Adaptive Radio-Frequency and Plasma Lab (ARPL)

The University of Toledo, College of Engineering, EECS Department

ARPL Mission

- The coming generations of multiband and multi-functional systems require highperformance, reliable and low-cost reconfigurable RF electronics.
- The current tuning technologies are suboptimal for high-power scenarios and difficult compromises are often required.
- Our targeted problem: Tunable High-Power RF Electronics for Adaptive Multi-Functional Systems

Electronic Impedance Tuner

Impedance tuners are employed to achieve widely tunable complex loads.

- wide coverage (> 90% of Smith Chart)
- high power (> 100 W)
- low loss (< 0.5 dB)
- highly linear (IIP3 > +64 dBm)
- wideband (> 52%, larger order wider BW)
- very stable performance
- tested with a SDR benchmark in the ARL

Power Limiter & Protection

(against HPM and EMP)

- ✓ self-sustained
- √ high power
- ✓ low loss

Plasma Tuning

➤ Plasma EM properties and sheath thickness can be electronically tuned.

Tunable High-Power Antenna (dB) 2 2.5 Frequency (GHz) - a piezo-tunable EVA cavity resonator + an annular radiating slot - 5 dBi gain and efficiency of > 85%

- realizable on PCB for integration
- both single and dual polarizations

Microwave Power Switching

- Resonant SPST
- S-band
- Plasma switching
- Quasi-absorptive

Wireless Power Transfer

Wireless powering of agricultural sensors

Other Topics:

- □ wideband and efficient electrically-small antenna (ESA)
- □ plasma metamaterials
- □ inverse scattering and microwave imaging
- □ low-power microplasma sources
- □ field emitters for vacuum electronics
- □ modeling of EM/plasma
- □ *low-cost RF sensors*

For more information:

Lab PI: *Abbas Semnani*, Nitschke Hall 2051

Email: abbas.semnani@utoledo.edu

Please visit: https://engineering.purdue.edu/Semnani-Group/

