USER BULLETIN 11

Beam-Column Joint Hinge Generator using an Artificial Neural Network (ANN)

1. INTRODUCTION

This document describes an Excel spreadsheet, *Beam-Column Joint Hinge Generator Using an Artificial Neural Network (ANN)*, which is developed to predict the joint shear strength and derive the shear stress-strain and moment rotation curves of both exterior and interior beam-column joints with or without transverse reinforcement. The spreadsheet uses the feed forward neural network developed by Suwal and Guner (2023b) to predict the joint shear strength. The predicted strength is used to derive the shear stress-strain and moment rotation curves using the approach defined in Suwal and Guner (2023a). The abscissa and ordinate values are based on the experimental testing results and formulations proposed by Anderson et al. (2008), Jeon (2013), and Celik and Ellingwood (2008). The generated values can be copied and pasted into plastic-hinge-based global frame analysis software when defining joint hinges. To facilitate the calculation process, the spreadsheet tool (Suwal and Guner 2023c) is shared as a freeware for the use of practicing engineers. It can be downloaded from the following link:

www.utoledo.edu/engineering/faculty/serhan-guner/docs/8S-ANNJointHingeGenerator.xlsx

This user bulletin presents the application and validation of the spreadsheet for both interior and exterior joints with or without transverse reinforcement. Four application and validation examples are presented in total.

Please use the following text when citing this document:

Suwal, N. and Guner, S. (2023) "User Bulletin 11: Joint Hinge Generator Spreadsheet using an Artificial Neural Network," Documentation, 6 pp. <<u>https://www.utoledo.edu/engineering/faculty/serhan-guner/docs/B11_ANNJointHingeGenerator.pdf</u>>

This document is prepared by Nirmala Suwal (graduate student at the University of Toledo, OH, USA) as a part of research project supervised by <u>Dr. Serhan Guner</u>

2. APPLICATION AND VALIDATION Validation with an exterior joint with transverse reinforcement (Eshani and Alameddine, 1991)-Specimen LL8

Variables	Ra	unit	
variables	Min	Max	unit
f _c	15.8	101.9	MPa
f _{yjt}	235	1374	MPa
ρ_{ll}	0.0%	2.6%	
f _{yb}	286	1091	MPa
ρ_b	0.4%	4.3%	
h _b	150	750	mm
b _b	100	610	mm
f _{yc}	274	1092	MPa
ρc	0.3%	7.7%	
h _c	140	700	mm
b _c	100	900	mm
ALF	0.0	0.7	
JT*	0	1	
τ	1.3	17.4	MPa

* Interior = 0, Exterior = 1

Definitions					
f _c	Concrete compressive strength				
f _{yjt}	Joint transverse reinforcement yield strength				
ρ_{jt}	Joint transverse reinforcement ratio				
f _{yb}	Beam longitudinal reinforcement yield strength				
ρ_b	Beam longitudinal reinforcement ratio				
h _b	Beam depth				
b _b	Beam width				
f _{yc}	Column longitudinal reinforcement yield strength				
ρc	Column longitudinal reinforcement ratio				
h _c	Column depth				
b _c	Column width				
ALF	Axial load factor $(P/f_c b_c h_c)$				
JT	Joint type (=0 for interior, =1 for exterior joint)				
τ	Shear strength				
М	Equivalent moment				
Lb	Span of beam between points of contraflexure				
L _c	Span of column between points of contraflexure				
P	Axial load applied to column				
γ	Shear strain				
θ	Rotation				
τ _{pred}	Predicted shear strength				

Figure: Sketches of specimens used in the training of the ANN: (a) interior and (b) exterior

		l	NOU
<u>Variables</u>	<u>Input</u>	Normalized	
f _c	55.8	0.46	
f _{yjt}	437	0.18	
ρ_{jt}	1.2%	0.46	
f _{yb}	437	0.19	
ρ	3.0%	0.67	
h _b	508	0.60	
b _b	318	0.43	
f _{yc}	437	0.20	
ρ _c	2.8%	0.34	
h _c	356	0.39	
b _c	356	0.32	
ALF	0.04	0.06	
JT	1		N/X

Instructions

Points	τ (MPa)	γ	M (kNm)	θ	
Origin (O)	0.0	0	0.0	0	
Cracking (A)	3.6	0.00043	426.6	0.00043	(Anderson et al., 2008))
Yield (B)	7.2	0.006	859.8	0.006	
Maximum (C)	7.6	0.02	905.1	0.02	(Jeon et al., 2013)
Residual (D)	1.5	0.185	181.0	0.185	

D

0.2

0.15

Beam-Column Joint Hinge Generator Using an Artificial Neural Network Validation with an exterior joint without transverse reinforcement (Pantelides et al., 2017) - Specimen Test Unit 2

Variables	Ra		
variables	Min	Max	umit
f _c	15.8	101.9	MPa
f _{yjt}	235	1374	MPa
ρ _{jt}	0.0%	2.6%	
f _{yb}	286	1091	MPa
ρb	0.4%	4.3%	
h _b	150	750	mm
b _b	100	610	mm
f _{yc}	274	1092	MPa
ρc	0.3%	7.7%	
h _c	140	700	mm
b _c	100	900	mm
ALF	0.0	0.7	
JT*	0	1	
τ	1.3	17.4	MPa

* Interior = 0, Exterior = 1

Definitions					
f _c	Concrete compressive strength				
f _{yjt}	Joint transverse reinforcement yield strength				
ρ _{jt}	Joint transverse reinforcement ratio				
f _{yb}	Beam longitudinal reinforcement yield strength				
ρb	Beam longitudinal reinforcement ratio				
h _b	Beam depth				
b _b	Beam width				
f _{yc}	Column longitudinal reinforcement yield strength				
ρc	Column longitudinal reinforcement ratio				
h _c	Column depth				
b _c	Column width				
ALF	Axial load factor $(P/f_c b_c h_c)$				
JT	Joint type (=0 for interior, =1 for exterior joint)				
τ	Shear strength				
М	Equivalent moment				
L _b	Span of beam between points of contraflexure				
L _c	Span of column between points of contraflexure				
Р	Axial load applied to column				
γ	Shear strain				
θ	Rotation				
τ _{pred}	Predicted shear strength				

Figure: Sketches of specimens used in the training of the ANN: (a) interior and (b) exterior

		N	ote
<u>Variables</u>	<u>Input</u>	Normalized	
f _c	33.1	0.20	
f _{yjt}	0		
ρ_{jt}	0.0%		
f _{yb}	459	0.21	
ρ_b	3.5%	0.79	
h _b	406	0.43	
b _b	406		
f _{yc}	470	0.24	
ρ _c	2.5%	0.30	
h _c	406	0.48	
b _c	406	0.38	
ALF	0.25		
JT	1		all 1

Instructions

Step 1: Input the variables in the green cells

0.14 0.79 0.03

Points	τ (MPa)	γ	M (kNm)	θ	
Origin (O)	0.0	0	0.0	0	
Cracking (A)	2.8	0.00043	250.0	0.00043	(Anderson et al., 2008))
Yield (B)	4.7	0.006	424.8	0.006	
Maximum (C)	4.9	0.016	447.1	0.016	(Jeon et al., 2013)
Residual (D)	1.0	0.077	89.4	0.077	

Beam-Column Joint Hinge Generator Using an Artificial Neural Network Validation with an interior joint with transverse reinforcement (Guimaraes et al., 1992) - Specimen J5

Variables	Ra	unit	
variables	Min	Max	umit
f _c	15.8	101.9	MPa
f _{yjt}	235	1374	MPa
ρ_{ll}	0.0%	2.6%	
f _{yb}	286	1091	MPa
ρ_b	0.4%	4.3%	
h _b	150	750	mm
b _b	100	610	mm
f _{yc}	274	1092	MPa
ρc	0.3%	7.7%	
h _c	140	700	mm
b _c	100	900	mm
ALF	0.0	0.7	
JT*	0	1	
τ	1.3	17.4	MPa

* Interior = 0, Exterior = 1

	Definitions					
f _c	Concrete compressive strength					
f _{yjt}	Joint transverse reinforcement yield strength					
ρ_{jt}	Joint transverse reinforcement ratio					
f _{yb}	Beam longitudinal reinforcement yield strength					
ρ _b	Beam longitudinal reinforcement ratio					
h _b	Beam depth					
b _b	Beam width					
f _{yc}	Column longitudinal reinforcement yield strength					
ρ _c	Column longitudinal reinforcement ratio					
h _c	Column depth					
b _c	Column width					
ALF	Axial load factor $(P/f_c b_c h_c)$					
JT	Joint type (=0 for interior, =1 for exterior joint)					
τ	Shear strength					
М	Equivalent moment					
L _b	Span of beam between points of contraflexure					
L _c	Span of column between points of contraflexure					
Р	Axial load applied to column					
γ	Shear strain					
θ	Rotation					
τ _{pred}	Predicted shear strength					

Figure: Sketches of specimens used in the training of the ANN: (a) interior and (b) exterior

			Not
<u>Variables</u>	<u>Input</u>	Normalized	
f _c	77.9	0.72	
f _{yjt}	550	0.28	
ρ _{jt}	0.8%	0.31	
f _{yb}	561	0.34	
ρ	4.3%	1.00	
h _b	508	0.60	
b _b	406	0.60	
f _{yc}	543	0.33	
ρ _c	6.3%	0.81	
h _c	508	0.66	
b _c	508	0.51	
ALF	0	0.00	
JT	0	0.00	

Instructions

Step 1: Input the variables in the green cells

0.01

Points	τ (MPa)	γ	M (kNm)	θ	
Origin (O)	0.0	0	0.0	0	
Cracking (A)	4.2	0.00043	609.7	0.00043	(Anderson et al., 2008))
Yield (B)	13.9	0.006	2007.3	0.006	
Maximum (C)	14.7	0.02	2112.9	0.02	(Jeon et al., 2013)
Residual (D)	2.9	0.187	422.6	0.187	

Beam-Column Joint Hinge Generator Using an Artificial Neural Network Validation with an interior joint without transverse reinoforcement (Li et al., 2005) - Specimen AL1

Variables	Ra			
variables	Min	Max	unit	
f _c	15.8	101.9	MPa	
f _{yjt}	235	1374	MPa	
ρ_{it}	0.0%	2.6%		
f _{yb}	286 1091		MPa	
ρ_b	0.4%	4.3%		
h _b	150	750	mm	
b _b	100	610	mm	
fyc	274	1092	MPa	
ρc	0.3%	7.7%		
h _c	140	700	mm	
b _c	100	900	mm	
ALF	0.0	0.7		
JT*	0	1		
τ	1.3	17.4	MPa	

* Interior = 0, Exterior = 1

Definitions					
f _c	Concrete compressive strength				
f _{yjt}	Joint transverse reinforcement yield strength				
ρ_{jt}	Joint transverse reinforcement ratio				
f _{yb}	Beam longitudinal reinforcement yield strength				
ρ_b	Beam longitudinal reinforcement ratio				
h _b	Beam depth				
b _b	Beam width				
f _{yc}	Column longitudinal reinforcement yield strength				
ρc	Column longitudinal reinforcement ratio				
h _c	Column depth				
b _c	Column width				
ALF	Axial load factor $(P/f_c b_c h_c)$				
JT	Joint type (=0 for interior, =1 for exterior joint)				
τ	Shear strength				
М	Equivalent moment				
Lb	Span of beam between points of contraflexure				
L _c	Span of column between points of contraflexure				
P	Axial load applied to column				
γ	Shear strain				
θ	Rotation				
τ _{pred}	Predicted shear strength				

Figure: Sketches of specimens used in the training of the ANN: (a) interior and (b) exterior

Instructions

Step 1: Input the variables in the green cells

0.29

0.30 0.07

Step 2: See the output joint shear strength in the orange cell

Final Output]
Points	τ (MPa)	γ	M (kNm)	θ	
Origin (O)	0.0	0	0.0	0	
Cracking (A)	2.6	0.00043	176.1	0.00043	(Anderson et al., 2008))
Yield (B)	5.4	0.006	362.3	0.006	
Maximum (C)	5.7	0.019	381.4	0.019	(Jeon et al., 2013)
Residual (D)	1.1	0.117	76.3	0.117	

•D

0.15

0.1

3. REFERENCES

Anderson, M., Lehman, D. and Stanton, J. (2008) "A cyclic shear stress-strain model for joints without transverse reinforcement," *Engineering Structures*, 30(4), 941–954.

Celik, O.C. and Ellingwood, B.R. (2008) "Modeling beam-column joints in fragility assessment of gravity load designed reinforced concrete frames," *Journal of Earthquake Engineering*, 12(3), 357–381.

Eshani, M.R. and Alameddine, F. (1991) "Design recommendations for Type 2 high strength reinforced concrete connections," *ACI Structural Journal*, 88(3), 277-291.

Guimaraes, G.N., Kreger, M.E. and Jirsa, J.O. (1992) "Evaluation of joint-shear provisions for interior beam-column slab connections using high-strength materials," *ACI Structural Journal*, 89(1), 336-342.

Jeon, J.S. (2013) "Aftershock vulnerability assessment of damaged reinforced concrete buildings in California," Ph.D. Dissertation, Georgia Institute of Technology, Atlanta.

Li, B., Tran, C.T. and Pan, T.C. (2009) "Experimental and numerical investigations on the seismic behavior of lightly reinforced concrete beam-column joints," *Journal of Structural Engineering*, 135(9), 1007-1018.

Pantelides, C.P., Hansen, J., Ameli, M.J. and Reaveley, L.D.(2017) "Seismic performance of reinforced concrete building exterior joints with substandard details," *Journal of Structural Integrity and Maintenance*, 2(1), 1-11.

Suwal, N. and Guner, S. (2023a) "Nonlinear modeling of beam-column joints in forensic analysis of concrete buildings," *Computers and Concrete* (accepted; in press for publication on May 25, 2023).

Suwal N. and Guner S. (2023b) "Plastic hinge modeling of beam-column joints using artificial neural networks," *Engineering Structures* (submitted).

Suwal N. and Guner S. (2023c) "Beam-column joint hinge generator using an artificial neural network," Excel Spreadsheet, Department of Civil and Environmental Engineering, University of Toledo, OH, USA. https://www.utoledo.edu/engineering/faculty/serhan-guner/docs/8S-ANNJointHingeGenerator.xlsx