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A B S T R A C T

Continuous deep beams exhibit complex shear behavior due to non-linear strain distribution and coexistence of 
high shear and high moment within the same regions. This behavior makes it challenging to predict their shear 
strength accurately. The objective of this study is to develop a pioneering artificial neural network and associated 
computer tool to accurately and rapidly predict the shear strength of two-span continuous deep beams. Literature 
lacks machine learning algorithms specifically developed for continuous deep beams. To achieve this objective, a 
comprehensive database of 150 experimental specimens is compiled from eight previously published research 
studies. The 140 data points, which passed the exploratory data analysis, are used to train, validate, and test the 
proposed network for applicability to a wide range of input parameters. The accuracy and reliability of the 
proposed network are evaluated using a comprehensive set of evaluation metrics including the correlation co
efficient (R), determination coefficient (R2), mean absolute error (MAE), mean squared error (MSE), root mean 
squared error (RMSE), and the coefficient of variation (CV). The importance of the input parameters on the 
predicted shear strength is evaluated using the SHapley Additive exPlanations analysis. Another important 
objective is to develop an open-access computer tool to execute network formulations and rapidly calculate the 
shear strengths of continuous deep beams. The computer tool aims to bridge the gap between research and 
practice and enable the use of the developed network for continuous beam when there are no experimental 
testing results available.

1. Introduction

Reinforced concrete deep beams are structural elements commonly 
used in transfer girders and lower floors of high-rise buildings, foun
dation elements such as pile caps, and bridge elements such as pier caps 
(e.g., Fig. 1). The most common parameter used to characterize deep 
beams is the shear span-to-depth ratio (a/d), where the shear span (a) is 
the distance from the load to the center of the corresponding support, 
and the depth (d) is the distance from the extreme compression fiber to 
the centroid of the tension reinforcement. As illustrated in Fig. 2, beams 
with lower a/d ratios (typically ≤ 2.0) behave as deep beams, while 
those with higher a/d ratios (≥ 3.0) behave as slender beams and are 
analyzed using the sectional method. Between these extremes lies a 
transition zone (2.0 < a/d < 3.0), where the behavior is governed by 
both arching and flexural actions. Design codes [1–4] typically define 
deep beams based on the a/d ratio being less than or equal to either 2.0 
or 2.5.

Deep beams, both simply supported and continuous, are 

characterized by non-linear strain distribution and are prone to brittle 
shear failure mechanisms. Continuous deep beams present additional 
challenges, including high shear forces and negative bending moments 
in the same interior shear span, typically near an intermediate support. 
This influences diagonal crack development and adversely affects the 
efficiency of interior struts [6]. In contrast, large shear force occurs in 
low bending moment region of simply supported deep beams [7]. 
Additionally, in the failed shear span of simply supported beams, the 
diagonal cracks tend to form below the critical shear crack while in 
continuous beams cracks develop on both sides of critical shear crack (e. 
g. Fig. 3) [7]. Furthermore, the statically indeterminate nature and 
higher stiffness of continuous deep beams make them particularly sen
sitive to differential support settlements. Even small displacements at 
supports introduce additional moments and shear forces, affecting crack 
initiation and propagation patterns [8]. All these complex behaviors of 
continuous deep beams make their shear strength calculation 
challenging.

Shear strength of continuous deep beams is influenced by many 
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interacting parameters which further complicate its accurate calcula
tion. Several methods have been proposed to calculate the shear strength 
of deep beams. Among these, the Strut-and-Tie Method (STM) is the 
most widely used method and recommended by design codes such as 
ACI 318–25 [1], AASHTO LRFD [2], CSA A23.3 [3], and IS 456 [4]. STM 
idealizes the internal force flow through a truss-like system of 
compression struts and tension ties intersecting at nodes. While STM 
provides a rational and accurate analysis method for deep beams (e.g. 
Fig. 2) [1–5,10], the detailed equations and geometrical rules for 
creating valid strut-and-tie models require expert level knowledge and 
an iterative solution specific to each problem being modeled [11]. In 
addition, there is a scarcity of computer tools that can create and analyze 
valid strut-and-tie models for a given problem.

Given these challenges, machine learning (ML) can provide a 
promising solution to predict the shear strength of deep beams through a 
self-learning process based on existing experimental results. Recent 
advances in ML algorithms, including artificial neural networks, support 
vector machines, random forests, and gradient boosting techniques, 
offer promising solutions for capturing such complex behavioral pat
terns. ML algorithms have been successfully applied to predict the shear 
strength of slender beams [12–14], columns [15,16], beam-column 
joints [17–19], and the load capacity of anchors [20]. For the shear 
strength prediction of deep beams, ML algorithms are only focused on 
the simply supported beams [21–28]. Research efforts applying ML 

algorithms to continuous deep beams are lacking, despite their practical 
significance.

In this study, Artificial Neural Networks (ANNs) are adopted to 
predict the shear strength of continuous deep beams. Since shear 
strength in deep beams depend on many interacting parameters and 
their relations are non-linear and complex, ANNs are well-suited to 
capture these relationships accurately. The effectiveness of ANN in 
solving complex problems has been demonstrated in several studies 
which reinforce its suitability for the purpose of this study. Goh [21]
applied the artificial neural network (ANN) to predict slender beam 
shear strength. In a subsequent study, Sanad and Saka [22] verified the 
effectiveness of ANN in predicting the shear strength of deep beam. 
Nyugen et al. [23] recently compared performance of seven ML algo
rithms and concluded that ANN, ensemble of trees, gradient boosting, 
and Gaussian process regression exhibited superior performance to 
predict shear strength of simply supported deep beams. The results show 
that ANN provides an effective solution in accurately predicting the 
shear strength of deep beams. Additionally, ANNs allow for relatively 
straightforward implementation in user-oriented tools for seamless 
application in engineering practice without requiring specialized ML 
software. One weakness that is noted in this literature review is the lack 
of computer tools that can execute the proposed ML algorithms in most 
studies. It is challenging, and sometimes impossible, to analyze a beam 
other than those considered in the study and predict its shear strength. 
This defeats the purpose of developing a predictive network.

This research aims to develop a pioneering artificial neural network 
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Fig. 1. Sample building structure with deep beams.

Fig. 2. Variation of shear strength across various ranges of a/d ratios (adopted 
from [5]).
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Fig. 3. Typical cracking behavior of continuous deep beams (adopted 
from [9]).
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and associated computer tool for the accurate, reliable, and rapid shear 
strength prediction of the two-span continuous deep beams. The artifi
cial neural network is developed using a comprehensive database with a 
large range of applicability and derived exclusively from the experi
mental tests of two-span continuous deep beams. The associated com
puter tool, named ANN-ConDeep, aims to transfer the research findings 
into practical application, allowing the engineering community to pre
dict the shear strength of two-span continuous deep beams with no 
experimental results.

2. Development of the artificial neural network (ANN)

2.1. Background

An Artificial neural network (ANN) is a computational tool inspired 
by the architecture, functional operations, and operating features of the 
biological neural system. It consists of interconnected processing units 
called neurons, which modify themselves based on the information 
passing through them, mimicking the learning process of biological 
neurons (Fig. 4).

Each neuron receives multiple input signals (I1, I2, …, IN), which are 
individually weighted (W1, W2, …, WN). Weights are scalar values that 
define the strength of connections between neurons, determining how 
much influence one neuron’s output has on another. Additionally, each 
neuron has an associated bias, a constant that allows the network to 
adjust and fine-tune its predictions. The neurons compute the weighted 
sum of the inputs, which are the outputs of each layer. The weighted sum 
of the input is mathematically derived using Eq. (1): 

n =
∑N

i=0
IiWi + b (1) 

where Ii are the input signals to the neuron, Wi are the weights 
associated with each input, and b is the bias. This weighted sum, n, is 
then passed through an activation function, such as Rectified Linear Unit 
(ReLU), tanh, sigmoid, or linear, which converts the weighted sum into 
the neuron’s output signal. The ReLU activation function has shown to 
be highly effective for regression and classification purposes [29] and 
thus used in this study. The ReLU function is defined as in Eq. (2): 

f(n) = max(0, n) (2) 

The output of each neuron is then transmitted to neurons in subse
quent layers, where it is further processed by additional weights and 
biases, ultimately reaching the output layer. This process is known as 
forward propagation. After the forward propagation, the error between 
the predicted (Vpred) and experimental values (Vexp) for m data points is 
calculated using loss functions, such as the mean squared error, as 
defined in Eq. (3). 

MSE =
1
m
∑(

Vexp − Vpred
)2 (3) 

The gradient of this loss function is then used to adjust the weights 
and biases in the network to minimize prediction errors. This process is 
known as backward propagation. This iterative process continues until 
the network reaches an optimal state where prediction errors are 
minimized.

2.2. Experimental database

The experimental database complied in this study includes two-span 
continuous deep beams subjected to two equal point loads (P) acting 
symmetrically with respect to the centerline. The basic parameters that 
influences the shear strength include the width of the beam (bw), the 
effective depth of the beam (d), the shear span-to-depth ratio (a/d), the 
compressive strength of concrete (fc’), the yield strength of longitudinal 
and transverse reinforcement (fyh and fyv), the longitudinal top and 
bottom reinforcement ratio (ρh’ and ρh), the transverse reinforcement 
ratio (ρv), the width of loading plate (ll), and, the width of support plate 
(ls) – all shown in Fig. 5.

From eight different research studies [8,9,30,31–35], a total of 150 
experimental results have been collected (see Appendix A). Every effort 
is made to identify all available experimental results with intended beam 
and loading configuration. The experimental database covers the beams 
with various a/d ratios from 0.54 to 2.67. 81 specimens have a/d ratios 
less than 2.0, and 69 specimens have a/d ratios ranging from 2.02 to 
2.67. This range captures both the deep beam (a/d < 2) and the tran
sition zone (2 < a/d < 3) behaviors. All specimens exhibited 
shear-critical behaviors in the experiments.

Table 1 shows the ranges of input parameters in the database. The 
wide range of parameters is essential to generalize the use of the 
network because ANNs are not appropriate for the extrapolation of data. 
Any deep beam that will be analyzed by the network should have the 
input parameters in these ranges.

The distribution of the input parameters across various ranges in the 
database is shown in Fig. 6. An even distribution of the data points 
across each parameter suggests good data distribution. The frequency 
distribution assessment conducted on the input parameters of the 
experimental database shows that the parameters captured an accept
able range for the network to be accurate in predicting the shear 
strength.

2.3. Exploratory data analysis

Exploratory Data Analysis (EDA) is performed to identify potential 
outliers and understand the relationship between parameters before 
using the database for the development of a network. As part of this 
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process, an outlier detection is performed using Cook’s distance to 
remove any influential data points or outliers that negatively affect the 
network performance, followed by correlation coefficient analysis to 

assess the relationships between parameters.
Cook’s distance is a statistical method used to estimate the influence 

of a data point when performing the least squares regression analysis. 
The general idea behind Cook’s distance is to measure how much the 
regression coefficients would change if a particular data point were 
removed from the database. The formula to calculate the Cook’s dis
tance for the ith observation is expressed below in Eq. (4). Any data point 
with Cook’s distance greater than the threshold limit (It) in Eq. (5) is 
considered an outlier and should be removed from the database. 

Di =

(
r2

i
p⋅MSE

)

⋅
(

hii

(1 − hii)
2

)

(4) 

It =
4
m

(5) 

where ri is the ith residual (i.e., residual for the ith observation), p is 
the number of coefficients in the regression network, MSE is the mean 
squared error, hii is the ith leverage value, and m is the total number of 

Table 1 
Range of input parameters in the database.

Input parameters Min Max Unit

Width of beam (bw) 120 200 mm
Effective depth of beam (d) 381 1000 mm
Shear span-to-depth ratio (a/d) 0.54 2.67 -
Compressive strength of concrete (fc’) 14.5 68.2 MPa
Yield strength of longitudinal reinforcement (fyh) 285 586 MPa
Yield strength of transverse reinforcement (fyv) 347 581 MPa
Longitudinal top reinforcement ratio (ρh’) 0.32 4.86 %
Longitudinal bottom reinforcement ratio (ρh) 0.32 4.76 %
Transverse reinforcement ratio (ρv) 0.15 0.84 %
Width of loading plate (ll) 150 300 mm
Width of support plate (ls) 160 400 mm

Fig. 6. Distribution of input and output parameters in the experimental database.
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data points in the database.
The results of outlier detection using Cook’s distance are shown in 

Fig. 7. The data lying above the threshold value of It equal to 0.0267 are 
outliers. After the application of the Cook’s distance method, 10 speci
mens were identified as outliers and removed from the database, leaving 
an experimental database of 140 specimens for the network creation.

After removing the outliers from the experimental database, the 
correlation coefficient analysis is performed to quantify the correlation 
between the input and output parameters using Eq. (6) where rxy is the 
correlation coefficient, m is the sample size, xi, and yi are the individual 
sample points for the input and output parameters respectively indexed 
with i, and x and y are the average values for the input and output pa
rameters, respectively. 

rxy =

∑m
i− 1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1(xi − x)2
√

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1(yi − y)2
√ (6) 

The correlation between the input parameters and the shear strength 
is more clearly expressed using a heatmap as shown in Fig. 8. The input 
parameters include bw, d, a/d, fc’, fyh, fyv, ρh, ρh’, ρv, ll, and ls. The cor
relation coefficients range from + 1 to − 1, where + 1 indicates a strong 
direct correlation between the parameters, 0 indicates no relationship 
between the parameters, and − 1 indicates a strong inverse correlation 
between the parameters. For instance, the correlation coefficient be
tween the shear span-to-depth ratio (a/d) and the shear strength (V) is 
− 0.74, indicating a strong negative correlation of 74 %. This indicates 
that as the shear span-to-depth ratio increases, the shear strength de
creases, and vice versa. Similarly, the correlation coefficient between 
the compressive strength of concrete (fc’) and the shear strength (V) is 
0.43, indicating a positive correlation of 43 %.

The beam width, the width of loading, and the width of support 
plates have lower correlation values of − 0.02, 0.13, and 0.28, respec
tively, with the shear strength as compared to the other eight input 
parameters. While the width of a beam does affect the cross-sectional 
area available to resist shear forces, its impact is relatively minor 
compared to other factors such as the shear span-to-depth ratio and 
effective depth. The primary function of the loading plate is to ensure 
that the load is applied uniformly, which helps in avoiding localized 
failures under the plate, without significantly affecting the shear 
strength. The support plate affects the distribution of reaction forces at 
the support. While the support plate can affect the bearing capacity and 
prevent local crushing at the supports, it has a limited effect on the 
overall shear strength of the beam as demonstrated in the heatmap.

2.4. Network architecture

The main components of the network architecture include activation 
functions, optimization functions, learning rate, and network configu
rations. The rectified linear unit function (ReLU) is selected in this study 
as the activation function for the hidden layer because of its capability to 
discard neurons with negative weights and biases in the learning pro
cess, allowing for a faster and more precise learning process [36].

Adaptive moment estimation (Adam) with a learning rate (k) of 0.1 is 
selected as an optimization function to update the weights and biases. 
Adam optimization function allows the weights and biases to converge 
to optimum values with less iterations (i.e., faster) while providing more 
accurate shear strength predictions. The selection of the learning rate as 
0.1 is based on parametric study. The validation loss of the network is 
computed for the network with different learning rates, i.e., 0.001, 0.01, 
and 0.1, for 20 trials. For the maximum trials, the validation loss is found 
to be converged within values around 0.286 for the learning rate 0.1, 
whereas for the learning rates 0.001 and 0.01, the validation losses are 
converged within 0.985 and 0.445, respectively. Hence, the learning 
rate with lower validation loss, i.e., 0.1, is selected.

In addition, a parametric study is conducted to find an efficient 
network configuration. To achieve this, the accuracy of the various 
network configurations is evaluated based on the mean squared error. 
All these configurations consist of one input layer with eleven neurons 
and one output layer with one neuron, while the number of neurons in 
the hidden layer is varied from 1 to 50, and their accuracy is checked. 
The network configuration with the least mean squared error is then 
selected as the most efficient configuration. The MSEs computed for 
configurations are shown in Fig. 9, where the most efficient network 
configuration is found for a hidden layer with twenty-eight neurons.

The final configuration of the network is presented in Fig. 10. It 
consists of one input layer with eleven neurons, one hidden layer with 
twenty-eight neurons, and one output layer with one neuron. The eleven 
neurons in the input layer are the eleven input parameters, and one 
neuron in the output layer is the shear strength of a two-span continuous 
deep beam (Vpred).

The predicted shear strength (Vpred) is the nominal (unfactored) 
shear strength of a two-span continuous deep beam with equal point 
loads (P) at the center of each span. The relationship between the point 
loads (P) and the shear strength (Vpred) of a beam can be calculated using 
statics. For a two-span continuous beam with equal point loads on two 
spans, the statics require that the point load (P) at the center of each Fig. 7. Outlier detection using Cook’s distance method.

Fig. 8. Correlation coefficient analysis between input parameters and 
shear strength.
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span is equal to 16/11 times the shear strength (Vpred). The predicted 
shear strength should be multiplied by the strength reduction factor 
according to applicable design codes to obtain the factored shear 
strength. For example, the strength reduction factors recommended by 
ACI 318–25 [1], AASHTO LRFD [2], and CSA A23.3–2024 [3] are 0.75, 
0.75, and 0.65, respectively.

2.5. Network training, validation, and testing

Using 140 data points, which passed the exploratory data analysis, 
the final network configuration is trained, validated, and tested. For 
that, the database is split into 80 % training sets, 10 % validation sets, 
and 10 % testing sets. Before training the network, all the input pa
rameters of the database are standardized to a similar scale using the 
StandardScaler tool [37]. This standardization involves calculating the 
mean and standard deviation for each input parameter across the 
training sets. Each input parameter is then transformed by subtracting 

the mean and dividing by the standard deviation, resulting in stan
dardized values with a mean of 0.00 and a standard deviation of 1.00. 
This step allows all input parameters to contribute equally to the 
network training.

The training of the network is then carried out with the training set 
while monitoring its accuracy on the validation set. The forward prop
agation and backward propagation are applied to each input data of the 
training sets. To prevent the network from overfitting, the training of the 
network is halted if the validation loss does not improve for 50 epochs.

Following the training process, the testing of the network is carried 
out by performing the forward propagation and computing the error for 
all data points of the testing sets. The accuracy and reliability of the 
proposed network are evaluated using six different evaluation metrics, 
including R, R2, MAE, MSE, RMSE, and CV. R is the correlation coeffi
cient defined in Eq. (7), which is used to evaluate the correlation be
tween the predicted and experimental shear strength values Vpred and 
Vexp. R ranges from 0 to 1, where 1 indicates the highest correlation. R2 is 
the determination coefficient defined in Eq. (8), which indicates the 
extent to which the predicted value matches the experimental value 
regardless of their direction. R2 ranges from 0 to 1, where 1 indicates the 
best fit. 

R =
m
∑

VexpVpred −
( ∑

Vexp
)( ∑

Vpred
)

[
m
∑

V2
exp −

( ∑
Vexp

)2
][

m
∑

V2
pred −

( ∑
Vpred

)2
] (7) 

R2 = 1 −

∑(
Vexp − Vpred

)2

∑(
Vexp − Vpred

)2 (8) 

MAE is the mean absolute error defined in Eq. (9), which is the 
average error between the predicted and experimental values. MSE is 
the mean squared error defined in Eq. (3), which is the average squared 
difference between predicted and experimental values. RMSE is the root 
mean squared error defined in Eq. (10), which is the average magnitude 
of the errors between predicted and experimental values. CV is the co
efficient of variation defined in Eq. (11), which is the ratio of the stan
dard deviation to the mean. For the error metrics (MAE, MSE, and 
RMSE) and CV, smaller numbers indicate more accurate results. 

MAE =
1
m
∑⃒

⃒Vexp − Vpred
⃒
⃒ (9) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑

(Vexp − Vpred)
2

√

(10) 

CV =
RMSE

1
m
∑

Vpred
× 100 (11) 

The values of these metrics for the training, validation, and testing 
sets are provided in Table 2. The R and R2 values closer to 1 indicate a 
strong relationship between the predicted and experimental values and 
a good fit of the network. The network achieved R values above 0.96 and 
R² values above 0.92 across all data splits. The lower values of RMSE, 
MSE, and MAE indicate that the network can give predicted values close 
to the experimental values, making it reliable for the prediction of the 
shear strength of the two-span continuous deep beams.

To visually assess the quality of predictions, the ANN predictions of 

Fig. 9. MSEs computed for various network configurations.

Fig. 10. Schematic representation of the proposed network.

Table 2 
Evaluation metrics for training, validation, and testing sets.

Evaluation Metrics Training Validation Testing

R 0.98 0.96 0.98
R2 0.97 0.92 0.97
MAE 21.68 26.75 32.05
MSE 949.76 1395.52 1702.28
RMSE 30.82 37.36 41.26
CV 9.65 % 10.89 % 9.85 %
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the shear strength (Vpred) of training, validation, and testing set versus 
the experimental values of the shear strength of the experimental data 
(Vexp) are plotted in Fig. 11. In these plots, an ideal result where the 
network predicts exactly the experimental results, would be a y = x line 
with R2 value closer to 1, which is close to the graph obtained in the 
training process (Fig. 11a). As shown in Fig. 11b and Fig. 11c, the ac
curacy in the validation and testing set is similar to that in the training, 
with the coefficient of variation of 10.89 % and 9.85 %, and a slightly 
more inclined trendline (y = 1.04x and y = 0.99x). The R2 values for the 
training, validation, and testing sets are 0.97, 0.92, and 0.97, respec
tively, and the R values are 0.98, 0.96, and 0.98, respectively. The 
average predicted-experimental shear strength ratios for 140 specimens 
are 1.00, with a coefficient of variation of 10.12 %. These results 
demonstrate the predictive accuracy of the proposed network.

Fig. 12 presents the scatterplots of the predicted-to-experimental 
shear strength ratios of the proposed network across the complete 
ranges of each input parameter. In these plots, the ideal ratio, where the 
network predictions are exactly equal to the experimental values, is 
shown with a horizontal line at 1.0. The predicted-to-experimental shear 
strength ratios, along with the mean and coefficient of variation, are 
presented in Appendix A.

The predictions of the proposed network for all eleven input pa
rameters are closer to line 1.0 with less scatter and without visible bias. 
The predictions obtained from the proposed network provide signifi
cantly better agreement with the experimental results, regardless of the 
range of the input parameters.

To further analyze the results from the proposed network, the anal
ysis results are presented in a box plot in Fig. 13, where the x-axis rep
resents the range of input parameters, and the y-axis represents the 
predicted-to-experimental shear strength ratios (Vpred/Vexp). These box 
plots include key statistical measures such as the interquartile range 
(IQR), median, mean, maximum, and minimum values. A smaller IQR 
indicates a low variability and high reliability in predictions. When the 
mean and median are close to each other, it implies a minimal influence 
of the outliers and a symmetric distribution of predictions.

The proposed network shows a mean and median value closer to 1.0 
and significantly narrower IQR, indicating accurate and reliable pre
dictions. For instance, in Fig. 13c, for various ranges of the shear span- 
to-depth ratio (a/d), the proposed network maintains the mean and 
median values close to 1.0, and relatively small interquartile ranges 
(IQR approximately equal to 0.2). Similarly, in Fig. 13d, for various 
ranges of the compressive strength of concrete (fc’), the proposed 
network maintains the mean and median consistently close to 1.0 and 
narrow interquartile ranges from 0.98 to 1.1. For all eleven input 

parameters, the proposed network consistently provides accurate and 
reliable predictions, with the mean and median values close to 1.0 and 
narrow interquartile ranges across all input parameter ranges.

Given the lack of ML algorithms for continuous deep beams, it is not 
possible to compare the proposed network with any ML algorithms from 
the literature. It is still desired to put the proposed ANN in the context of 
studies available in the literature. For this, a comparison study is per
formed with the ML algorithms developed for simply supported deep 
beams, and the results are presented in Table 3.

As shown in Table 3, the proposed network achieves an R2 of 0.97, 
which is higher than those reported by Nguyen et al. [23] and Feng et al. 
[25] and is comparable to Wang [24] and Cheng [27]. The coefficient of 
variation (CV) for the proposed network is 9.85 %, indicating lower 
relative dispersion of the prediction errors compared to Nguyen et al. 
[23] and Gandomi et al. [26], while remaining within a similar range as 
Feng et al. [25] and Cheng et al. [27]. In terms of error metrics, the 
proposed network achieved an MAE of 32.05 kN and RMSE of 41.26 kN, 
outperforming Nguyen et al. [23] and Gandomi et al. [26], producing 
results similar to those of Feng et al. [25], and falling short of Wang [24]
and Cheng et al. [27]. These discrepancies may be considered insignif
icant given the experimental shear strengths in the database range 
widely from 103 kN to 875 kN. This comparison demonstrates that the 
proposed network provides comparable prediction accuracy to those 
available in the literature for simply supported deep beams, despite the 
fact that continuous deep beams exhibit more complex behaviors, which 
are significantly more challenging to predict.

3. Feature importance analysis

The neural networks can accurately learn complex, non-linear re
lationships and provide accurate predictions. However, their decision- 
making processes are difficult to interpret, which is why they are 
commonly referred to as “black box” models [25]. To better understand 
the predictions of the proposed network and gain confidence in the 
network’s predictive results, SHAP (SHapley Additive exPlanations) 
feature importance analysis is used in this study. SHAP analysis is a 
cooperative game-theory-based method that explains a network’s pre
dictions by assigning a value to each input parameter based on its 
contribution to the network’s predictive results. The input parameters 
with higher SHAP values have a greater impact on the output of the 
network.

It is important to distinguish the SHAP analysis from the correlation 
coefficient analysis. While the correlation coefficient analysis measures 
the linear relationship between two parameters, the SHAP analysis 

Fig. 11. Scatterplots of the predicted-to-experimental shear strength.
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provides a more comprehensive view of the importance of features in the 
context of a network’s predictions. SHAP values explain how each 
feature contributes to the network’s prediction and offer detailed ex
planations of the feature importance based on the learned network, 
whereas the correlation coefficients indicate the strength and direction 
of a linear relationship based on the experimental database.

The results of the feature importance analysis using SHAP are pre
sented in Fig. 14, where the y-axis represents the input parameters 
ranked by the order of their importance in the network’s prediction, and 
the x-axis represents their respective SHAP values. The SHAP summary 
plot in Fig. 14a shows the positive and negative impacts of the input 
parameters on the desired output and the most important parameters. In 
this case, the larger the shear span-to-depth ratio (a/d), the more sig
nificant the negative impact on the shear strength, whereas the concrete 
compressive strength (fc’) positively affects the results. This result agrees 
well with the findings obtained from the correlation coefficient analysis 
and the previous experimental and modeling studies [38,39], suggesting 
that the network has captured meaningful structural relationships and 
learned the underlying patterns correctly. The SHAP bar plot in Fig. 14b 
further quantifies the mean absolute SHAP values for each feature, 
confirming that a/d has by far the greatest overall impact on the net
work’s output.

4. Development of a computer tool

To execute the network formulations and calculate the shear 
strength, an open-access computer tool, ANN-ConDeep: Artificial Neural 
Network for Continuous Deep Beams [40], is developed using a Micro
soft Excel spreadsheet and shared as freeware for the use of the engi
neering community. The developed computer tool is designed based on 
the weights and biases of the hidden layer and the output layer of the 
proposed network. These weights and biases are the numeric values 
extracted from the proposed network and are embedded in the tool 

during its development.
The computer tool employs the architecture discussed in 2.4. It has 

one input layer with eleven input parameters that the users need to 
enter, one hidden layer with twenty-eight neurons, and one output 
layer, which gives the shear strength. The user interface of the devel
oped computer tool is shown in Fig. 15.

The computer tool executes the network formulations in three main 
steps. The first step involves the standardization of the input parameters 
extracted from the proposed network (discussed in 2.5). Afterwards, the 
weighted sums of all input parameters are calculated using the weights 
and biases of the hidden layer (discussed in 2.1). These weighted sums 
are the outputs from the hidden layer. As the final step, the weighted 
sum of these outputs from the hidden layer is calculated using the 
weights and biases of the output layer, which is the nominal shear 
strength of the two-span continuous deep beam.

The developed computer tool is intended to bridge the gap between 
the research and practical application in shear strength calculation 
while providing engineers and researchers with a familiar working 
environment without the need to install and learn a new computer 
program. The built-in validation system checks for input errors and 
ensures that the input parameters are within the valid ranges defined in 
Table 1.

5. Summary and conclusions

This study presented the development of a feed-forward artificial 
neural network to predict the shear strengths of reinforced concrete two- 
span continuous deep beams. A comprehensive experimental database is 
used to train, validate, and test the proposed network for applicability to 
a wide range of input parameters. The accuracy and reliability of the 
proposed network are evaluated using a comprehensive set of evaluation 
metrics. In addition, a computer tool is developed to execute network 
formulations. The results derived from this study are: 

Fig. 12. Scatterplots of the predicted-to-experimental shear strength across various input parameter ranges.
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1. The complex shear behavior of continuous deep beams, influenced 
by non-linear strain distribution and coexistence of high shear and 
high moment within the same region makes their accurate shear 
strength calculations challenging.

2. Feed-forward artificial neural networks can be developed to predict 
the shear strength of two-span continuous deep beams accurately 
and rapidly. The database used to train, validate, and test a neural 
network plays a critical role in identifying the optimum parameters 
and network architecture. It is recommended to first explore the data 
to understand its features, detect, and remove any outliers before 
developing the network. In this study, 10 outliers were found and 
removed from a database of 150 experimental specimens. Using the 
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Fig. 13. Comparison of the predicted shear strength across various input parameters range.

Table 3 
Error and coefficient of variation comparisons.

ML algorithms R2 MAE (kN) RMSE (kN) CV (%)

Proposed network 0.97 32.05 41.26 9.85
Nguyen et al. [23] 0.94 39.30 62.03 23.13
Wang [24] 0.98 17.16 21.02 -*
Feng et al. [25] 0.93 31.81 50.34 7.00
Gandomi et al. [26] -* 40.99 51.57 -*
Cheng et al. [27] 0.98 -* 13.01 8.00

Note: * The value is not reported in the respective study.
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Fig. 14. SHAP summary plot and the relative importance of each feature.

Fig. 15. User interface of the developed computer tool.
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remaining database improved the accuracy and reliability of the 
proposed neural network.

3. The proposed network is shown to predict the shear strength of two- 
span continuous deep beams accurately, reliably, and rapidly. The 
predicted-to-experimental shear strength ratios for the 140 speci
mens provided a mean of 1.00 and a coefficient of variation (CV) of 
10.12 %.

4. The proposed network achieves accuracy comparable to previous ML 
algorithms trained on simply supported deep beams. This empha
sizes the network’s robustness in handling complex structural 
behavior and supports its potential for future enhancement through 
ensemble learning or database expansion.

5. SHAP analysis can effectively improve the understanding of the 
networks and provide confidence in the machine learning-based 
predictions by analyzing the influence of parameters on the net
work’s output.

6. SHAP analysis revealed that the shear span-to-depth ratio (a/d) had 
the strongest negative influence on the shear strength predictions of 
the proposed network, while concrete compressive strength (fc’) 
showed a significant positive impact. A similar relation is obtained 
from the correlation coefficient analysis, providing evidence that the 
network has captured meaningful structural relationships and 
learned the underlying patterns correctly.

7. The developed computer tool transfers the research results to engi
neers and researchers and enables them to accurately and rapidly 
predict the shear strength of the two-span continuous deep beams.

8. Future studies could perform structural testing of continuous deep 
beams with different span lengths and design parameters. The 
experimental data available in the literature for continuous deep 
beams lags greatly behind those for simply supported ones.

9. Future ML studies should develop computer tools to enable the 
community to use the proposed algorithms. It is challenging, and 
sometimes impossible, to use the ML algorithms proposed in litera
ture for the specimens other than those contained in the experi
mental database used in each study.
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Appendix A. . Experimental database

The experimental database compiled for the development of the proposed feed-forward neural network (FFNN) is presented in Table A.1. It 
comprises 150 experimental beam specimens, all of which exhibited shear-critical behavior, compiled from eight research studies. The first row of 
Table A.1 presents the input parameters which include the width of the beam (bw), the effective depth of the beam (d), the shear span-to-depth ratio (a/ 
d), the compressive strength of concrete (fc’), the yield strength of longitudinal and transverse reinforcement (fyh and fyv), the longitudinal top and 
bottom reinforcement ratio (ρh’ and ρh), the transverse reinforcement ratio (ρv), the width of loading plate (ll), the width of support plate (ls), and the 
ratio of the shear strength predicted by the proposed network to the experimental shear strength (Vpred/Vexp). The ten outliers which are not used for 
training the network are presented with an asterisk (*).

Table A.1 
Experimental database complied for the development of the proposed network

S.N. Research 
studies

Specimens bw 
(mm)

d (mm) a/d fc’ 
(MPa)

fyh 
(MPa)

fyv 
(MPa)

ρh 
(%)

ρh’ 
(%)

ρv 
(%)

ll 
(mm)

ls 
(mm)

Vexp 
(kN)

Vpred

Vexp

1* Ashour [31] CDB1 120 569 1.20 30 500 370 0.66 0.91 0.84 200 160 349.7
2 CDB2 120 569 1.20 33.1 500 370 0.66 0.91 0.42 200 160 304.9 0.94
3 CDB3 120 569 1.20 22 500 0 0.66 0.91 0 200 160 179.6 0.96
4 CDB4 120 569 1.20 28 500 370 0.66 0.91 0.42 200 160 282.9 0.94
5 CDB5 120 580 1.17 28.7 500 370 0.33 0.33 0.42 200 160 257.1 1.01
6 CDB6 120 371 1.83 22.5 500 347 0.86 0.86 0.47 200 160 155.5 0.99
7 CDB7 120 371 1.83 26.7 500 347 0.86 0.86 0.24 200 160 140 0.92
8 CDB8 120 380 1.79 23.6 500 347 0.5 0.5 0.24 200 160 123.3 0.97
9 Asin [32] 1.0/1/1 150 950 1.26 26.8 586 569 0.32 0.43 0.5 300 400 518 1.01
10 1.0/1/1 

(r)
150 950 1.26 29.6 586 569 0.32 0.43 0.5 300 400 529 1.00

11 1.0/1/2 150 950 1.26 27.5 586 569 0.32 0.43 0.38 300 400 495 0.97
12 1.0/1/3 150 950 1.26 25.8 586 569 0.32 0.43 0.22 300 400 388 1.08
13 1.0/2/1 150 975 1.23 25.2 567 569 0.42 0.32 0.5 300 400 588 0.88
14 1.0/2/2 150 975 1.23 28.2 567 569 0.42 0.32 0.38 300 400 469 1.02
15 1.0/2/3 150 975 1.23 30.4 567 569 0.42 0.32 0.22 300 400 422 1.00
16 1.5/1/1 150 575 2.09 29.6 567 569 0.73 0.95 0.5 300 400 402 0.91
17 1.5/1/1* 150 575 2.09 29.9 567 581 0.73 0.95 0.48 300 400 348 1.03
18 1.5/1/2 150 575 2.09 28.9 567 569 0.73 0.95 0.38 300 400 347 0.93
19 1.5/1/3 150 575 2.09 25.9 567 569 0.73 0.95 0.22 300 400 261 1.02
20 1.5/2/1 150 550 2.18 27.8 567 569 0.95 0.73 0.5 300 400 375 0.94
21 1.5/2/2 150 550 2.18 26 567 569 0.95 0.73 0.38 300 400 339 0.92
22 1.5/2/3 150 550 2.18 28.5 567 569 0.95 0.73 0.22 300 400 246 1.04
23* Mihaylov et al. 

[35]
CDB1 E 300 1094 1.62 29.7 422 490 0.91 0.91 0.2 300 300 813.4

24* CDB1 W 300 1094 1.62 29.7 422 490 0.91 0.91 0.2 300 300 916.7

(continued on next page)
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Table A.1 (continued )

S.N. Research 
studies 

Specimens bw 
(mm) 

d (mm) a/d fc’ 
(MPa) 

fyh 
(MPa) 

fyv 
(MPa) 

ρh 
(%) 

ρh’ 
(%) 

ρv 
(%) 

ll 
(mm) 

ls 
(mm) 

Vexp 
(kN) 

Vpred

Vexp 

25 Moody et al. 
[30]

I-g 178 305 2.67 30.5 316 0 0.95 0.97 0 203 203 133.4 1.12
26 I-h 178 305 2.67 24.4 328 0 1.48 1.51 0 203 203 132 1.08
27 I-i 178 305 2.67 22.9 328 0 2.1 2.14 0 203 203 146.8 0.95
28 I− 1a 178 305 2.67 17.3 316 0 2.86 2.92 0 203 203 114.2 1.16
29 I− 1b 178 305 2.67 19.3 316 0 2.86 2.92 0 203 203 129 1.03
30 I− 2a 178 305 2.67 16.3 294 0 3.76 3.84 0 203 203 111.2 1.15
31 I− 2b 178 305 2.67 18.8 294 0 3.76 3.84 0 203 203 140.9 0.96
32 I− 2c 178 305 2.67 26.1 294 0 3.76 3.84 0 203 203 139.4 1.15
33 I− 3a 178 305 2.67 15.8 315 0 4.76 4.86 0 203 203 132 1.08
34 I− 3b 178 305 2.67 20.5 315 0 4.76 4.86 0 203 203 149.8 1.06
35 I-j 178 305 2.67 33.4 328 0 1.48 1.51 0 203 203 155.7 0.98
36 I-k 178 305 2.67 26.6 328 0 2.1 2.14 0 203 203 161.6 0.88
37 I− 4a 178 305 2.67 29.8 316 0 2.86 2.92 0 203 203 163.1 0.97
38 I− 4b 178 305 2.67 27.9 316 0 2.86 2.92 0 203 203 132 1.15
39 I− 5a 178 305 2.67 28 294 0 3.76 3.84 0 203 203 177.9 0.94
40 I− 5b 178 305 2.67 27.9 294 0 3.76 3.84 0 203 203 163.1 1.03
41 I− 6a 178 305 2.67 31.4 315 0 4.76 4.86 0 203 203 170.5 1.15
42 I− 6b 178 305 2.67 24.6 315 0 4.76 4.86 0 203 203 177.9 0.97
43 I-l 178 305 2.67 35.2 328 0 1.48 1.51 0 203 203 158.7 1.03
44 I-m 178 305 2.67 30.3 328 0 2.1 2.14 0 203 203 155.7 0.98
45 I− 7a 178 305 2.67 33 316 0 2.86 2.92 0 203 203 170.5 0.98
46 I− 7b 178 305 2.67 34.5 316 0 2.86 2.92 0 203 203 148.3 1.15
47 I− 8a 178 305 2.67 33 294 0 3.76 3.84 0 203 203 215 0.87
48 I− 8b 178 305 2.67 32.3 294 0 3.76 3.84 0 203 203 163.1 1.14
49 I− 9a 178 305 2.67 36.3 315 0 4.76 4.86 0 203 203 192.8 1.11
50 I− 9b 178 305 2.67 32.1 315 0 4.76 4.86 0 203 203 192.8 1.03
51 I-n 178 305 2.67 36.1 328 0 1.48 1.51 0 203 203 175 0.95
52 I-o 178 305 2.67 34.8 328 0 2.1 2.14 0 203 203 189.8 0.87
53 I-p 178 305 2.67 41.2 292 0 2.86 2.92 0 203 203 197.2 1.03
54 I-q 178 305 2.67 33.6 285 0 3.76 3.84 0 203 203 192.8 1.01
55 I-r 178 305 2.67 40.9 298 0 4.76 4.86 0 203 203 207.6 1.15
56 II-a 178 533 1.52 26.3 316 0 0.54 0.55 0 203 203 192.8 0.97
57 II-b 178 533 1.52 25.6 300 0 0.84 0.85 0 203 203 215 0.95
58 II-c 178 533 1.52 27.9 290 0 1.2 1.21 0 203 203 249.1 0.93
59 II-d 178 533 1.52 23.7 286 0 1.63 1.65 0 203 203 311.4 0.79
60 II− 17a 178 533 1.52 18.3 294 0 2.15 2.18 0 203 203 278.8 0.95
61 II− 17b 178 533 1.52 20.7 294 0 2.15 2.18 0 203 203 252.1 1.05
62 II− 18a 178 533 1.52 15 315 0 2.72 2.75 0 203 203 326.2 0.88
63 II− 18b 178 533 1.52 18.6 315 0 2.72 2.75 0 203 203 266.9 1.08
64 II− 19a 178 533 1.52 20.9 313 0 3.46 3.5 0 203 203 357.3 0.91
65 II− 19b 178 533 1.52 22.3 313 0 3.46 3.5 0 203 203 324.7 1.01
66 II− 20a 178 533 1.52 19.9 302 0 4.24 4.3 0 203 203 348.4 0.79
67 II− 20b 178 533 1.52 20.4 302 0 4.24 4.3 0 203 203 369.2 1.00
68 VI-a 178 305 2.67 28.2 316 0 0.95 0.97 0 203 203 102.8 1.41
69 VI-b 178 305 2.67 28.7 344 0 1.48 1.51 0 203 203 172.1 0.85
70 VI-c 178 305 2.67 24.7 328 0 2.1 2.14 0 203 203 146.8 0.96
71 VI-d 178 305 2.67 26.9 290 0 2.86 2.92 0 203 203 157.5 0.99
72 VI-e 178 305 2.67 28.4 285 0 3.76 3.84 0 203 203 170.8 1.02
73 VI-f 178 305 2.67 38.4 328 0 2.1 2.14 0 203 203 186.8 0.94
74 VI-g 178 305 2.67 38.1 290 0 2.86 2.92 0 203 203 173.5 1.10
75 VI-h 178 305 2.67 36.5 285 0 3.76 3.84 0 203 203 206.8 1.00
76 VI-i 178 305 2.67 41.5 314 0 4.76 4.86 0 203 203 194.8 1.20
77 Rogowsky et al. 

[9]
3/1.0 T1 200 975 1.13 28.9 380 573 0.46 0.63 0.15 300 400 685 1.01

78* 3/1.0 T2 200 975 1.13 28.9 380 573 0.46 0.63 0.15 300 400 764
79 4/1.0 T1 200 975 1.13 28.5 380 0 0.46 0.63 0 300 400 663 0.96
80 4/1.0 T2 200 975 1.13 28.5 380 0 0.46 0.63 0 300 400 618 1.03
81 5/1.0 T1 200 975 1.13 36.9 403 573 0.46 0.63 0.6 300 400 875 1.01
82 5/1.0 T2 200 975 1.13 36.9 403 573 0.46 0.63 0.6 300 400 834 1.06
83 6/1.0 T1 200 975 1.13 35.8 403 0 0.46 0.63 0 300 400 635 1.02
84 6/1.0 T2 200 975 1.13 35.8 403 0 0.46 0.63 0 300 400 605 1.07
85* 7/1.0 T1 200 975 1.13 34.5 403 0 0.46 0.63 0 300 400 418
86 7/1.0 T2 200 975 1.13 34.5 403 0 0.46 0.63 0 300 400 695 0.93
87 3/1.5 T1 200 545 2.02 14.5 456 573 0.92 1.12 0.19 300 400 242 1.22
88 3/1.5 T2 200 545 2.02 14.5 456 573 0.92 1.12 0.19 300 400 287 1.03
89 4/1.5T1 200 545 2.02 32.5 456 0 0.92 1.12 0 300 400 206 1.19
90 4/1.5T2 200 545 2.02 32.5 456 0 0.92 1.12 0 300 400 232 1.06
91 5/1.5 T1 200 545 2.02 39.6 460 573 0.92 1.12 0.6 300 400 565 1.03
92 5/1.5 T2 200 545 2.02 39.6 460 573 0.92 1.12 0.6 300 400 566 1.03
93 6/1.5 T1 200 545 2.02 45 460 0 0.92 1.12 0 300 400 256 1.02
94 6/1.5 T2 200 545 2.02 45 460 0 0.92 1.12 0 300 400 258 1.02
95 7/1.5 T1 200 545 2.02 30.4 456 0 0.92 1.12 0 300 400 222 1.12
96 7/1.5 T2 200 545 2.02 30.4 456 0 0.92 1.12 0 300 400 348 0.71
97 8/1.5 T1 200 545 2.02 37.2 456 573 0.92 1.12 0.19 300 400 339 1.07
98 8/1.5 T2 200 545 2.02 37.2 456 573 0.92 1.12 0.19 300 400 382 0.95

(continued on next page)
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Table A.1 (continued )

S.N. Research 
studies 

Specimens bw 
(mm) 

d (mm) a/d fc’ 
(MPa) 

fyh 
(MPa) 

fyv 
(MPa) 

ρh 
(%) 

ρh’ 
(%) 

ρv 
(%) 

ll 
(mm) 

ls 
(mm) 

Vexp 
(kN) 

Vpred

Vexp 

99 3/2.0 T1 200 445 2.47 42.5 460 573 1.12 1.12 0.15 200 400 261 1.00
100 3/2.0 T2 200 445 2.47 42.5 460 573 1.12 1.12 0.15 200 400 277 0.95
101 4/2.0 T1 200 445 2.47 38.3 456 0 1.12 1.12 0 200 400 195 0.98
102 4/2.0 T2 200 445 2.47 38.3 456 0 1.12 1.12 0 200 400 243 0.78
103 5/2.0 T1 200 445 2.47 41.1 460 573 1.12 1.12 0.6 200 400 453 1.02
104 5/2.0 T2 200 445 2.47 41.1 460 573 1.12 1.12 0.6 200 400 456 1.01
105 6/2.0 T1 200 445 2.47 37.4 456 0 1.12 1.12 0 200 400 186 1.03
106 6/2.0 T2 200 445 2.47 37.4 456 0 1.12 1.12 0 200 400 141 1.36
107 7/2.0 T1 200 445 2.47 46.8 460 0 1.12 1.12 0 200 400 185 1.00
108 7/2.0 T2 200 445 2.47 46.8 460 0 1.12 1.12 0 200 400 150 1.24
109 Yang [33] L5NN 160 555 0.54 34.2 562 0 0.97 0.97 0 150 200 456 1.00
110 L5NS 160 555 0.54 34.2 562 483 0.97 0.97 0.3 150 200 475 1.08
111 L5NT 160 555 0.54 34.2 562 483 0.97 0.97 0.6 150 200 512 1.18
112 L5SN 160 555 0.54 34.2 562 0 0.97 0.97 0 150 200 537 0.85
113 L5SS 160 555 0.54 34.2 562 483 0.97 0.97 0.3 150 200 607 0.84
114* L5TN 160 555 0.54 34.2 562 0 0.97 0.97 0 150 200 640
115 L10NN 160 555 1.08 32.1 562 0 0.97 0.97 0 150 200 264 0.92
116 L10NS 160 555 1.08 32.1 562 483 0.97 0.97 0.3 150 200 348 0.92
117 L10NT 160 555 1.08 32.1 562 483 0.97 0.97 0.6 150 200 446 0.96
118 L10SN 160 555 1.08 32.1 562 0 0.97 0.97 0 150 200 265 0.92
119 L10SS 160 555 1.08 32.1 562 483 0.97 0.97 0.3 150 200 352 0.91
120 L10TN 160 555 1.08 32.1 562 0 0.97 0.97 0 150 200 288 0.85
121 H6NN 160 555 0.65 65.1 562 0 0.97 0.97 0 150 200 633 0.93
122 H6NS 160 555 0.65 65.1 562 483 0.97 0.97 0.3 150 200 683 0.94
123 H6NT 160 555 0.65 65.1 562 483 0.97 0.97 0.6 150 200 757 0.97
124 H6SN 160 555 0.65 65.1 562 0 0.97 0.97 0 150 200 703 0.83
125* H6SS 160 555 0.65 65.1 562 483 0.97 0.97 0.3 150 200 799
126* H6TN 160 555 0.65 65.1 562 0 0.97 0.97 0 150 200 852
127 H10NN 160 555 1.08 68.2 562 0 0.97 0.97 0 150 200 372 0.96
128* H10NS 160 555 1.08 68.2 562 483 0.97 0.97 0.29 150 200 413
129 H10NT 160 555 1.08 68.2 562 483 0.97 0.97 0.60 150 200 637 0.97
130 H10SN 160 555 1.08 68.2 562 0 0.97 0.97 0 150 200 387 0.92
131 H10SS 160 555 1.08 68.2 562 483 0.97 0.97 0.3 150 200 492 0.97
132 H10TN 160 555 1.08 68.2 562 0 0.97 0.97 0 150 200 388 0.92
133 Yang [34] L5–40 160 355 0.56 32.4 562 0 1.01 1.01 0 150 200 408 0.95
134 L5–60 160 555 0.54 32.4 562 0 0.97 0.97 0 150 200 473 0.96
135 L5–72 160 653 0.55 32.4 562 0 1.1 1.1 0 150 200 492 0.99
136 L10–40 160 355 1.13 32.1 562 0 1.01 1.01 0 150 200 202 0.90
137 L10–60 160 555 1.08 32.1 562 0 0.97 0.97 0 150 200 262 0.93
138 L10–72 160 653 1.10 32.1 562 0 1.1 1.1 0 150 200 301 0.91
139 H6–40 160 355 0.68 65.1 562 0 1.01 1.01 0 150 200 591 0.93
140 H6–60 160 555 0.65 65.1 562 0 0.97 0.97 0 150 200 633.5 0.93
141 H6–72 160 653 0.66 65.1 562 0 1.1 1.1 0 150 200 696.5 0.86
142 H10–40 160 355 1.13 67.5 562 0 1.01 1.01 0 150 200 335 1.06
143 H10–60 160 555 1.08 68.2 562 0 0.97 0.97 0 150 200 372.5 0.96
144 H10–72 160 653 1.10 67.5 562 0 1.1 1.1 0 150 200 392.5 0.94
145 Zhang et al. [8] TCDB 1–1 180 687 1.46 35.6 515 0 1.86 1.86 0 200 200 473 0.77
146 TCDB 1–2 180 687 1.46 36.1 515 0 1.86 1.86 0 200 200 377 0.96
147 TCDB 1–3 180 687 1.46 38 515 0 1.86 1.86 0 200 200 322 1.14
148* TCDB 2–1 180 687 1.46 38.9 515 0 1.86 1.86 0.28 200 200 612
149 TCDB 2–2 180 687 1.46 39.3 515 526 1.86 1.86 0.28 200 200 581 0.77
150 TCDB 2–3 180 687 1.46 38.5 515 526 1.86 1.86 0.28 200 200 460 0.94
​ ​ ​ Mean 1.00
​ ​ ​ CV 10.12 %

Data availability

Some or all data, models, or code that support the findings of this 
study are available from the corresponding author upon reasonable 
request.
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