
1. Course Number and Name: 

CSET 3150 Introduction to Algorithms 

2. Credits and Contact hours: 

Credits: 4 hours, Contact: 3 lecture hours; 1 lab hour 

3. Instructor’s or course coordinator’s name: 

Jared Oluoch 

4. Text book, title, author, and year: 

Introduction the Algorithms, 3rd Edition, Thomas H. Gorman, 2009 

a. Other supplemental materials: 

 Various web references assigned by the instructor 

  “Data Structures and Algorithm Analysis in C++,” 3rd Edition, Mark 

Alan Weiss, Addison-Wesley, ISBN 0-321-37531-9 

 “C++ Primer Plus,” 5th Edition, Stephen Prata, Sams. November 2004. 

ISBN 

5. Specific Course Information: 

a. Brief description of the content of the course (catalog description): 

This course covers object oriented programming and advanced algorithms. Topic 

includes C++ and OO concepts, algorithms and data structures as implemented in 

the C++ and Java programming languages. The final project is implemented in 

Java. This course is programming intensive and lays a firm foundation for 

student’s OO programming skills. 

b. Pre-requisites, or co-requisites: 

EET 2230 

6. Specific goals for the course: 

c. Specific outcomes of instruction: 

1. Be able to find an algorithm to solve the problem, 

2. Be able prove that the algorithm solves the problem correctly, 

3. Be able to prove that we cannot solve the problem any faster, 

4. Be able to implement the algorithm 

d. Explicitly indicate which of the student outcomes listed in Criterion 3 or any 

other outcomes are addressed by the course: a, b, c, i, j, k 

a. An ability to select and apply knowledge of computing and mathematics 

    appropriate to the discipline. More specifically, an ability to apply  

    mathematical foundations, algorithmic principles, and computer science theory  

    in the modeling and design of computer‐based systems in a way that  

    demonstrates comprehension of the tradeoffs involved in design choices. 

b. An ability to analyze a problem, and identify and define the computing 

    requirements appropriate to its solution. 

c. An ability to design, implement and evaluate a computer‐based system, 

    process, component, or program to meet desired needs. More specifically, an     

    ability to apply design and development principles in the construction of   



    software systems of varying complexity. 

i. An ability to select and apply current techniques, skills, and tools necessary 

    for computing practice. 

j. An ability to conduct standard tests and measurements; to conduct, analyze, and  

    interpret experiments; and to apply experimental results to improve processes. 

k. A commitment to quality, timeliness, and continuous improvement. 

7. Brief list of topics to be covered: 

1. Introduction  

2. Introduction to Sorting Algorithms  

3. Asymptotic notation  

4. Recurrences  

5. More on Sorting Algorithms (chapters 6-9)  

6. Searching Algorithms (chapters 11-13)  

7. Selection Algorithms  

8. Advanced Data Structures  

9. Dynamic Programming  

10. Greedy Algorithms  

11. Graph Algorithms (chapters 22-25)  

12. String matching  

13. NP-Complete Problems 

1. Course Number and Name: 

CSET 4250 Applied Programming Languages 

2. Credits and Contact hours: 

Credits: 3 hours, Contact: 3 lecture hours 

3. Instructor’s or course coordinator’s name: 

Jared Oluoch 

4. Text book, title, author, and year: 

Concepts of Programming Languages, 9th Edition, Robert W. Sebesta, 2009 

a. Other supplemental materials: 

None 

5. Specific Course Information: 

a. Brief description of the content of the course (catalog description): 

This course teaches methodologies to select the most appropriate language for a 

specific engineering technology application. Topics include comparison of 

programming languages by evolution, formal specifications, structures, features, 

application domains, programming paradigms, implementation of syntax, 

semantics and program run-time behavior. 

b. Pre-requisites, or co-requisites: 

CSET 4100 and Junior Standing 

6. Specific goals for the course: 



a. Specific outcomes of instruction: 

1. Be able to explain and apply a broad range of concepts about programming 

    languages. 

2. Be able to recognize, define, and make correct use of most common    

    programming languages terminology. 

3. Design, implement, test, and debug simple programs in an object-oriented 

    programming language, functional paradigm logical programming and scripting 

    languages. 

4. Identify and describe the properties of a variable such as its associated address, 

    value, scope, persistence, and size. 

b. Explicitly indicate which of the student outcomes listed in Criterion 3 or any 

other outcomes are addressed by the course: a, b, i, k 

A. An ability to select and apply knowledge of computing and mathematics  

    appropriate to the discipline. More specifically, an ability to apply  

    mathematical foundations, algorithmic principles, and computer science theory  

    in the modeling and design of computer‐based systems in a way that  

    demonstrates comprehension of the tradeoffs involved in design choices. 

B. An ability to analyze a problem, and identify and define the computing  

    requirements appropriate to its solution. 

 

I. An ability to select and apply current techniques, skills, and tools necessary for  

    computing practice. 

K. A commitment to quality, timeliness, and continuous improvement. 

7. Brief list of topics to be covered: 

1. Introduction to Programming Languages 

2. Attribute Grammar and Static Semantics 

3. Describing Syntax and semantics  

4. Parsing  

5. Attributes of Variables, binding, scopes 

6. Data Types  

7. Perl Introduction  

8. Expressions Statements  

9. Statement-Level Control Structures 

10. Subprograms  

11. ADT and Encapsulation Constructs  

12. Object Oriented Programming  

13. Functional Programming Languages  

14. Logic programming and Prolog  

15. Concurrency, Exception  

16. Advanced topics: Programming Language Design 


