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The nonlinear analysis of reinforced concrete frame structures 
with slender members can be performed accurately and efficiently 
with one-dimensional (1-D) elements based on the plane-sections- 
remain-plane hypothesis. However, if the frame also includes deep 
beams which require two-dimensional (2-D) high-fidelity finite 
element procedures, the analysis of large structures can become 
very costly. To address this challenge, this paper proposes a mixed-
type modeling framework which integrates 1-D slender beam 
elements with a novel 1-D macroelement for deep beams. The 
framework is implemented in an existing nonlinear analysis proce-
dure and is used to model 18 deep beam tests and a 20-story frame. 
It is shown that the proposed modeling framework provides simi-
larly accurate predictions to the 2-D high-fidelity procedures but 
requires a fraction of the time for modeling and analysis. Further-
more, the macroelement improves the post-peak predictions, and 
therefore the framework is suitable for evaluating the resilience of 
structures under extreme loading.

Keywords: deep beams; macroelement; mixed-type modeling; shear; 
slender elements.

INTRODUCTION
Deep beams are characterized by small shear span-depth 

ratios and carry shear by direct compression between the 
loading and support points (known as the strut or arch 
action). As concrete is very efficient in resisting compression, 
such members possess high stiffness and shear strengths as 
compared to slender beams. Owing to these properties, deep 
beams are typically used as transfer girders above large open 
spaces in the bottom floors of important concrete buildings 
such as government centers, hospitals, and high-rise build-
ings (Fig. 1). The load-bearing characteristics of deep beams 
are also encountered in other members such as spread foot-
ings and pile caps. Due to their important functions, deep 
beams may often dictate the resilience of the entire struc-
ture when overloading occurs in rare events. The 2011 
Christchurch earthquake, for example, produced unforeseen 
vertical ground accelerations (up to 1.8g) and caused the 
shear failures of several deep transfer girders. As a result, a 
number of buildings were on the verge of collapse and had to 
be demolished in the months after the earthquake.1-4

To design structures for resilience to extreme loading 
events, it is often necessary to perform a nonlinear pushover 
analysis, with the entire structure subjected to, for example, 
an earthquake or a column removal scenario representing 
a blast or impact loading.5 Two approaches are commonly 
used for modeling buildings, which incorporate deep transfer 
girders. The most common strategy, shown on the left in 
Fig. 1, is to model all members with one-dimensional (1-D) 
slender elements based on the classical plane-sections-re-
main-plane hypothesis (fiber-based elements or lumped plas-

ticity elements). This approach neglects the complex behav-
ioral mechanisms associated with deep beams and cannot 
capture the interaction and redistribution of internal forces 
between the deep and slender members. While incorrect, this 
strategy is still commonly used due to its relatively simple 
and computationally efficient nature. The second approach 
is to use two-dimensional (2-D) nonlinear finite element 
methods (FEMs) which incorporate appropriate constitutive 
models for cracked reinforced concrete under plane stresses.6 
This approach captures the strut action of deep beams, the 
interaction between deep and slender elements, and the force 
redistribution in the post-peak stages. The disadvantage of 
2-D FEMs is that they require significant knowledge and 
experience from the user and demand significant time for the 
model development and analysis execution. Consequently, 
they are feasible only when modeling critical parts of struc-
tures as opposed to an entire building. A few other modeling 
frameworks—for example, hybrid modeling7—are also 
available, which combines these two modeling approaches.

This paper proposes a mixed-type modeling framework 
which aims to combine the accuracy of 2-D FEMs with the 

Title No. 116-S93

Mixed-Type Modeling of Structures with Slender and 
Deep Beam Elements
by Jian Liu, Serhan Guner, and Boyan I. Mihaylov

ACI Structural Journal, V. 116, No. 4, July 2019.
MS No. S-2018-329, doi: 10.14359/51715632, was received August 3, 2018, and 

reviewed under Institute publication policies. Copyright © 2019, American Concrete 
Institute. All rights reserved, including the making of copies unless permission is 
obtained from the copyright proprietors. Pertinent discussion including author’s 
closure, if any, will be published ten months from this journal’s date if the discussion 
is received within four months of the paper’s print publication.

Fig. 1—Alternative models of large four-bay frame structure 
with both slender and deep beams.
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speed and simplicity of 1-D slender elements. The frame-
work integrates 1-D slender beam elements with equally 
simple 1-D deep beam elements that can account for the 
strut action. The deep beam element incorporated in this 
study was recently formulated by Liu and Mihaylov8 based 
on a three-parameter kinematic theory9 for continuous deep 
beams. This element can capture the entire nonlinear shear 
response of deep shear spans, from initial high stiffnesses to 
the post-peak response, which provides the structure with 
the ability to redistribute forces and survive overloading. 
The paper discusses the formulation of the proposed mixed-
type modeling framework, provides comparisons with 
experimental tests, and presents a sample analysis of an 
entire 20-story frame with deep transfer girders.

RESEARCH SIGNIFICANCE
The evaluation of the resilience of large frame structures 

with deep transfer girders requires modeling the interaction 
between the deep girders and the rest of the structure in an 
accurate and computationally effective manner. This paper 
proposes a mixed-type modeling framework that combines 
commonly used 1-D slender beam elements with a novel 
and equally simple 1-D deep beam element to accurately 
account for failures and post-peak behaviors associated with 
complex shear failures. The new nonlinear modeling frame-
work requires a fraction of the computational time required 
by 2-D approaches while capturing the complete response of 
structures with a comparable accuracy.

1-D MACROELEMENT FOR DEEP BEAMS
The efficient modeling of slender beams can be accom-

plished based on the plane-sections-remain-plane hypoth-

esis, which greatly simplifies the deformation patterns 
without compromising accuracy. To model deep beams in 
a similar fashion, it is necessary to describe their apparently 
complex deformation patterns in a simple and sufficiently 
accurate manner.

Figure 2(a) shows such a model for deep beams under 
double curvature proposed by Mihaylov et al.9 In this model, 
a shear span of a deep beam is divided into two parts by a 
critical diagonal crack. Each of the parts is modeled as a 
“fan” of rigid struts outlined by radial cracks. The struts are 
pinned at points P1 and P2 and are connected to the bottom/
top flexural reinforcement, respectively. As the flexural rein-
forcement develops average tensile strains εt1,avg and εt2,avg 
along the shear span a, the fans “open” by angles θ1 and θ2. 
While these deformations can be associated with flexure, the 
shear force causes the two fans to translate vertically with 
respect to each other due to the opening of the critical diag-
onal crack. The vertical displacement Δc in the crack is asso-
ciated with diagonal crushing of the concrete in the critical 
loading zone (CLZ). Based on these kinematic assumptions, 
the complete displacement field of the shear span can be 
expressed as a function of only three degrees of freedom: 
εt1,avg, εt2,avg, and Δc, or eventually θ1, θ2, and Δc.

This three-parameter kinematic model forms the basis 
of the macroelement for deep beams proposed by Liu and 
Mihaylov8 (Fig. 2(b)). In this element, the behavior of the 
two fans is modeled by rotational springs, while the shear 
behavior across the critical diagonal crack is represented by 
a transverse spring. The rotational springs are attached to 
end sections/nodes with two translational and one rotational 
degrees of freedom per node (u, v, φ). Inside the element, the 
three springs are connected by bars that are rigid in flexure 
and remain parallel to each other as the element deforms.

The nonlinear load-deformation relationships Mi(θi) and 
V(Δc,θi) of the springs of the macroelement are developed 
from first principles: compatibility of deformations, stress-
strain relationships, and equilibrium. For a given degree of 
freedom (DOF) θ1, the average strain in the bottom longitu-
dinal reinforcement εt1,avg is determined from compatibility. 
Using this strain, the tensile force in the reinforcement T1 is 
determined by assuming an elastic-perfectly-plastic stress-
strain relationship for the reinforcement, and also adding 
the tension-stiffening effect of the concrete around the rein-
forcement. The bending moment M1 is then obtained from 
equilibrium as T1(0.9d), where d is the effective depth of the 
section and 0.9d (Reference 10) is the estimated lever arm of 
the internal longitudinal forces. A schematic representation 
of the Mi(θi) relationship obtained in this manner is shown 
in Fig. 3(a).8

The V(Δc,θi) relationship of the transverse spring is some-
what more complex due to the complex manner in which 
deep beams resist shear. The macroelement accounts for four 
mechanisms of shear resistance across the critical diagonal 
crack: 1) shear carried in the critical loading zone, VCLZ; 2) 
tension in the transverse reinforcement, Vs; 3) aggregate 
interlock shear, Vci; and 4) dowel action of the longitudinal 
reinforcement, Vd. Therefore, the transverse spring can be 
visualized as consisting of four parallel springs, where the 
strut action is associated mainly with spring VCLZ.

Fig. 2—Macroelement for shear spans of deep beams. 
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The constitutive relationships of the four springs are 
presented schematically in Fig. 3(b) through (e). As evident 
from the plots, the behavior of the CLZ resembles that of 
concrete in compression, while the behavior of the stirrups 
is similar to the tensile behavior of steel. To model the aggre-
gate interlock spring, it is necessary to use DOFs Δc and θ1 
(or εt1,avg) as they both contribute to the relative displace-
ments between the crack faces. For given values of these 
DOFs, the average width of the critical crack w and the slip 
displacement s are expressed using the kinematic model. 
DOF θ1 results in the widening of the critical crack while Δc 
causes both widening and slip. Displacements w and s are 
used to calculate the aggregate interlock stress on the crack 
vci(w, s) based on a contact density model by Li et al.,12 and 
vci is integrated along the critical crack to obtain the shear 
force Vci. As can be seen from Fig. 3(d), Vci increases with 
increasing Δc and eventually diminishes as the critical crack 
becomes very wide. At the bottom of the crack, the longi-
tudinal reinforcement works in double curvature associated 
with DOF Δc, and therefore resists shear by dowel action. 
By modeling the bars in this zone as fixed-fixed steel beams, 
the dowel action relationship in Fig. 3(e) has been obtained. 
The dowel action is diminished by the tensile strain in the 
reinforcement εt1,avg.

To solve the nonlinear equations of the macroelement, a 
secant stiffness approach is employed, which will provide 
compatibility with the existing 1-D slender beam elements. 
Therefore, the stiffnesses of the three springs of the element 
are obtained as k1 = M1/θ1, k2 = M2/θ2, and k3 = V/Δc, and the 
secant stiffness matrix is formulated as
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where C = k1 + k2 + k3a (Reference 2); a is the shear span; 
Ec is the modulus of elasticity of the concrete; and Ag is the 
gross area of the concrete section. This matrix is an exten-
sion of the formulation presented in Liu and Mihaylov,8 
which did not account for the axial degrees of freedom u1 
and u2. As evident from the EcAg terms in Eq. (2), the axial 
behavior of the beam is assumed linear-elastic for simplicity.

EXISTING ELEMENT FOR SLENDER BEAMS 
AND COLUMNS

1-D nonlinear elements for slender beams are employed 
by many nonlinear frame analysis platforms such as 
OpenSees,13 SAP2000,14 RUAUMOKO,15 VecTor5,16 and 
others. As shown in Fig. 4(a), beams and columns are discret-
ized into several elements, and one element usually has two 
end nodes with three degrees of freedom per node (u, v, φ) 
as in the 1-D macroelement for deep beams discussed previ-
ously (Fig. 4(b)).

To model the nonlinear behavior of slender beams, this 
study focuses on the distributed plasticity approach. In 
this approach, the beam section is divided into a number 
of concrete and steel layers as shown in Fig. 4(b), and the 
longitudinal strains in the layers vary linearly across the 
section. The stresses in the layers are obtained from the 
strains based on material constitutive laws for uniaxial 
tension and compression. This is a universally accepted 
way of modeling flexural behavior, while the approaches for 
predicting the shear behavior vary significantly. For example, 
SAP200014 and RUAUMOKO15 employ a lumped-plasticity 
approach where the locations and behavior of shear hinges is 
commonly defined by the user. However, expert knowledge 
on the shear behavior of concrete is required to define these 
shear hinges. In addition, the changing shear behavior as the 
elements sustain damage or axial force levels change cannot 

Fig. 3—Load-deformation relationships of springs of macroelement. (Note: Plots are prepared based on Beam S1M by Mihaylov 
et al.11 with a/d = 1.55, d = 1095 mm, b = 400 mm, lb1 = 300 mm, ρl = 0.70%, ρv=0.10%, and fc′ = 33.0 MPa; 1 mm = 0.039 
in.; 1 m = 3.28 ft; 1 kN = 0.225 kip; 1 MPa = 145.038 psi.)
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be captured. These severely limit the use of lumped-plas-
ticity procedures for modeling shear effects in practice.

Shear behavior can also be modeled using a distributed 
plasticity approach, where the concrete layers do not work 
in uniaxial tension/compression, but under a 2-D state of 
stresses. This approach is more computationally demanding 
but removes the complex task of determining the shear hinge 
behavior from the user. VecTor516 is one procedure based on 
a distributed plasticity approach and is adopted in this study. 
To simplify the problem, the pattern of distribution of the 
shear strains across the section is assumed either constant 
(not shown) or parabolic (shown in Fig. 4(c)). Knowing the 
longitudinal and shear strain distributions, each concrete and 
steel layer is analyzed individually based on the Distributed 
Stress Field Model (DSFM), Vecchio 2000.17 The DSFM is a 
smeared, hybrid crack model (that is, between a fully rotating 
and a fixed-crack model) and accounts for phenomena such 
as aggregate interlock; tension stiffening and softening; 
compression softening and confinement of the concrete; and 
yielding, strain hardening, buckling, and dowel action of 
the reinforcement. This approach has been evaluated with a 
large number of experiments showing adequate predictions 
as well as excellent convergence properties.18

MIXED-TYPE MODELING FRAMEWORK
The primary objective of this study is to propose an 

analysis framework, which integrates 1-D slender beam 
elements with a new 1-D macroelement for deep beams. 
A key advantage of the macroelement, which will permit 
achieving this objective, is that it uses the same nodal 
degrees of freedom as the 1-D slender elements.

The approach taken in this study is to avoid making major 
changes to the solution algorithm of the existing global 
analysis procedure of VecTor5. This is achieved by devel-
oping a new subroutine for the deep macroelement, which 

performs the calculations discussed previously and returns 
the results of deep members to the global VecTor5 solution 
procedure. The unbalanced force approach used in VecTor5 
(to be discussed in the following) ensures the compati-
bility of these results with those calculated for the slender 
elements. A major advantage of this approach is that no other 
changes (such as a new finite element development, solution 
algorithm changes, or degree of freedom modifications) are 
required for the global analysis procedure. Even though the 
proposed formulations are implemented in VecTor5 due to 
its robust shear behavior modeling, they are equally as appli-
cable to other existing platforms for nonlinear analysis.

The unbalanced force method19 employed by VecTor5 is 
illustrated schematically in Fig. 5. The first step is to perform 
a global frame analysis with a constant stiffness under the 
applied loads {Fa} to compute the nodal displacements Δ1 
(refer to path 1→2). These displacements are used to calcu-
late the curvature and strain values for each element. The 
nonlinear sectional calculations are then performed, using 
the strain values, to obtain the end forces of the elements and 
the corresponding nodal forces for the entire structure FN1 
(path 2→3). The difference between the applied forces and 
the nodal forces calculated by the sectional procedures are 
termed unbalanced forces FUi = Fa – FNi, which are used to 
establish a vector of the compatibility restoring forces {FR}. 
These forces are applied in addition to the externally applied 
forces to increase the displacements and get closer to the true 
nonlinear response. Following this step, new unbalanced 
forces are calculated and added to {FR}, and the iterations 
continue until all unbalanced forces converge to zero. This 
method is employed in VecTor5 for static analyses (such as 
monotonic and cyclic) as well as dynamic analyses (such as 
seismic, impact, or blast). This study focuses on the static 
monotonic (or pushover) analysis only.

The proposed mixed-type modeling framework based on 
the unbalanced force method is outlined in Fig. 6. In this 
flowchart, the steps related to the newly added subroutines 
for deep beam elements are shaded in grey. The subroutine 
for slender elements is presented very briefly within the 
existing VecTor5 procedure and is also shaded in gray. From 

Fig. 4—Existing element for slender beams.

Fig. 5—Unbalanced force approach (adapted from Guner 
and Vecchio19).
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the displacement vector {Δ}, a subroutine extracts the nodal 
displacements of each element {Δel} and supplies them to 
the subroutines for either deep or slender elements. These 
subroutines perform nonlinear calculations under imposed 
{Δel} and return the member end forces {FNd} and {FNs}. 
When assembled for the entire structure, {FNd} and {FNs} 
form the global vector of nodal forces, which is used by the 
unbalanced force method.

As illustrated in Fig. 6, the new subroutine for deep 
elements consists of six main steps. The calculations begin 
by obtaining the secant stiffnesses k1 to k3 of the three springs 
of the macroelement from the previous converged load step 
or previous iteration. In the first load step, the structure is 
elastic and the stiffness is obtained based on the Timos-
henko’s beam theory as detailed elsewhere.8 The internal 
degrees of freedom of the macroelement θ1, θ2, and Δc are 
then calculated under the imposed nodal DOFs {Δel}. This 
is achieved through the use of a transformation matrix [T] 
as follows
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DOFs θ1, θ2, and Δc are used together with the nonlinear 
constitutive relationships of the springs (shown in Fig. 3) to 
obtain the end moments M1 and M2 as well as the shear V. 
As k1 to k3 are secant stiffnesses, they are recalculated as k1 = 
M1/θ1, k2 = M2/θ2, and k3 = V/Δc. The secant stiffness formu-
lation always provides positive stiffness values and results 
in excellent convergence characteristics. The calculations 
are repeated until the initial and calculated stiffness values 
converge. The member end forces {FNd} are then obtained 
from Eq. (1).

As mentioned previously, the obtained reaction forces 
{FNd} and {FNs} are assembled to form the global vector of 
nodal forces {FN}. If forces {FN} are not equal to the applied 
forces {Fa}, unbalanced force will be calculated. The solu-
tion at a given load step is considered converged when the 
unbalanced forces are close to zero; otherwise, these forces 
are added to the vector of compatibility restoring forces 
{FR} from the previous iteration, and the entire procedure is 
repeated with the updated load {Fa}+{FR}.

Fig. 6—Mixed-modeling framework.
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EVALUATION AND APPLICATIONS
To evaluate the new mixed-type modeling framework 

with experimental results, 17 simply supported deep beams, 
one continuous deep beam, and one large frame structure are 
analyzed. All beams were shear-critical and modeled with 
both the proposed 1-D mixed-type modeling approach and a 
2-D high-fidelity finite element model (FEM). The 2-D FEM 
analyses are performed with program VecTor220 based on 
the same theory (that is, the DSFM17) as in VecTor5 to avoid 
discrepancies related to the theories used in the global 
analyses. The two modeling approaches are compared in 
terms of accuracy and computational efficiency.

Simply supported deep beams
The simply supported deep beams considered in this study 

were tested to failure by Tanimura and Sato21 (12 beams) 
and Salamy et al.22 (five beams). All beams were subjected 
to symmetrical four-point bending and featured different 
geometry and material properties as listed in Table 1. The 
shear span-depth ratio a/d varied from 0.5 to 1.5, the effec-
tive depth from 400 to 1400 mm (15.75 to 55.12 in.), the 
longitudinal reinforcement ratio from 1.99% to 2.14%, the 
stirrup ratio from 0 to 0.84%, and the concrete compressive 
strength from 22.5 to 29.3 MPa (3263 to 4250 psi).

A representative sample beam (for example, Beam 8 in 
Table 1) and the two models created for this beam are shown 
in Fig. 7. The FEM consists of quadrilateral elements for 
the concrete and discrete truss elements for the longitu-
dinal reinforcement. As the stirrups are typically uniformly 
spaced, they are modeled with smeared reinforcement as a 

part of the concrete elements. To allow the analyses to be 
easily repeated by others, the default constitutive models 
of VecTor2 were used with no tuning of any input param-
eters. The only exception is the compression stress-strain 

Table 1—Simply supported deep beam tests

Authors and 
year Beam a/d

b, 
mm

d, 
mm

h, 
mm

a, 
mm

Lf, 

mm
L, 

mm
lb1, 
mm

lb2, 
mm

fc′, 
MPa

ρl, 
%

fy, 
MPa ρv, %

fyv, 

MPa Vexp, kN
Vexp/

Vpred, 2D

Vexp/
Vpred, 1D

Tanimura 
and Sato 
200521

1 0.5 300 400 450 200 400 1400 100 100 23.2 2.14 458 0.00 — 853 1.08 1.06

2 0.5 300 400 450 200 400 1400 100 100 23.2 2.14 458 0.21 370 821 1.08 1.00

3 0.5 300 400 450 200 400 1400 100 100 23.2 2.14 458 0.48 388 833 1.09 1.02

4 0.5 300 400 450 200 400 1400 100 100 23.2 2.14 458 0.84 368 869 1.15 1.07

5 1.0 300 400 450 400 400 1800 100 100 29.0 2.14 458 0.00 — 632 0.94 1.14

6 1.0 300 400 450 400 400 1800 100 100 29.1 2.14 458 0.21 370 731 1.00 1.23

7 1.0 300 400 450 400 400 1800 100 100 29.2 2.14 458 0.48 388 750 0.97 1.20

8 1.0 300 400 450 400 400 1800 100 100 29.3 2.14 458 0.84 368 804 0.91 1.23

9 1.5 300 400 450 600 400 2200 100 100 22.9 2.14 458 0.00 — 284 0.78 0.80

10 1.5 300 400 450 600 400 2200 100 100 22.5 2.14 458 0.21 370 464 0.94 1.13

11 1.5 300 400 450 600 400 2200 100 100 23.0 2.14 458 0.48 388 491 0.84 0.99

12 1.5 300 400 450 600 400 2200 100 100 23.5 2.14 458 0.84 368 570 0.92 0.99

Salamy et al. 
200522

B-10-2 1.5 240 400 475 600 300 1900 100 100 23.0 2.02 376 0.00 — 357 1.08 1.41

B-13-2 1.5 480 800 905 1200 600 3800 200 200 24.0 2.07 398 0.00 — 1128 1.00 1.10

B17 1.5 600 1000 1105 1500 750 4750 250 250 28.7 2.04 398 0.40 398 2607 0.98 1.09

B15 1.5 720 1200 1305 1800 900 5700 300 27.0 1.99 402 0.00 — 2695 1.06 1.16

B18 1.5 840 1400 1505 2100 1050 6650 350 23.5 2.05 398 0.40 398 4198 0.89 0.95

Avg 0.98 1.09

COV 10.1% 12.6%

Notes: 1 mm = 0.039 in.; 1 MPa = 145.038 psi; 1 kN= 0.225 kip.

Fig. 7—Modeling of simply supported deep beam 8. (Note: 
1 mm = 0.039 in.)
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curve of the concrete for which the Popovics23 model was 
preferred over the default simple parabola. The beams are 
analyzed under imposed increasing displacements applied at 
the loading points.

In contrast to the 2-D FEM that uses 261 elements for 
Beam 8, it can be seen in Fig. 7(c) that the proposed 1-D 
mixed-type modeling approach uses only two elements 
for the same beam. A slender element is used for the pure 
bending region while a deep macroelement is used for the 
shear span to show the compatibility of the two elements in 
the same structure. Again, the default constitutive models of 
VecTor5 were used (except for the compression stress-strain 
curve of the concrete), which are the same as those contained 
in VecTor2, to achieve a more consistent comparison.

To verify the proposed modeling approach, it is first 
necessary to examine its convergence properties. For this 
study, an unbalanced-force-based-convergence criterion is 
used as follows
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where n is the total number of elements; Nui, Vui, and Mui are 
the unbalanced end forces for each element; and Ni, Vi, and 
Mi are the end element forces calculated by the global frame 
analysis. The convergence factors CF and the number of 
iterations from the analysis of Beam 8 are plotted in Fig. 8 as 
functions of the load step number, where the peak resistance 
of the beam was reached at load step 19. It can be seen that 
the solution reached convergence at all load steps, including 
in the post-peak regime of the beam. This was achieved even 
without reaching the maximum number of iterations (that 
is, 100). Similar observations were made for the rest of the 
beams modeled in this study.

The complete pre- and post-peak load-deflection 
responses of the seventeen simply supported deep beams in 
Table 1 are shown in Fig. 9. The plots compare the exper-
imentally obtained responses to the predictions from the 
1-D (proposed) and 2-D models. Overall, both approaches 
capture the pre-peak response and produce satisfactory 
strength predictions within ±10%—well inside the margins 
of error expected when analyzing shear-critical reinforced 
concrete members. As shown in Table 1, the average shear 
strength experimental-to-predicted ratio obtained with the 
2-D FEM is 0.98 and the coefficient of variation (COV) 
is 10.1%. For the proposed 1-D mixed-type modeling 
approach, these numbers are respectively 1.09 and 12.6%, 
which indicates that the new approach is slightly more 
conservative than the 2-D FEM. It can also be observed in 
Fig. 9 that the 1-D model produced better results in the post-
peak regime, which becomes very important when evalu-
ating the resilience of structures under extreme loads. While 
the 2-D FEM predicts very brittle failures, the proposed 1-D 
model accounts for the available residual capacity. There-
fore, the new modeling framework will be able to properly 
account for the redistribution of forces in complex statically 
indeterminate structures incorporating deep beams.

To better understand the modeling of the peak and post-
peak behavior, Fig. 10 compares measured and predicted 
crack and deformation patterns of two specimens. In Beams 1 
and B-15 with a/d of 0.5 and 1.5, respectively, the critical 
shear cracks developed diagonally across the shear span. For 
the shorter beam (that is, Beam 1), the 1-D and 2-D models 
produce very similar deformation patterns at failure. For 
the longer beam (that is, Beam B-15), the 1-D model uses 
a straight diagonal crack while the 2-D model predicts a 
steeper critical crack that extends along the bottom reinforce-
ment. To generate these patterns, the 1-D model uses DOFs 
θ1 and Δc (θ2 = 0 as the shear span is under single curva-
ture bending), while the 2-D model uses several hundreds 
of DOFs. Furthermore, as the proposed simpler approach 
models a discrete critical crack, it can accurately capture the 
ductility of the member when large sliding displacements 
occur along the crack in the post-peak regime. In contrast, 
the 2-D smeared crack formulation results in a large concen-
tration of principal tensile strains in a narrow band of finite 
elements. These strains in turn result in unrealistically high 
compression softening of the concrete and a rapid loss of 
post-peak resistance. Similar observations have been made 
with other 2-D smeared crack formulations, as they all result 
in strain concentrations (refer to, for example, the predic-
tions of platform DIANA for Beam B-15 in Fig. 9 reported 
by Salamy et al.21).

It is also of interest to compare the analysis time required 
by the 1-D and 2-D models. On the same PC with a 3.4 GHz 
quad-core processor and 16 GB of RAM, the 1-D model 
required an average analysis time (considering all 17 beams) 
of approximately 5 seconds, while the 2-D model required 
approximately 50 seconds While both times are short, the 
difference between the two models becomes important when 
large structures are analyzed as it will be demonstrated later. 
In addition, the time for modeling with the 1-D approach 
is significantly shorter due to the straightforward input and 
small number of elements required.

Continuous deep beams
A continuous deep beam with two symmetrical spans 

was tested under two symmetrical concentrated loads by 
Mihaylov et al.11 (refer to Fig. 11). The beam had a symmet-
rical top and bottom longitudinal reinforcement with a ratio 
of 0.91%, as well as stirrups with a ratio of 0.20%. As shown 
in Fig. 11(b) and (c), only one-half of the beam was modeled 

Fig. 8—Convergence during analysis of Beam 8.



260 ACI Structural Journal/July 2019

due to the symmetry. The 2-D FEM uses 1179 elements while 
the proposed 1-D model uses only two macroelements. The 
two macroelements model the two shear spans, where the 
external shear span is under single curvature and the internal 
one is under double curvature. As with the simply supported 
beams, significantly less time was needed to generate 
the 1-D model as compared to the 2-D FEM. In terms of 
analysis time, the 2-D model required approximately 145 
seconds, while the 1-D model took approximately 3 seconds 
to complete the calculations.

Figure 12 shows the measured and predicted load-de-
flection responses of the continuous deep beam. The three 
curves correspond to the applied load P, the shear in the 
external shear span Vext, and the shear in the internal shear 
span Vint. These three forces were measured in the test 
and illustrate the fundamental differences between simply 
supported and continuous deep beams. It can be seen that the 
internal shear span attracted more shear and reached its peak 
shear resistance at a deflection of approximately 3.5 mm 
(0.14 in.). However, due to the statical indeterminacy of the 
beam, as the resistance of the critical shear span decreased, 
the shear was redistributed towards the external shear span. 
This resulted in a significant global ductility of the member 
even though the beam failed in shear without yielding of the 

longitudinal reinforcement. As evident from Fig. 12, this 
ductility is captured well by the proposed 1-D model, while 
the 2-D FEM slightly underestimates the ability of the beam 
to deform plastically in the post-peak regime. In contrast, 
in the pre-peak regime, the 2-D model provides better stiff-
ness predictions. The lower stiffness obtained from the 1-D 
element stems from the fact that, for simplicity, the macro-
element is assumed fully cracked from the beginning of the 
loading, while the full formulation of the macroelement with 
an initial uncracked response is described elsewhere.8

Frame structure
Finally, it is of interest to compare the different modeling 

approaches when analyzing large frame structure containing 
both slender and deep members. As laboratory tests of such 
structures are not available even in small scales, a sample 
20-story frame was designed based on the ACI 318 provi-
sions.24 Figure 13 shows the bottom two stories of the frame 
where a deep transfer girder is used to support a column 
from the floors above. The depth of the girder is chosen as 
1.8 m (5.9 ft), resulting in an a/d of 1.63.

The lowermost two floors were modeled based on two 
strategies: 2-D FEM and proposed 1-D mixed-type modeling 
approach (Fig. 14(a) and (b)). The latter approach was also 

Fig. 9—Measured and predicted load-displacement response of simply supported deep beams. (Note: 1 mm = 0.039 in.; 1 MPa 
= 145 psi.)
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used to model the entire 20-story frame (Fig. 14(c)). For 
simplicity, only three-point loads were applied at the top 
beam-column joints in the two-story models. The loads were 
increased monotonically until the transfer girder failed in 
shear along diagonal cracks.

The total applied load on the frame is plotted in Fig. 15 
as a function of the deflection of the deep transfer girder. As 
evident from the plot, the 2-D FEM and the 1-D mixed-type 

Fig. 10—Crack and deformation patterns of Beams 1 and 
B-15. 

Fig. 11—Modeling of continuous deep beam tested by 
Mihaylov et al. (Note: 1 mm = 0.039 in.)

Fig. 12—Measured and predicted load-displacement 
response of continuous deep beam.

Fig. 13—Two-story single-span frame. (Note: 1 mm =  
0.039 in.; 1 MPa = 145.04 psi.)
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modeling approach produced very similar results, including 
an almost identical peak load. The plot also shows the results 
from the complete analysis of the 20-story frame performed 
with the 1-D model in Fig. 14(c). The forces P/2 and P/4 
applied in the two-story model were distributed as P/38 and 
P/76 along the height of the 20-story model. Therefore, the 
load P in Fig. 15 remains the total load on the frame. In 
this regard, it is of interest to note that the 20-story building 
carried nearly two times larger total load than the two-story 
frame. This increased resistance is due to the slender beams 
in the above floors which, though significantly less stiff than 
the transfer girder, provide a certain resistance as the girder 
deforms and fails in shear. Therefore, focusing the analysis 

on the bottom two floors and neglecting the interaction with 
the slender beams in the higher floors proves to be very 
conservative in this case.

To further study the redistribution of forces between deep 
and slender beams, an additional analysis of the 20-story 
frame is performed under imposed displacements. As shown 
in the inset of Fig. 16, equal vertical displacements were 
applied at the internal beam-column joints to obtain the post-
peak behavior of the frame. The plot shows the accumula-
tive vertical force resulting from the shear forces in each 
beam. It can be seen that at the peak load the transfer girder 
carries approximately 40% of the total load. In the post-peak 
regime, the deep girder fails almost completely when the 
deflection reaches approximately 18 mm (0.71 in.), followed 
by the consecutive shear failures of the slender beams in the 
second, third, and fourth floors. All failures occur in the 
same bay and the frames displace laterally. Regardless of 
these failures, the structure continues to support a signifi-
cant portion of the peak load due to the redistribution of the 
forces among the beams.

A final analysis shows that the ductility of the frame can 
be further improved if it is part of a structure with stiff 
shear walls. The walls will limit the lateral displacements 
of the frame in the post-peak regime and will force more 
symmetrical shear failures in the two bays. The dashed line 
in Fig. 16 shows the behavior of the frame when the lateral 
displacements are fully restrained. It can be seen that while 
the pre-peak response remains unchanged, the post-peak 
resistance is significantly higher, and therefore the structure 
is more resilient to overloading. This highlights the need for 
efficient 1-D models for slender and deep beams that allow 
to capture the favorable effects that develop at the global 
structural level.

Efficiency of studied modeling strategies
Finally, the efficiency of the proposed 1-D mixed-type 

modeling framework is examined and graphically illustrated 

Fig. 14—Modeling of 12-story frame.

Fig. 15—Load-deflection results from frame analysis under 
applied vertical loads.

Fig. 16—Load-deflection results from frame analysis under 
applied vertical displacements.
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in Fig. 17. The plot shows that for the structures modeled 
in this study, the proposed 1-D model required signifi-
cantly fewer degrees of freedom and computational time 
than the 2-D FEM. The largest model (that is, the 20-story 
frame under imposed displacements) required slightly less 
than 6 hours with 40 load steps. While not attempted, the 
analysis of this frame with the 2-D FEM would require 
many  days to run. In addition, creating a finite element 
mesh would require significant time and experience. This 
advantage of the proposed 1-D mixed-type modeling will 
be even more pronounced in the analysis of larger multi-bay 
multi-story structures.

CONCLUSIONS
This paper proposed a novel mixed-type modeling 

framework for large structures containing both slender 
and deep members. The framework integrates existing 1-D 
beam elements for slender members with a 1-D macroele-
ment for shear spans of deep beams. It was implemented 
in an existing computer program VecTor5 for monotonic 
loading conditions, and evaluated with 18 deep beams and a 
20-story frame. The performed studies led to the following 
conclusions:

1. The 1-D macroelement for deep shear spans provides 
a full compatibility with fiber-based 1-D beam elements for 
slender members as it uses the same nodal DOFs.

2. When applied to simply supported deep beams, the 
proposed framework produces similarly adequate results 
as those obtained with 2-D high-fidelity FEM, and even 
improves the post-peak predictions.

3. The proposed mixed-type modeling framework uses 
straightforward input and requires significantly less time for 
modeling and computation than 2-D FEM.

4. As the new framework is computationally efficient 
and captures well the complete pre- and post-peak behavior 
of frames with slender and deep members, it represents a 
valuable tool for the analysis of complex structures under 
extreme loading.
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NOTATION
Ag	 =	 gross area of cross section
a	 =	 shear span
a/d	 =	 shear-span-to-effective-depth ratio
b	 =	 cross section width
d	 =	 effective depth of section with respect to bottom reinforcement
Ec	 =	 modulus of elasticity of concrete
fc′	 =	 concrete cylinder strength
fy	 =	 yield strength of longitudinal reinforcement
fyv	 =	 yield strength of stirrups
{Fa}	 =	 vector of applied loads
{FN}	 =	 vector of nodal forces for all members from nonlinear procedures
{FNd}	 =	 vector of deep member end forces from nonlinear procedure
{FNs}	 =	 vector of slender member end forces from nonlinear procedure
{FR}	 =	 vector of compatibility restoring forces
{FU}	 =	 vector of unbalanced forces
h	 =	 total depth of section
[k]	 =	 secant stiffness matrix of macroelement
k1/2	 =	 secant stiffness of rotational spring 1/2
k3	 =	 secant stiffness of transverse spring
L	 =	 beam length
Lf	 =	 distance between two loading points
lb1	 =	 width of loading plate parallel to longitudinal axis of member
lb2	 =	 width of support plate parallel to longitudinal axis of member
M1/2	 =	 bending moment at end section 1/2
N1/2	 =	 axial force at end section 1/2
P 	 =	 total force applied to frame structure
P1/2	 =	 applied concentrated load or support reaction
T1/2	 =	 tension force in bottom/top longitudinal reinforcement
[T]	 =	 transformation matrix relating nodal displacements to internal 

DOFs of macroelement
u1/2	 =	 axial displacement of end section 1/2
V1/2	 =	 shear force at end section 1/2
VCLZ	 =	 shear resisted by critical loading zone
Vci	 =	 shear resisted by aggregate interlock
Vd	 =	 shear resisted by dowel action
Vexp	 =	 measured shear capacity
Vext/int	 =	 shear force in the external/internal shear spans of continuous 

deep beams
Vpred,1D	 =	 shear capacity predicted by 1-D mixed-type model
Vpred,2D	 =	 shear capacity predicted by 2-D high-fidelity FEM
Vs	 =	 shear resisted by stirrups
v1/2	 =	 transverse displacement of end section 1/2
{Δ}	 =	 vector of nodal displacements from global frame analysis
Δc	 =	 transverse displacement of CLZ
{Δel}	 =	 vector of nodal displacements for each element
εt1/2,avg	 =	 average strain along bottom/top longitudinal reinforcement
φ1/2	 =	 rotation of end section 1/2
θ1/2	 =	 opening of fan 1/2
ρl	 =	 ratio of bottom longitudinal reinforcement
ρv	 =	 stirrup ratio

Fig. 17—Efficiency of modeling strategies.
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