University of Toledo
Construction Engineering Technology
Master Syllabus

<table>
<thead>
<tr>
<th>Course Title:</th>
<th>Surveying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code & Number:</td>
<td>CET-1210</td>
</tr>
<tr>
<td>Credit Hour Total:</td>
<td>3</td>
</tr>
<tr>
<td>Weekly Contact Hours Lecture:</td>
<td>2</td>
</tr>
<tr>
<td>Lab Hours:</td>
<td>2</td>
</tr>
<tr>
<td>Prerequisite(s):</td>
<td>MATH-1330</td>
</tr>
</tbody>
</table>
| Text: | Elementary Surveying 14th Ed.
Wolf & Ghilani
ISBN: 978-0133758887
Special Custom Edition (Chapters: 1-12, 23, 26) |
| Software: | None |
| Course Coordinator: | Open |

A. **Course Description** (Approved catalog description.)

Study of construction and land surveying techniques, including the use of a steel tape, level, transit, and total station. Laboratory will stress surveying measurement and layout techniques. Laboratory exercises will also introduce software applications to surveying.

B. **Related Program Outcomes:**

Upon successful completion of the Construction Engineering Technology program, graduates will have:

ABET/Student Outcomes

1) an ability to apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadly-defined engineering problems appropriate to the discipline;

3) an ability to apply written, oral, and graphical communication in broadly defined technical and non-technical environments; and an ability to identify and use appropriate technical literature

5) an ability to function effectively as a member as well as a leader on technical teams.

The course also supports coverage of the following curricular areas:

Program Criteria

c) the utilization of measuring methods, hardware, and software that are appropriate for field, laboratory, and office processes related to construction;

d) the application of fundamental computational methods and elementary analytical techniques in sub-disciplines related to construction engineering;
Evidence of the success of these outcomes is provided by the collection and analysis of:

- Survey Field Book Review
- Field Traverse Project
- Bearing & Azimuth Calculation Problem

C. **Course Objectives:**

Upon completion of this course students will have the ability to:

1. Make trigonometric calculations related to surveying.
2. Prepare and interpret field notes.
3. Measure horizontal distances by taping.
4. Calibrate a tape.
5. Perform correction calculations of tape and EDM measurements length, temperature, slope, and tension.
6. Set up and operate the transit.
7. Read a compass and vernier
8. Determine magnetic declination.
9. Measure horizontal angles, including measurement by repetition and closing the horizon.
10. Calculate compass bearings and azimuths.
11. Set up and operate a level.
12. Handle and read a rod, including the use of targets.
13. Complete a level circuit and establish elevations of benchmarks and turning points.
14. Perform stake out of measured distances using Total Station Equipment.

D. **Course Outline- Major Content Areas**

1. History of Surveying & Field Notes
2. Distance Measurement
3. Leveling Theory, Methods & Equipment
4. Angles, Bearings & Azimuths
5. Introduction to and Use of the Compass
6. Transit, Theodolite and Total Station Introduction and Operations
7. Volumes
8. Construction Staking

E. **Suggested Laboratory Tests**

1. Taping short distances (Less than 100 feet)
2. Taping long distances
3. Transit set-up and horizontal angle turning
4. Multiple Horizontal angle turning
5. Leveling and closure
6. Measuring vertical angles and distances
7. Performing offset distance measurements
8. Introduction to total station operations
9. Introduction to surveying software and data collectors