Summary and Comparison of Liquid Disinfectants

<table>
<thead>
<tr>
<th>Class</th>
<th>Recommended Use</th>
<th>How They Work</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Comments & Hazards</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>70% Isopropyl Alcohol Solution</td>
<td>- Cleaning some instruments
- Cleaning skin</td>
<td>- Changes protein structure of microorganism
- Presence of water assists with killing action</td>
<td>- Fairly inexpensive</td>
<td>- <50% solution not very effective
- Not active when organic matter present
- Not active against certain types of viruses
- Evaporates quickly
- Contact time not sufficient for killing</td>
<td>- Flammable
- Eye irritant
- Toxic</td>
<td></td>
</tr>
<tr>
<td>Chlorine Compounds</td>
<td>- Spills of human body fluids
- Bactericidal – good
- Fungicidal – good
- Sporicidal – good at > 1000 ppm Sodium Hypochlorite</td>
<td>- Free available chlorine combines with contents within microorganism, reaction byproducts cause its death
- Need 500 to 5000 ppm
- Produce chemical combination with cell substances
- Depends upon release of hypochlorous acid</td>
<td>- Kills hardy viruses (e.g., hepatitis)
- Kills a wide range of organisms
- Inexpensive
- Penetrates well
- Relatively quick microbial kill
- May be used on food prep surfaces</td>
<td>- Corrodes metals such as stainless, aluminum
- Organics may reduce activity
- Increase in alkalinity decreases bactericidal property
- Unpleasant taste and odor
- Tuberculocidal, with extended contact time</td>
<td>- Follow spill procedure and dilution instructions
- Make fresh solutions before use
- Eye, skin and respiratory irritant
- Corrosive
- Toxic</td>
<td>Bleach solutions (sodium hypochlorite)
Clorox
Cyosan
Purex</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td>- Bactericidal – good
- Fungicidal – good
- Tuberculocidal – excellent
- Virucidal – good
- Sporicidal – good</td>
<td>- Coagulates cellular proteins</td>
<td>- Non-staining, relatively noncorrosive
- Useable as a sterilant on plastics, rubber, lenses, stainless steel and other items that can’t be autoclaved</td>
<td>- Not stable in solution
- Has to be in alkaline solution
- Inactivated by organic material</td>
<td>- Eye, skin and respiratory irritant
- Sensitizer
- Toxic</td>
<td>Calgocide 14
Cidex
Vespore</td>
</tr>
<tr>
<td>Class</td>
<td>Recommended Use</td>
<td>How They Work</td>
<td>Advantages</td>
<td>Disadvantages</td>
<td>Comments & Hazards</td>
<td>Examples</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------------------------------</td>
</tr>
</tbody>
</table>
| Iodophors (Iodine with carrier) | Disinfecting some semicritical medical equipment | Free iodine enters microorganism and binds with cellular components
Carrier helps penetrate soil/fat
Need 30 to 50 ppm
Probably by disorder of protein synthesis due to hindrance and/or blocking of hydrogen bonding | Kills broad range of organisms
Highly reactive
Low tissue toxicity
Kills immediately rather than by prolonged period of stasis
Not affected by hard water
May be used on food prep surfaces | May stain plastics or corrode metal
May stain skin/laundry
Stains most materials
Odor
Some organic and inorganic substances neutralize effect
Tuberculocidal, with extended contact time
Sporicidal, some | Dilution critical
Follow directions!
Use only EPA registered hard surface iodophor disinfectants
Don’t confuse skin antiseptic iodophors for disinfectants
Skin and eye irritant
Corrosive
Toxic | Bactergent
Hy-Sine
Ioprep
Providone (iodine/betadine)
Wescodyne |
| Phenolic Compounds | Bactericidal – excellent
Fungicidal – excellent
Tuberculocidal – excellent
Virucidal – excellent | Gross protoplasmic poison
Disrupts cell walls
Precipitates cell proteins
Low concentrations inactivate essential enzyme systems | Nonspecific concerning bactericidal and fungicidal action
When boiling water would cause rusting, the presence of phenolic substances produces an antirusting effect | Unpleasant odor
Some areas have disposal restrictions
Effectiveness reduced by alkaline pH, natural soap or organic material
Sporicidal, no | Skin and eye irritant
Sensitizer
Corrosive
Toxic | Hil-Phene
Lph
Metar
Vesphene |
| Quaternary Ammonium Compounds (QUATS) | Ordinary housekeeping (e.g., floors, furniture, walls)
Bactericidal – excellent
Fungicidal – good
Virucidal – good (not as effective as phenols) | Affects proteins and cell membrane of microorganism
Releases nitrogen and phosphorous from cells | Contains a detergent to help loosen soil
Rapid action
Colorless, odorless
Non-toxic, less corrosive
Highly stable
May be used on food prep surfaces | Does not eliminate spores, TB bacteria, some viruses
Effectiveness influenced by hard water
Layer of soap interferes with action | Select from EPA list of hospital disinfectants
Skin and eye irritant
Toxic | Coverage 258
End-Bac
Hi Tor |

This information was provided to the University of Virginia by:

Barbara Fox Nellis
Johnson & Johnson
Clinical Diagnostics
1999 Lake Avenue
Bldg. 83, KRL
Rochester, NY 14650-2209
phone: (716) 453-5697
fax: (716) 453-5696