighbor.
We might think of this value of ρ as having a “half-life” of six neighbors.

5



On the other hand, a value of ρ = 0.95 has a half-life between 14 and 15
neighbors.

The flexibility arising from this type of weight specification adds to the
burden of estimation requiring that we draw an inference on the parameters ρ
and m. Together these hyperparameters determine the nature of the spatial
weight structure. To the extent that the weight structure specification in
(5) is flexible enough to adequately approximate more traditional weight
matrices based on contiguity, the model introduced here can replicate results
from models that assume the matrix W is fixed and known. However, all
inferences regarding β and σ drawn from a model based on a fixed matrix
W are conditional on the particular W matrix employed. The model we
introduce here produces inferences regarding β and σ that are conditional
only on a family of spatial weight transformations that we denote Sy, where
S = eαW , with the matrices W taking the form in (5). Of course, this raises
the issue of inference regarding these hyperparameters, and we show that the
Bayesian MESS model introduced here can produce a posterior distribution
for the joint distribution of the parameters α, ρ and m as well as the other
model parameters of interest, β and σ.

3 The Bayesian MESS model

A Bayesian approach to the MESS model would include specification of prior
distributions for the parameters in the model, α, β, σ, ρ and m. Prior infor-
mation regarding the parameters β and σ is unlikely to exert much influence
on the posterior distribution of these parameter estimates in the case of very
large samples that are often the focus of spatial modeling. However, the pa-
rameters α, ρ and m are likely to exert an influence even in large samples,
because they determine the structure of the spatial transformation, Sy in
the model.

The Bayesian MESS is presented in (6), where the priors are enumerated.

Sy = Xβ + ε

S = eαW

W =
m∑

i=1

(
ρiNi/

m∑
i=1

ρi

)
ε ∼ N(0, σ2V ) V = diag(v1, . . . , vn)
β ∼ N(c, T )

r/vi ∼ IDχ2(r)
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1/σ2 ∼ Γ(d, ν)
α ∼ U [−∞, 0], or N(a,B)
ρ ∼ U [0, 1]

m ∼ UD[1,mmax] (6)

We rely on a normal-gamma prior for the parameters β, σ using a prior
mean c and variance T for the normal prior on β and prior parameters
d, ν in the gamma prior on σ. In the case of very large samples involving
upwards of 10,000 observations, the normal-gamma priors for β, σ should
exert relatively little influence.

In contrast, the prior assigned to the parameter α associated with spatial
dependence should exert an impact on the estimation outcomes even in large
samples because of the important role of the spatial structure in the model.
The prior assigned for α can be a relatively non-informative uniform prior
that allows for the case of no spatial effects when α = 0, or an informative
prior based on a normal distribution centered on a with prior variance B as
indicated in (6).

The relative variance terms (v1, v2, . . . , vn), are assumed fixed but un-
known parameters that need to be estimated. The prior distribution for
the vi terms takes the form of an independent χ2(r)/r distribution. Re-
call that the χ2 distribution is a single parameter distribution, where we
have represented this parameter as r. This allows us to estimate the addi-
tional n parameters vi in the model by adding the single parameter r to our
estimation procedure.

This type of prior has been used Geweke (1993) in modeling heteroscedas-
ticity and outliers in the context of linear regression. The specifics regarding
the prior assigned to the vi terms can be motivated by considering that the
mean equals unity and the variance of the prior is 2/r. This implies that
as r becomes very large, the terms vi will all approach unity, resulting in
V = In, the traditional assumption of constant variance across space. The
role of V 6= In is to accommodate outliers and observations containing large
variances by down-weighting these observations. Even in large samples, this
prior will exert an impact on the estimation outcome.

A relatively non-informative approach was taken for the hyperparam-
eters ρ and m where we rely on a uniform prior distribution for ρ and a
discrete uniform distribution for m, the number of nearest neighbors. The
term mmax denotes a maximum number of nearest neighbors to be consid-
ered in the spatial weight structure, and UD denotes the discrete uniform
distribution that imposes an integer restriction on values taken by m. Note
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that practitioners may often have prior knowledge regarding the number
of neighboring observations that are important in specific problems, or the
extent to which spatial influence decays over neighboring units. Informa-
tive priors could be developed and used here as well, but in problems where
interest centers on inference regarding the spatial structure relatively non-
informative priors would be used for these hyperparameters.

Given these distributional assumptions, it follows that the prior densi-
ties for β, σ2, α, ρ, m, vi are given up to constants of proportionality by (7),
(where we rely on a uniform prior for α).

π(β) ∝ exp[−1
2
(β − c)′T−1(β − c)] (7)

π(σ2) ∝ (σ2)−(d+1)exp
(
− ν

σ2

)
π(ρ) ∝ 1
π(α) ∝ 1
π(m) ∝ 1

π(vi) ∝ v
−( r

2
+1)

i exp
(
− r

2vi

)

3.1 Estimation of the model

Given the prior densities from section 3, the Bayesian identity

p(β, σ2, V, ρ, α,m) · p(y) = p(y|β, σ2, V, ρ, α,m) · π(β, σ2, V, ρ, α,m) (8)

together with the assumed prior independence of the parameters allows us to
establish the posterior joint density for the parameters, p(β, σ2, V, ρ, α,m).
This posterior is not amenable to analysis, a problem that has often plagued
Bayesian methods in the past. We can however derive the posterior distribu-
tion for the parameters in our model using a methodology known as Markov
Chain Monte Carlo (MCMC).

MCMC is based on the idea that rather than compute the posterior den-
sity of our parameters based on the expression in (8), we would be just as
happy to have a large random sample from the posterior of our parame-
ters, which we designate p(θ|D), using θ to denote the parameters and D
the sample data. If the sample from p(θ|D) were large enough, we could
approximate the form of the probability density using kernel density esti-
mators or histograms, eliminating the need to know the precise analytical
form of the density.

8



We rely on Metropolis-Hastings to compute the posterior distributions
for the parameters α, ρ and m in the MESS model. A normal distribution
is used as the proposal density for α and rejection sampling can be used
to constrain α to the range (−∞, 0) which imposes positive spatial auto-
correlation. This prior restriction is often used in spatial modeling because
negative spatial correlation is difficult to motivate. A uniform proposal dis-
tribution for ρ over the interval (0, 1) was used along with a discrete uniform
for m over the interval (1,mmax).

The parameters β, V and σ in the MESS model can be estimated us-
ing draws from the conditional distributions of these parameters, a pro-
cess known as Gibbs sampling. Assume a parameter vector θ = (θ1, θ2), a
prior p(θ), and likelihood l(θ|y, X), that produces a posterior distribution
p(θ|D) = c · p(θ)l(θ|y, X), with c a normalizing constant. The case we en-
counter in the MESS model is one where the posterior distribution over all
parameters is difficult to work with. However, if we partition our parame-
ters into two sets θ1, θ2 and had initial estimates for θ1, we could estimate θ2

conditional on θ1 using p(θ2|D, θ̂1). As a concrete example, in our case an
estimate of β conditional on σ, V, α, ρ, m is very easy to derive and compute.
Denote the estimate, θ̂2 derived by using the posterior mean or mode of
p(θ2|D, θ̂1), and consider that we are now able to construct a new estimate
of θ1 based on the conditional distribution p(θ1|D, θ̂2). Note that for our
problem it is also easy to compute estimates of σ and V conditional on the
other parameters in the MESS model. This new estimate for θ1 can be used
to construct another value for θ2, and so on.

Summarizing, we will rely on Metropolis sampling for the parameters
α, ρ and m within a sequence of Gibbs sampling steps to obtain β, σ and
V , a procedure that is often labeled “Metropolis within Gibbs sampling”
(Gelman, Carlin, Stern and Rubin, 1995).

3.2 The conditional distributions for β, σ and V

To implement our Metropolis within Gibbs sampling approach to estimation
we need the conditional distributions for β, σ and V which are presented
here.

For the case of the parameter vector β conditional on the other param-
eters in the model, α, σ, V, ρ, m we find that:

p(β|α, σ, V, ρ, m) ∼ N(b̄, σ2B̄)
b̄ = (X ′V −1X + T−1)−1(X ′V −1Sy + σ2T−1c)
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B̄ = (X ′V −1X + T−1)−1 (9)

Note that given the parameters V, α, ρ, σ and m, the vector Sy and
X ′V −1X can be treated as known, making this conditional distribution easy
to compute and sample from. This is often the case in MCMC estimation,
which makes the method attractive.

The conditional distribution of σ is shown in (10), (see Gelman, Carlin,
Stern and Rubin, 1995).

p(σ2|β, α, V, ρ, m) ∝ (σ2)−(n
2
+d+1)exp

[
−e′V −1e +

2ν

2σ2

]
(10)

where e = Sy−Xβ, which is proportional to an inverse gamma distribution
with parameters (n/2) + d and e′V −1e + 2ν.

Geweke (1993) shows that the conditional distribution of V given the
other parameters is proportional to a chi-square density with r + 1 degrees
of freedom. Specifically, we can express the conditional posterior of each vi

as:

e2
i + r

vi
|(β, α, σ2, v−i, ρ, m) ∼ χ2(r + 1) (11)

where v−i = (v1, . . . , vi−1, vi+1, . . . , vn) for each i.
As noted above, the conditional distributions for α, ρ and m take un-

known distributional forms that require Metropolis-Hastings sampling. By
way of summary, the MCMC estimation scheme involves starting with arbi-
trary initial values for the parameters which we denote β0, σ0, V 0, α0, ρ0,m0.
We then sample sequentially from the following set of conditional distribu-
tions for the parameters in our model.

1. p(β|σ0, V 0, α0, ρ0,m0), which is a multinormal distribution with mean
and variance defined in (9). This updated value for the parameter
vector β we label β1.

2. p(σ|β1, V 0, α0, ρ0,m0), which is chi-squared distributed n+2d degrees
of freedom as shown in (10). Note that we rely on the updated value of
the parameter vector β = β1 when evaluating this conditional density.
We label the updated parameter σ = σ1 and note that we will continue
to employ the updated values of previously sampled parameters when
evaluating the next conditional densities in the sequence.

3. p(vi|β1, σ1, v−i, α
0, ρ0,m0) which can be obtained from the chi-squared

distribution shown in (11). Note that this draw can be accomplished
as a vector, providing greater speed.

10



4. p(α|β1, σ1, V 1, ρ0,m0), which we sample using a Metropolis step with
a normal proposal density, along with rejection sampling to constrain
α to the interval (−∞, 0). We can rely on the likelihood to evaluate
the candidate value of α except in the case of a normal N(a,B) prior
on α. Here where we rely on: −e′e/(2σ2) − 0.5{(α − a)2/Bσ2}, with
e = Sy −Xβ.

5. p(ρ|β1, σ1, V 1, α1,m0), which we sample using a Metropolis step based
on a uniform distribution that constrains ρ to the interval (0,1). Here
again, we rely on the likelihood to evaluate the candidate value of ρ. As
in the case of the parameter α it would be easy to implement a normal
or some alternative prior distributional form for this hyperparameter.

6. p(m|β1, σ1, V 1, α1, ρ1), which we sample using a Metropolis step based
on a discrete uniform distribution that constrains m to be an integer
from the interval (1,mmax). As in the case of α and ρ, we rely on the
likelihood to evaluate the candidate value of m.

We now return to step 1) employing the updated parameter values in
place of the initial values β0, σ0, V 0, α0, ρ0,m0. On each pass through the
sequence we collect the parameter draws which are used to construct a joint
posterior distribution for the parameters in our model. Gelfand and Smith
(1990) demonstrate that MCMC sampling from the sequence of complete
conditional distributions for all parameters in the model produces a set of
estimates that converge in the limit to the true (joint) posterior distribution
of the parameters. That is, despite the use of conditional distributions in our
sampling scheme, a large sample of the draws can be used to produce valid
posterior inferences regarding the mean and moments of the parameters.

3.3 Computational considerations

Use of the likelihood when evaluating candidate values of α, ρ and m in
the MCMC sampling scheme requires that we form the matrix exponential
S = eαW , which in turns requires computation of W =

∑m
i=1(ρ

iNi/
∑m

i=1 ρi),
based on the current values for the other two parameters. For example, in
the case of update α = α1, we use ρ = ρ0 and m = m0 to find W . The
nearest neighbor matrices Ni can be computed outside the sampling loop
to save time, but the remaining calculations can still be computationally
demanding if the number of observations in the problem is large.

Further aggravating this problem is the need to evaluate both the existing
value of the parameters α, ρ and m, given the updated values for β, σ and V
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as well as the candidate values. In all, we need to form the matrix product
Sy, along with the matrix W six times on each pass through the sampling
loop.

To enhance the speed of the sampler, we compute the part of Sy that
depends only on ρ and m, for a grid of values over these two parameters
prior to beginning the sampler. During evaluation of the conditionals and
the Metropolis-Hastings steps, a simple table look-up recovers the stored
component of Sy and applies the remaining calculations needed to fully
form Sy.

The ranges for these grids can be specified by the user, with a trade-off
between selecting a large grid that ensures coverage of the region of posterior
support and a narrow grid that requires less time. In a typical spatial
problem, the ranges might be 0.5 ≤ ρ ≤ 1, and 4 < m < 30. If the grid
range is too small, the posterior distributions for these parameters should
take the form of a truncated distribution, indicating inadequate coverage of
the region of support.

Simpler models than that presented in (6) could be considered. For
example either ρ or m, or both ρ and m could be fixed a priori. This
would enhance the speed of the sampler because eliminating one of the two
hyperparameters from the model reduces the computational time needed by
almost one-third since it eliminates two of the six computationally intensive
steps involving formation of Sy.

The use of nearest neighbors also accelerates computation. Suppose the
indices to the neighboring observations lie in the nxm matrix G where G1...m

equal individual index vectors. For a vector g the values of N1g equal g(G1)
and so forth. Using index arithmetic in place of matrix multiplication can
greatly reduce computation time as indexing into a matrix is one of the
faster digital operations.

Before turning to an illustrative example, we present some timing results
for applications of both maximum likelihood and MCMC estimation of the
MESS model, as well as more conventional spatial econometrics models. A
generated data experiment involving a data set containing 3,107 US counties
from Pace and Barry (1997) was used to perform the timing comparisons.
There are 4 explanatory variables in the model and estimates were produced
using a host of Bayesian variants of the spatial econometric models described
in Anselin (1988). These Bayesian versions of the spatial regression models
are presented in LeSage (1997) along with a description of estimation via
MCMC sampling. The traditional spatial models used along with labels we
rely on in presenting timing results are enumerated below.
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SAR: y = ρWy + Xβ + ε

SEM: y = Xβ + u, u = λWu + ε

SAC: y = ρW1y + Xβ + u, u = λW2u + ε

These timing results reflect the use of a Monte Carlo estimator presented
in Barry and Pace (1999) that approximates the log determinant over a grid
of values for the spatial dependence parameter ρ in these models (see also
Barry and Pace, 1997). Other computational enhancements were used, in-
cluding sparse matrix algorithms from MATLAB along with special table
look-up of the log determinant values during sampling evaluation of the con-
ditional distributions. The timing results we report represent state-of-the-
art algorithms implemented in MATLAB functions contained in the pub-
lic domain Spatial Econometrics Toolbox available at http://www.spatial-
econometrics.com. All computations were carried out on a 650 Mhz. Pen-
tium III laptop running Windows 2000 and MATLAB version 5.3.

A number of variants on the Bayesian MESS model are also presented
to provide some feel for the computational effort involved in determining
various parameters in the model. For comparability with the SAR, SEM and
SAC models, no spatial lags of the explanatory variables were used. That
is, the model took the form: Sy = Xβ + ε. The various MESS models used
in the experiments are enumerated below from simplest to most complex.

MESS1 - a model with both ρ and m fixed, and no vi parameters.

MESS2 - a model with ρ fixed, m estimated and no vi parameters.

MESS3 - a model with m fixed, ρ estimated and no vi parameters.

MESS4 - a model with both ρ and m estimated and no vi parameters.

MESS5 - a model with both ρ and m estimated as well as estimates
for the vi parameters.

All MCMC estimates involved 1,250 draws, which were adequate to pro-
duce converged estimates. The Bayesian SAR, SEM, and SAC models all
invoked the heteroscedastic prior estimating a vector of vi parameters. The
SAR and SEM models relied on a first-order contiguity matrix, and the
SAC model used a first-order matrix for W1 and a second-order matrix for
W2. For the maximum likelihood MESS and Bayesian MESS1 models, the
hyperparameter for the number of neighbors was set arbitrarily at 5. The
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other hyperparameter, ρ in these models was fixed at 0.9. In the case of the
Bayesian MESS2 through MESS5 models, the grid search over ρ extended
from 0.5 to 1, in 0.01 increments and from 4 to 10 neighbors in integer in-
crements. These were thought to be representative of values practitioners
might use in applications.

Table 1 shows total time taken as well as times required for component
aspects involved in solving the estimation problem. The total time reported
is greater than the sum of the component timings shown in the table because
this involved computing measures of fit for the model such as R−squared,
predicted values, residuals as well as means and standard deviations of the
estimates based on the posterior distribution of draws. From the results
reported in Table 1, the computational efficiency of the maximum likelihood
MESS model is quite clear. It required only 1.16 seconds to solve this
problem, with 0.85 seconds required to compute the five nearest neighbors
and 0.28 seconds to compute a numerical hessian used to produce a variance-
covariance measure of dispersion for the estimates.

The Bayesian models MESS1 through MESS4 hold a clear MCMC speed
advantage over MCMC estimates for the conventional SAR, SEM, and SAC
spatial econometric models. Keep in mind that the traditional models as-
sume the spatial weight matrix W is fixed and known, making inferences
conditional on this aspect of the problem. In contrast, the MESS2 through
MESS5 models produce estimates for a flexible weight matrix specification
as well as the other parameters in the model.

The times reported for the MESS5 model illustrate the computational
costs of estimating the vi variance scaling parameters that accommodate
non-constant variance over space. Nonetheless, the Bayesian MESS models
can be applied to spatial samples involving all US counties and produce
estimates in two to six minutes time on a personal computer.

A large sample of 35,702 home sales from Lucas County, Ohio was used
to produce another comparison of computational speed. These results are
presented in Table 2 in the same format at that used in Table 1. This
experiment used 1,250 draws and the same settings and grid ranges as in
the previous experiment. This should provide a feel for the computational
impact of changing the number of observations, ceteris paribus. A standard-
ized first-order contiguity matrix was used for the SAR and SEM models
that was very sparse, containing 214,168 non-zero elements from a total of
1,274,632,804 elements.

The number of observations in this experiment is 11.5 times that of
the first experiment reported in Table 1. The average difference between
the time required for the Bayesian SAR and SEM models here and in Ta-
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Table 1: Timing results (in seconds) for 3,107 observations

Bayesian Traditional Models
Model total time for log(det) over sampling

time a grid of θ values time
Bayes SAR 321.4 3.6 299.3
Bayes SEM 309.9 3.6 287.8
Bayes SAC 498.7 3.6 478.4

Maximum Likelihood Models
Model total time for neighbors time for

time calculation hessian
Max Lik MESS 1.16 0.85 0.28

Bayesian MESS models
Model total time for neighbors sampling

time plus hyperparameters grid time
Bayes MESS1 45.2 0.88 43.9
Bayes MESS2 80.4 1.16 79.2
Bayes MESS3 81.9 2.58 79.2
Bayes MESS4 126.4 18.2 108.1
Bayes MESS5 392.5 17.7 374.5
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Table 2: Timing results (in seconds) for 35,702 observations

Bayesian Traditional Models
Model total time for log(det) over sampling

time a grid of θ values time
Bayes SAR 3545.1 41.8 3503.0
Bayes SEM 3491.1 41.7 3449.1

Maximum Likelihood Models
total time for neighbors time for
time calculation hessian

Max Lik SAR 555.2 — 8.3
Max Lik MESS 15.2 10.9 3.7

Bayesian MESS models
total time for neighbors sampling
time plus hyperparameters grid time

Bayes MESS1 569.5 10.7 557.9
Bayes MESS2 1031.0 40.1 988.7
Bayes MESS3 1020.6 34.5 985.4
Bayes MESS4 1600.5 207.0 1381.5
Bayes MESS5 4959.2 206.2 4749.4
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ble 1 was 11.14, so the time required for these two models scale linearly
in the number of observations. Similarly, the average time required for the
Bayesian MESS models here relative to Table 1 is 12.6, so again the models
scale approximately linearly in the number of observations.

An interesting result with regard to the Bayesian MESS1 model is that
estimation via MCMC sampling took 569.5 seconds compared to 555.2 sec-
onds for maximum likelihood estimation of the traditional SAR model. Both
of these models take the spatial weight matrix as given, as does the Bayesian
SAR model implemented using MCMC methods. Here we see a speed
improvement of over 6 times for the Bayesian MESS1 model relative to
the Bayesian SAR model. This improvement in computation times is at-
tributable to the elimination of the log determinant term in the likelihood
function and the conditional distributions involved in the MESS models.2

One caveat regarding these timing results is that they represent the use
of MATLAB, an interpreted matrix programming language rather than a
compiled language such as FORTRAN or C. Timing results based on a FOR-
TRAN implementation of maximum likelihood MESS estimation suggest a
six-fold improvement in timing results would arise from using a compiled
language in place of MATLAB.

In summary, the Bayesian MESS model introduced here is computation-
ally feasible for very large spatial problems and MCMC estimation methods
are around six times as fast as Bayesian variants of the more traditional
spatial econometric models implemented via MCMC sampling.

4 Illustrations of the Bayesian MESS model

We provide illustrations of the Bayesian MESS model in section 4.1 using a
generated model with only 49 observations taken from Anselin (1988). Use
of a generated example where the true model and parameters are known
allows us to illustrate the ability of the model to find the true spatial weight
structure used in generating the model.

One point we wish to illustrate here is that both maximum likelihood
and Bayesian MESS models can be used to estimate relationships generated
using the more traditional spatial regression models. Inferences regarding
spatial dependence, disturbance noise variance and the regression parame-
ters produced by the MESS models will be the same as those drawn from

2Some of the improvement comes from the use of nearest neighbors in the MESS model
along with index calculations. The index calculations double the speed relative to sparse
matrix calculations.
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estimates based on the more traditional models. Because of the compu-
tational speed advantages associated with the MESS model, this seems a
highly desirable situation.

Section 4.2 provides an illustration where inferences regarding the mag-
nitude and extent of spatial influence may be of interest. The magnitude
and extent of spatial knowledge spillovers in a sample of 219 northeast Ohio
urban zip-code areas is used to illustrate inference regarding the spatial
weight structure of the model.

4.1 A generated data example

A traditional spatial autoregressive (SAR) model: y = θWy + Xβ + ε was
used to generate the vector y based on 49 spatial observations from Colum-
bus neighborhoods presented in Anselin (1988). The spatial weight matrix,
W =

∑m
i=1 ρiNi/

∑m
i=1 ρi, was based on m = 5 nearest neighbors and dis-

tance decay determined by ρ = 0.9. The two explanatory variables from
Anselin’s data set (in studentized form) along with a constant term and θW
were used to generate a vector y = (In − θW )−1Xβ + (In − θW )−1ε. The
parameters β and the noise variance, σ2

ε were set to unity and the spatial
correlation coefficient θ was set to 0.65.

This generated data was used to estimate parameters based on a maxi-
mum likelihood SAR model, maximum likelihood MESS and Bayesian MESS
models. Of course, traditional implementation of the SAR model would
likely rely on a first-order contiguity matrix treated as fixed sample infor-
mation, which we label W1. Maximum likelihood MESS would attempt to
determine values for the hyperparameters ρ, m using a profile likelihood grid
search over these values. Bayesian MESS would produce posterior estimates
for the hyperparameters as part of the MCMC estimation as in the models
labeled MESS4 and MESS5 in the previous section. Of course, it would be
possible to rely on MCMC estimation and the simpler models labeled MESS1
to MESS3 in the previous section, but the computational requirements for
this small sample are minimal.

We illustrate the difference in estimates and inferences that arise from
using these three approaches. Note that two variants of the SAR model were
estimated, one based on a first-order contiguity matrix, W1 and another
based on the true W matrix used to generate the model. In practice of
course, one would not know the true form of the W matrix. One point to
note is that the first-order contiguity matrix for this data set contains an
average number of neighbors equal to 4.73 with a standard deviation of 1.96.
Of the total 49x49=2,401 elements there are 232 non-zero entries. We might
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expect that the differences between SAR models based on W1 and the true
W containing five nearest neighbors and a small amount of distance decay
should be small.

The maximum likelihood MESS model searched over a grid of ρ values
from 0.01 to 1 in 0.01 increments and neighbors m ranging from 1 to 10.
Estimates were produced based on the values of ρ and m that maximized
the profile log likelihood function. The Bayesian MESS model was run
to produce 5500 draws with the first 500 discarded to allow the MCMC
chain to converge to a steady state.3 Diffuse priors were used for β and
σ and two variants of the model were estimated: one that included the
parameters V and another that did not. The latter Bayesian model assumes
that ε ∼ N(0, σ2In), which is consistent with the assumption made by the
maximum likelihood SAR and MESS models.

The estimation results are presented in Table 3. Measures of precision for
the parameter estimates are not reported in the table because all coefficients
were significant at the 0.01 level. In the table we see that the SAR model
based on the true spatial weight matrix W performed better than the model
based on W1, as we would expect. (True values used to generate the data
are reported in the first column next to the parameter labels). Both the
profile likelihood approach and the posterior distribution from the Bayesian
MESS models identified the correct number of neighbors used to generate
the data. The Bayesian MESS models produced posterior estimates for ρ
based on the mean of the draws equal to 0.91 and 0.89 compared to the true
value of 0.90, whereas the profile likelihood search resulted in an estimate of
ρ = 1.0. Nonetheless, the MESS models produced very similar β estimates
as well as estimates for the spatial dependence parameter in this model,
α. The estimate of σ2 from one Bayesian MESS model was close to the
true value of unity, while the other Bayesian model produced an estimate
closer to that from the maximum likelihood SAR model based on the true
W matrix.

The profile likelihood approach identified the correct number of neigh-
bors used to generate the data and points to a value of ρ = 1, versus the
true value of 0.9. For contrast, the posterior distribution of ρ is presented in
Figure 1 where a kernel density estimate based on the 5,000 draws retained
from the MCMC sampler was used. This posterior was skewed, having a
mean of 0.9171, a median of 0.9393 and a mode of 0.9793. This partially
explains the difference between the maximum likelihood estimate of unity

3This is actually an excessive number of draws, since the estimates were the same to one
or two decimal places as those from a sample of 1250 draws with the first 250 discarded.
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Table 3: A comparison of models from experiment 1

SAR W1 SAR W ML MESS MESS4 MESS5
Variable
β0 = 1† 1.3144 1.1328 1.1848 1.1967 1.1690
β1 = 1 1.1994 0.9852 1.0444 1.0607 1.0071
β2 = 1 1.0110 1.0015 1.0144 1.0102 0.9861
σ2 = 1 1.4781 0.7886 0.8616 0.9558 0.7819
θ = 0.65 0.5148 0.6372
α -0.8879 -0.8871 -0.9197
R2 0.8464 0.9181 0.9160 0.9141 0.9134
m = 5 5 5.0466 5.0720
ρ = 0.90 1.0 0.9171 0.8982
† true values used to generate the data.

and the Bayesian estimate reported in Table 3. It should be clear that the
posterior distributions for the hyperparameters ρ and m provide a conve-
nient summary that allows the user to rely on mean, median or modes in
cases where the resulting distributions are skewed.

In most applications a simple histogram of the draws would suffice, and
we illustrate this for the posterior distribution of the draws for m in Figure 2.
In addition to posterior point estimates for the hyperparameters based on
measures of central tendency, measures of dispersion can be easily calculated
using the standard deviation of the MCMC draws, or quantiles calculated
from a count of the draws within upper and lower limits.

Note that the parameter α in the MESS model plays the role of θ in
the traditional SAR, SEM, and SAC models capturing the extent of spatial
dependence. Inferences about spatial dependence are based on a test of the
magnitude of α versus zero. Figure 3 shows the posterior distribution of α
from the MESS4 model, which should make it clear that this estimate would
lead to an inference of spatial dependence, that is, α 6= 0.

As an illustration of the ability of the MESS model to find the correct
model specification, we produced estimates for models based on a first-order
contiguity matrix used to generate the data in this experiment as well as
models based on the two through six nearest neighbors. Note that use of spa-
tial weight matrices based on nearest neighbors represents a misspecification
since the first-order contiguity matrix was used to generate the dependent
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Table 4: Specification search example involving six models

# of neighbors ML MESS MCMC MESS
Log Likelihood Posterior Probability

Correct W matrix -75.7670 0.9539
2 neighbors -85.0179 0.0001
3 neighbors -80.2273 0.0094
4 neighbors -81.9299 0.0017
5 neighbors -79.3733 0.0247
6 neighbors -80.3274 0.0102

variable vector y. No hyperparameters were used in this experiment, so the
specification: Wi = eαNi , i = 1, . . . , 6, was used, where Ni denotes a nearest
neighbor weight matrix based on i neighbors.

The question of interest here is whether the MESS models can distinguish
the first-order contiguity matrix used to generate the data from the nearest
neighbor matrices. Posterior probabilities for these six models are shown
in Table 4 for the Bayesian MESS and the log likelihood function values
are shown for the maximum likelihood MESS model.4 From the table we
see that the MESS models correctly identified the model associated with the
true weight matrix. Almost all of the posterior probability weight was placed
on this model, indicating that the flexibility associated with a specification
that allows varying the number of neighbors did not lead the model to pick
an inferior spatial weight structure when confronted with the true structure.

Relatively diffuse priors along with a prior reflecting a belief in constant
variance across space were used in the experiments above to illustrate that
the Bayesian MESS model can replicate maximum likelihood estimates. This
is however a computationally expensive approach to producing MESS esti-
mates. A practical motivation for the Bayesian model would be cases involv-
ing outliers or non-constant variance across space. To illustrate the Bayesian
approach to non-constant variance over space we compare six models based
on alternative values for the hyperparameter r that specifies our prior on
heterogeneity versus homogeneity in the disturbance variances. These tests
are carried out using two data sets, one with homoscedastic and another

4Posterior probabilities can be computed using a sample of marginal log likelihood
function values generated during the MCMC sampling as described in Kass and Raftery,
1995.

21



Table 5: Homogeneity test results for two data sets

r value Homoscedastic data Heteroscedastic data
Posterior Posterior

Probabilities Probabilities
50 0.9435 0.0001
20 0.0554 0.0039
10 0.0011 0.2347
7 0.0001 0.6200
4 0.0000 0.1413
1 0.0000 0.0000

with heteroscedastic disturbances. Non-constant variances were created by
scaling up the noise variance for the last 20 observations during generation
of the y vector. This might occur in practice if a neighborhood in space
reflects more inherent noise in the regression relationship being examined.
The last 20 observations might represent one region of the spatial sample.

We test a sequence of declining values for r with large values reflecting
a prior belief in homogeneity and smaller values indicating heterogeneity.
Posterior probabilities for these alternative values of r are shown in Table 5
for both sets of generated data. For the case of constant variances, the
posterior model probabilities correctly point to a model based on large r
values of 50. In the case of heteroscedastic disturbances, the models based
on r values of 10, 7 and 4 receive high posterior probability weights, reflecting
the non-constant variance.

In addition to correctly identifying the existence of heterogeneity in the
disturbance variances, a plot of the posterior means of the vi estimates can
be a useful diagnostic regarding the nature and extent of the heterogeneity.
Figure 4 shows a plot of these estimates for the Bayesian MESS model as
well as the Bayesian SAR model. From the figure we see that the pattern
of inflated variances over the last 20 observations is correctly identified by
the vi estimates from both models.

4.2 An application

As an example of a study with potential spatial aspects, Glaeser, Kallal,
Scheinkman, and Shleifer (1992) (GKSS hereafter) examine employment and
earnings growth of large industries in 170 U.S. cities between 1956 and 1987.
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They find that local competition and urban diversity are positively associ-
ated with industry-level employment and earnings growth while regional
specialization is not significantly associated with employment or earnings
growth. Their motivation for examining the role of these factors is that the-
ories of economic growth have increasingly stressed technological spillovers
as a source of growth (see Romer, 1994; Grossman and Helpman, 1994).
Geographical proximity suggests that knowledge spillovers take place in ur-
ban areas where transmission of ideas is rapid and convenient because of the
high density of individuals, occupations and industries.

Discussions of spillovers naturally suggest a spatial variant of the GKSS
model where the number of neighbors and the rate of decay of influence
over space might be a focus of inference. To examine this, we estimate a
GKSS style model using employment and earnings growth data over the
period from the first quarter of 1989 to the first quarter of 1998 in 219
zip-code areas in northeastern Ohio.5 These zip-code areas included Akron,
Canton, Cleveland, and Youngstown-Warren in the following way. Because
our interest centers on earnings growth in urban and surrounding areas, we
relied on the U.S. Postal Service designations of zip codes associated with
the four cities: Akron, Canton, Cleveland, and Youngstown-Warren. We
also included suburban areas using a mapping program to determine zip-
code areas that shared borders with the urban zip-code areas. Geographers
refer to these neighboring areas as “first-order contiguous”. Also included
in the sample were areas defined by zip-codes that were neighbors to the
suburban areas, i.e., have shared borders with the suburban areas. These
would represent “second-order contiguous” areas with respect to the urban
areas. Figure 5 shows a map of the 219 contiguous zip-code areas resulting
from this configuration.

The dependent variable in the model is the growth rate of aggregate zip-
code area employment or payroll earnings over the period 1989 first quarter

5This study draws on a preliminary set of estimates for quarterly employment, payroll
and establishments at the zip-code area level. This new source of labor market infor-
mation was constructed by a network of university researchers coordinated by the Ohio
Urban Universities Program. In cooperation with the Ohio Bureau of Employment Ser-
vices, establishment level information (ES202 data) on quarterly employment and payroll
reported by firms for unemployment insurance purposes has been developed to form a
database that contains employment, nominal payroll and the number of establishments
in each of Ohio’s 1,008 zip code areas. The raw ES202 data information represents an
administrative database that is not immediately useful for the type of analysis in this
study. The initial ES202 information was statistically transformed to facilitate the anal-
ysis we undertake in the sequel. For a detailed report on the statistical methods and
transformations employed, see LeSage (1999).
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to 1998 first quarter, computed as log(yT )− log(y0). Following GKSS a set
of explanatory variables was constructed to reflect:

1. diversity of geographically neighboring industries as this may pro-
mote innovation and growth if knowledge transfers come from outside
the core industry. GKSS attribute these ideas to Jacobs (1969).

2. specialization or geographical concentrations of industries which might
promote growth if technology transfers take place through spying and
interfirm movement of skilled labor. Marshall (1890), Arrow (1962)
and Romer (1986) are all credited by GKSS with making cases for
this type of technology externalities.

3. competition which would favor Jacobs case for diversity, whereas
a lack of competition might be consistent with specialization or geo-
graphical concentration suggested by Marshall, Arrow and Romer.

4. initial conditions which might be an important determinant of em-
ployment and earnings growth rates. Geographic areas with large ini-
tial endowments of employment (payroll) should exhibit lower growth
rates than areas with lower initial levels of employment (payroll).

Although GKSS motivate their model and relationships in terms of ge-
ographically neighboring industries and firms, geographical concentration
and spatial spillovers or technology transfers, their data sample involves a
cross-section of 170 US cities and the estimation methodology was ordinary
least-squares. Here we use a zip-code area spatial data sample that allows
for a finer spatial scale where the geographical influence of neighboring ar-
eas on employment and earnings growth might be detected. The Bayesian
MESS model in (12) was estimated here to take account of competition,
diversity and specialization in neighboring zip-code areas as well as the area
itself.

Sy =
[

X WX
]
β + ε (12)

In addition, the model estimates the extent of influence over space using the
parameterized version of the spatial weight matrix from (5) allowing us to
draw inferences about this issue.

The variable measuring competition was constructed by dividing the
number of establishments per employee for the largest 2-digit industry in
each zip-code area by the number of establishments per employee for this
industry in the state of Ohio. Values of this variable greater than one would
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indicate a more competitive environment for the largest industry in the
zip-code area than in the state as a whole. Smaller values indicate less
competition. This variable is similar to that used by GKSS to measure
competition and was based on initial period employment and establishments.

As a measure of specialization we followed GKSS and used a ratio of the
proportion of total area employment contained in the largest 2-digit industry
for each zip-code area divided by the proportion of total state employment
held by this industry at the statewide level. Values greater than one would
indicate a larger degree of specialization in this industry than the average
industrial specialization in the state. Again, initial period values were used.

Diversity was measured as in GKSS using employment in the largest five
2-digit industries during 1989Q1 in each zip-code area as a share of total
zip-code area employment. Larger magnitudes for this variable reflect less
industrial diversity in the zip-code area.

To control for initial conditions the log-level of payroll (employment)
during the initial period 1989Q1 was entered in the earnings (employment)
growth equation. A negative sign for the coefficient on this variable would
indicate convergence in growth between the zip-code areas over time. In
addition, establishment growth rates (calculated as (log(yT )− log(y0)) were
used as a control variable.

Estimates based on 10,500 draws (with the first 500 used as “burn-in”
draws for the MCMC sampler) are shown in Table 6. In addition to Bayesian
MESS estimates based on an assumption of normal disturbances, we com-
pare these results to estimates from a non-spatial least-squares model.

The parameter α in the model indicates significant spatial dependence
for both MESS models, consistent with the importance of neighboring zip-
code areas. The posterior distributions for α from both employment and
earnings relations are shown in Figure 6, where we see clear evidence of
spatial dependence. Evidence regarding the posterior mean, median and
mode as well as the variance for the spatial dependence parameter in both
relations is remarkably similar, as we might expect because of the reasonably
high correlation between employment and earnings.

There are numerous motivations for drawing inferences regarding the
spatial structure of the relationship between growth and variables that de-
scribe the environment in which firms operate. An important part of the
technology transfer argument is that knowledge spillovers result from em-
ployment density. Anas, Arnott and Small (1998) provide a cogent case for
the impact of differing spatial scales on employment density. They present
a graphical depiction of employment density in Los Angeles County using
three different degrees of spatial averaging. The density appears homoge-
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Table 6: A comparison of earnings growth models

least-squares Bayesian MESS
Variable Coeff. p-level Coeff. p-level†
constant term 1.7765 0.0000 -0.4910 0.3482
log(1989 level) -0.0699 0.0001 -0.0886 0.0000
establishment growth rate 0.4629 0.0000 0.4181 0.0000
diversity -0.9069 0.0057 -0.9039 0.0021
competition 0.0866 0.0725 0.0699 0.0748
specialization 0.1065 0.2017 0.1198 0.0749
W (log(1989 level)) 0.0960 0.0106
W (est growth rate) -0.0377 0.4064
W (diversity) 2.6342 0.0457
W (competition) -0.1696 0.1747
W (specialization) -0.1037 0.3454

Hyperparameters mean std.
α -0.4838 0.1913
ρ 0.8994 0.0859
# neighbors 13.0271 3.6813

adjusted R2 0.3296 0.4026
σ2

ε 0.1446 0.1348
† Bayesian p-levels, see Gelman, Carlin, Stern and Rubin (1995)
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Table 7: A comparison of employment growth models

least-squares Bayesian MESS
Variable Coeff. p-level Coeff. p-level†
constant term 0.6086 0.0009 -0.3421 0.3331
log(1989 level) -0.0411 0.0084 -0.0472 0.0058
establishment growth rate 0.4452 0.0000 0.4208 0.0000
diversity -0.8874 0.0004 -0.8183 0.0009
competition 0.1215 0.0010 0.1217 0.0010
specialization 0.0229 0.7201 0.0142 0.4132
W (log(1989 level)) 0.0542 0.0824
W (est growth rate) -0.0917 0.2556
W (diversity) 1.7025 0.1015
W (competition) -0.1969 0.0934
W (specialization) 0.0687 0.3609

Hyperparameters mean std.
α -0.4814 0.2056
ρ 0.9143 0.0759
# neighbors 13.7074 3.6374

adjusted R2 0.4216 0.4675
σ2

ε 0.0851 0.0821
† Bayesian p-levels, see Gelman, Carlin, Stern and Rubin (1995)
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nous at a course scale, but contains a great deal of intricate structure when
viewed at finer scales. The traditional practice that fixes spatial weights
a priori may reflect a coarse spatial scale that obscures differences in ur-
ban, suburban and outlying employment density and their impact on the
economic environment in which firms operate.

A second motivation that the extent of spatial influence is important
when considering technology transfer comes from the sociological literature
on social networks. Granovetter (1974) using a sample of 282 male profes-
sional and technical workers in the Boston area finds that 57% of current
jobs were found through personal contacts or referrals. Corcoran et al. find
similar results using a larger sample from the 1978 wave of the PSID. Well-
man (1996) finds that 38% of all active contacts take place between persons
that live less than 1 mile apart, and 64% involve agents living within 5
miles of each other. Combining these two findings, we have a case that the
spatial structure may need to reflect the appropriate distance and physical
proximity to capture social interactions of the type that lead to spillovers.

Third, Jaffe et al. (1993) point out that citation of patents can be used to
document knowledge flows. Patent citations reference previous ideas under-
lying development of the patent. In their study (Jaffe et al., 1993) matched
company citations of university patents by states and MSAs finding strong
evidence that citations of university patents were geographically localized
near the academic institutions. This seems to reinforce the second motiva-
tion regarding distance and social interaction.

Fourth, if diversity, competition and specialization are important factors
determining knowledge spillovers, firms my attempt to relocate within a
given metropolitan region to take advantage of different propensities for
spillover in various geographic areas within the region. Again, an a priori
setting of the spatial weights may not reflect an appropriate scale to capture
these movements within the region.

To illustrate how one might address these issues, we draw inferences on
the spatial extent of influence from neighbors using the hyperparameters ρ
and m from the model. The parameter ρ reflects distance decay and m indi-
cates the number of neighbors, which together determine the spatial weight
structure in the Bayesian MESS model. The means and standard deviations
reported for ρ in Table 6 need to be considered in light of the skewed asym-
metric posterior distributions shown in Figure 7. The mean and median ρ
from the earnings equation are: 0.8994 and 0.9217, respectively, while the
mean and median ρ values for the employment relation are: 0.9143 and
0.9361. Using a value of 0.91 between the mean and median for the earnings
relation, the half-life would be 9 neighbors. That is, the 9th nearest neighbor

28



would exert an influence half that of the nearest neighbor. Similar conclu-
sions would hold for the employment relation where ρ = 0.92 represents a
value midway between the mean and median posterior estimates.

This information in conjunction with posterior information for the pa-
rameter m reflecting the number of neighbors allows us to draw inferences
about the spatial extent of influence arising from the economic environ-
mental variables reflecting competition, diversity and specialization. The
posterior means for the neighbor parameters in the earnings and employ-
ment relations were 13.0271 and 13.7074 and the medians were 13 and 14.
This should be interpreted in conjunction with the posterior information
for the hyperparameter ρ, that suggests a half-life of nine nearest zip-code
areas. There are 46 zip-code areas in Akron (including areas that are first
and second order contiguous to the central urban areas), 38 in Canton, 76
in Cleveland and 54 in Youngstown-Warren, so we might interpret 13 or 14
neighbors as representing around one-third of the smaller cities, one fourth
of Youngstown-Warren and one sixth of Cleveland. That is, the scope of
influence from the economic environment operating in neighboring zip-code
areas is fairly small, and this influence decays to half by the time we ex-
tend out to nine neighboring zip-code areas. Another way to put this into
perspective is to note that the average number of first-order contiguous
neighbors (borders touching) for the sample of zip-code areas was 6.12 and
the standard deviation was 1.40, suggesting that spillover influences of any
magnitude extend slightly beyond first-order contiguous zip-code areas.

This inference suggests that spillover influences may be constrained to
relatively small areas consistent with the social interaction literature dis-
cussed above. Intuitively, many of the same factors that work to make dis-
tance and physical proximity an important determinant of social interaction
may also work to constrain firm interaction. From a policy perspective, these
results are interesting because economic development officials frequently ar-
gue that spillover benefits arise from development projects that impact the
larger geographic region in which they operate.

Turning attention to the least-squares estimates we find they are in agree-
ment with those from GKSS for the three variables competition, diversity
and specialization. Local competition is significant and positively associ-
ated with earnings and employment growth. The least-squares coefficient
for specialization is also consistent with results from GKSS in that it is not
significantly associated with earnings or employment growth. Diversity is
negative and significant for both the earnings and employment growth rela-
tions. Note that larger values of the diversity variable reflect less diversity,
hence the negative coefficient indicating that more diversity in a zip-code
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area promotes growth.
Note however that the MESS estimates for the spatial lags are not con-

sistent with results from GKSS for the diversity variable, indicating that
taking the spatial influence of neighboring zip-code areas into account may
affect our inference about this variable. One might expect some differences
between our spatial results and those of GKSS because: 1) our data rep-
resents a finer spatial scale, 2) our dependent variable represents aggregate
zip-code level employment and earnings growth unlike the industry-level
variables used by GKSS, and 3) the change in spatial scale from cities to
contiguous zip-code areas results in measures of diversity, specialization and
competition that also exhibit a finer spatial scale.

Finally, the estimates for the coefficient reflecting the log of initial em-
ployment and payroll in the two relations is negative and significant in least-
squares and MESS, indicating zip-code level convergence in both earnings
and employment growth over time, a result consistent with GKSS. The ini-
tial levels in neighboring areas is positive and weakly significant in the earn-
ings equation but not in the case of employment. This suggests that high
earnings levels in neighboring areas would lead to higher earnings growth,
which seems intuitively plausible. Establishment growth exerts a positive
and significant impact on employment growth, but not on earnings growth,
again a plausible result.

5 Conclusion

We argue that the magnitude and extent of spatial influence exerted by
variables in spatial regression relationships may represent a subject of in-
terest. A flexible specification based on hyperparameters for the number of
neighboring entities and decay of influence over space was combined with
the matrix exponential spatial specification (MESS) introduced in Pace and
LeSage (2000). The resulting Bayesian model allows posterior inferences re-
garding the magnitude and extent of spatial influence as well as traditional
inferences about spatial dependence and the role of explanatory variables in
the spatial regression relationship.

The reliance of our model on a flexible specification for the spatial weight
structure produces a situation where the Bayesian approach to estimation in-
troduced here holds some advantages over maximum likelihood approaches.
For example, posterior inferences regarding the parameters of the weight
structure can be obtained from the MCMC estimation method used to im-
plement the Bayesian MESS model. Another advantage to the Bayesian
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approach is that non-constant variance over space and spatial outliers can
be handled in an eloquent fashion. Finally, the Bayesian variant of the MESS
model introduced here could be extended to the case of limited or censored
dependent variable models using the methods introduced in LeSage (2000).

Experiments carried out in this study suggest that accurate posterior in-
ferences regarding parameters that specify the flexible spatial weight struc-
ture are possible using the MCMC estimation methods. Unlike conventional
approaches to spatial econometric models, the approach taken here does not
assume the spatial weight matrix is part of the sample data information.
We provide some evidence that the flexible weight structure in the MESS
model can replicate results from more traditional spatial regression models,
even in cases were the estimated model was different from the data gener-
ating process. This suggests that the MESS model may be flexible enough
to replicate more traditional spatial econometric regression models, while
avoiding many of the computational problems that plague those models.
However, inferences regarding β and σ as well as spatial dependence drawn
from a traditional model based on a fixed matrix W are conditional on the
particular W matrix employed in the model. The model we introduce pro-
duces inferences regarding β and σ as well as spatial dependence that are
conditional only on a family of spatial weight transformations that we de-
note Sy, where S = eαW , with the matrices W taking a flexible form. The
Bayesian approach introduced here produces a posterior distribution for the
joint distribution of the parameters in the spatial weight structure as well
as the other model parameters.

The primary disadvantage of the Bayesian approach is the need to rely
on MCMC estimation procedures which are computationally intense by
comparison with the maximum likelihood approach to the MESS model.
Nonetheless, MCMC estimation of the Bayesian MESS model exhibited
a two- to six-fold increase in computational speed over MCMC estima-
tion of Bayesian versions of traditional spatial econometric models intro-
duced in LeSage (1997). Moreover, as demonstrated in section 3.3, the
Bayesian MESS technique can handle applications with many observations
(i.e., 35,702 in Table 2).
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Figure 1: Posterior density for ρ hyperparameter
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Figure 2: Histogram of the draws for m
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Figure 3: Posterior distribution of α parameter
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Figure 4: Posterior means of the vi estimates for a heteroscedastic model

36



Urban areas

Second-order neighbors

First-order neighbors

Figure 5: Zip-code areas in northeast Ohio used for employment and earn-
ings growth models
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Figure 6: Posterior distribution for α in both employment and earnings
growth models
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Figure 7: Posterior distribution for ρ in both employment and earnings
growth models
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