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Fig. 1—Structural layout of clinker preheater tower: (a) plan; 
and (b) elevation.
An analytical procedure was recently developed for the nonlinear 
analysis of reinforced concrete frame structures consisting of 
beams, columns, and shear walls under monotonic and pushover 
loading. The advantage of the procedure lies in its inherent and 
accurate consideration of shear effects and significant second-
order mechanisms within a simple modeling process suitable for 
use in practice. Herein, the application of the procedure to 33 
previously tested specimens, two-thirds of which were shear-critical, 
is presented to verify the algorithms developed. Important 
considerations in nonlinear modeling are also discussed to provide 
guidelines for general modeling applications. The procedure is found 
to simulate the experimental behaviors of the specimens examined 
with a high level of accuracy. Experimental strengths, stiffnesses, 
ductilities, and failure modes were all calculated accurately. 
Computed parameters such as crack widths, reinforcement strains, and 
member deformations were also represented successfully. The 
procedure exhibits excellent convergence and numerical stability, 
requiring little computational time.
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INTRODUCTION
In recent years, computer-aided nonlinear analysis procedures 

for reinforced concrete frame structures have progressed 
toward becoming a practical tool for use by office engineers. 
These procedures have found diverse applications, including 
the strength and safety assessment of existing structures and 
the performance assessment of planned structures. At the 
same time, research activity on the shear behavior of 
reinforced concrete continues to contribute to current 
knowledge. Design code procedures are continually evolving 
and generally becoming more stringent. This acknowledges 
the fact that shear-critical structures fail in a brittle and 
catastrophic manner with little or no prior sign of 
distress. Therefore, analysis methods that accurately 
consider shear effects are essential for the safe and realistic 
assessment of strength and ductility of concrete structures. 
Most currently available analysis tools, however, continue to 
ignore shear-related mechanisms by default. The use of such 
tools for practical applications, where the structure may be in 
fact shear-critical, can lead to dangerously unconservative 
estimates of both strength and ductility.

Consider, for example, the clinker plant preheater tower 
shown in Fig. 1. Designed according to ACI code specifications, 
the tower was built in a seismic zone of Central America in 
the late 1990s. Following its construction, subsequent design 
reviews revealed deficiencies in the amounts and details of 
the reinforcement provided in some of the beams and 
columns. These deficiencies raised questions about the 
expected performance of the building under its design earth-
quake, requiring a comprehensive reevaluation. More 
specifically, its load and displacement capacity, failure 
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mode, and any deficient members had to be verified. For 
analysis purposes, three software programs were used: 
SAP2000® (CSI 2005), RUAUMOKO (Carr 2005), and 
TEMPEST (Vecchio 1987; Vecchio and Collins 1988). The 
frame was modeled using only default options and models that 
were readily built into the programs, that is, default hinges and all 
default material behavior models. All three models were created 
using the same geometry, material, and support conditions. 
The analyses were performed under monotonically 
increasing static story shear forces calculated by the linear 
dynamic response spectrum method.

From these analyses, unacceptably different results were 
obtained, as shown in Fig. 2. SAP2000 and RUAUMOKO 
predicted that the frame would fail in flexure, while 
TEMPEST predicted a sudden shear failure in some of the 
beams. Large discrepancies were obtained in the ductility 
predictions for the frame; SAP2000 predicted approximately 
5.6 times greater displacement for the peak load capacity 
than did TEMPEST. The highly ductile load-deflection 
prediction obtained from SAP2000 and RUAUMOKO 
resulted from the assumption of purely flexural behavior. In 
other words, the influence of the shear-related mechanisms 
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Fig. 2—Load-deflection response predictions for clinker 
preheater tower.
was completely neglected in the default moment hinges 
used. In the TEMPEST analysis, on the other hand, the 
default material behavior models considered inelastic shear 
effects and predicted shear failures for the upper-story 
beams, thereby providing the least ductile response. Note 
that, with the TEMPEST analysis, deteriorating convergence 
factors and large unbalanced shear forces became apparent 
beyond a base shear force of 6300 kN (1418 kips), raising 
questions about the validity of the load-deflection curve 
afterwards. If one were able to anticipate a shear-dominated 
behavior prior to the analyses, it would have been possible to 
create user-defined custom shear hinges in SAP2000 and 
RUAUMOKO models. Such analyses, however, would have 
required expert knowledge on the shear-behavior of rein-
forced concrete in addition to specialized supporting soft-
ware to develop the shear-hinge models and would have 
taken significant engineering time and effort.

An analysis procedure was recently proposed by Guner 
and Vecchio (2010) to inherently and accurately account for 
shear-related effects coupled with axial and flexural 
mechanisms in nonlinear frame behavior. The iterative 
procedure uses nonlinear sectional analyses in a stiffness-
based linear-elastic frame analysis algorithm through the use 
of an unbalanced force approach. A layered (fiber) represen-
tation is used in the nonlinear sectional analyses, in which 
the cross section is discretized into a number of concrete, 
reinforcing, and prestressing steel layers. Each layer is then 
analyzed for two-dimensional in-plane strain conditions 
according to the equilibrium, compatibility, and constitutive 
requirements of the disturbed stress field model (DSFM) 
(Vecchio 2000). The equilibrium requirements include 
balancing the axial force, shear force, and bending moment 
calculated by the frame analysis, whereas the main compatibility 
requirement is that “plane sections remain plane.” The 
clamping stresses in the transverse direction are assumed to 
be zero. A shear-strain-based analysis with parabolic distri-
bution is used, which permits the analysis to continue in the 
post-peak region. The procedure allows the analysis of 
frames with unusual or complex cross sections under a large 
range of static and thermal load conditions. In addition to its 
rigorous consideration of shear effects, the procedure has 
advantages over others with its simple modeling requirements 
suitable for use by practicing structural engineers. The procedure 
does not require a user to select appropriate analysis options and 
parameter values, does not require pre-analysis supporting 
calculations such as shear force-shear deflection responses 
or hinge definitions, does not require the analyst to anticipate 
the behavior and failure mechanism prior to the analysis, and 
is fast and numerically stable.

This paper discusses the application of the proposed 
procedure to 33 previously tested structures consisting of 
beams, frames, and shear walls to verify the newly 
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implemented algorithms. As the main focus is to accurately 
simulate shear-related mechanisms, two-thirds of the 
specimens selected exhibited shear-dominated behavior in 
the experiments. Important considerations in nonlinear 
modeling are also discussed through the use of practical 
examples, with the aim of providing guidelines for general 
modeling applications.

RESEARCH SIGNIFICANCE
Unlike flexure-critical structures that typically exhibit 

ductile failure modes, shear-critical structures fail in a much 
less forgiving brittle manner with little or no forewarning. 
When shear-related mechanisms are neglected in analytical 
assessments of such structures, grossly unconservative 
calculations of strength and ductility predictions can result. 
Most available tools, however, ignore shear effects by 
default; those that do consider them are often difficult to 
use and still inaccurate. Thus, improved procedures are 
needed because shear-critical structures continue to be 
found in practice. To address this deficiency, an analysis 
procedure was recently proposed by Guner and Vecchio 
(2010). This paper describes verification studies examining 
the accuracy of the proposed formulations and provides 
guidelines for general modeling applications.

MODELING OF SHEAR-CRITICAL BEAMS
The first group of specimens examined was that tested by 

Vecchio and Shim (2004), involving four sets of three beam 
series subjected to monotonically increasing point loads. The 
beams were designed to be shear-critical, with shear reinforcement 
ratios ranging from 0.0 to 0.2%. Displacement-controlled 
loading was applied at the midspans, producing shear span-
depth ratios ranging from 3.3 to 5.8. The beam cross sections 
had a depth of 552 mm (21.7 in.) and widths of 305, 229, and 
152 mm (12, 9, and 6 in.) for beam Series A, B, and C, 
respectively. The longitudinal reinforcement ratios used 
ranged from 1.4 to 3.2%; the concrete compressive strengths 
ranged from 22.6 to 43.5 MPa (3.3 to 6.3 ksi).

In the creation of a frame model, the frame elements 
should be divided into reasonably short members (that is, 
segments) to ensure that the average member forces are 
calculated with sufficient accuracy for use in the nonlinear 
analyses. For optimal accuracy, the recommended member 
length is in the range of 50% of the cross section depth for 
beam and column members and 10% of the cross section 
depth for shear wall members. Frame models of the beams 
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Fig. 3—Frame model for Vecchio and Shim (2004) and 
Angelakos et al. (2001) beams.

Table 1—Concrete layers and assigned 
reinforcement ratios for Beam VS-A1

Dc , mm (in.) t ,% z ,  % N

8 (0.3) 0 0.20 1

10 (0.4) 0 0.20 3

12 (0.5) 0.10 0.20 2

14 (0.6) 0.10 0.20 1

20 (0.8) 0.10 0 20

14 (0.6) 0.10 0.20 1

12 (0.5) 0.10 0.20 2

10 (0.4) 0 0.20 3

8 (0.3) 0 0.20 1

Fig. 5—Sectional model for Beam VS-A1.

Fig. 4—Determination of tributary area for out-of-plane 
reinforcement.
were created for only one-half of each beam, taking advan-
tage of symmetry, as shown in Fig. 3. The vertical degree-of-
freedom at Node 1 was restrained to define a simple roller; 
both the horizontal and rotational degrees of freedom at 
Node 7 were restrained to satisfy the condition of symmetry.

For the creation of sectional models, a discretization of 30 
to 40 concrete layers typically provides satisfactory results. 
Because the longitudinal strain distribution reaches 
maximum values at the top and bottom of the cross sections, 
concrete layer thicknesses preferably should be reduced in 
these regions, especially on the compression side of the 
section. For general applications, a symmetrical layout for 
the concrete layer thicknesses is recommended, as was used 
throughout this study.

Determination of the concrete layer thicknesses requires 
particular attention to the clear cover thickness and the out-
of-plane reinforcement configuration. As an example application, 
consider Beam VS-A1, which had a clear cover of 38 mm (1.5 in.) 
and a closed stirrup fabricated from a 6.4 mm (0.25 in.) diameter 
bar. The legs of the stirrups extending in the out-of-plane direction 
constitute the out-of-plane reinforcement, as shown in Fig. 4. 
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Consideration of out-of-plane reinforcement is particularly 
important for layers under compression. A tributary area enclosed 
by approximately 5.5 to 6.0 times the bar diameter is suggested for 
the calculation of the out-of-plane reinforcement ratio as follows

z
Ab

st to
--------------= (1)

where Ab is the cross-sectional area of the out-of-plane 
reinforcement, st is the spacing of the out-of-plane reinforcement 
in the longitudinal (x) direction, and to is the distance, in 
the transverse (y) direction, in which the out-of-plane reinforce-
ment is to be assigned.

The transverse reinforcement is assigned to the concrete 
layers between the out-of-plane reinforcement, with the ratio 
defined as follows

t
n Ab
st b
---------------= (2)

where n is the total number of legs extending in the transverse 
direction and b is the width of the concrete layer in which the 
assignment is to be made. The resulting reinforcement ratios are 
listed in Table 1, where Dc is the concrete layer thickness and 
N is the total number of concrete layers with the same 
thickness and reinforcement ratios. For Beam VS-A1, the 
sectional model used is shown in Fig. 5. More detailed informa-
tion regarding the modeling and analysis process can be 
found in Guner (2008) and Guner and Vecchio (2008).

The analytically and experimentally obtained midspan 
load-deflection responses for the Vecchio and Shim (2004) 
beams are compared in Fig. 6. The peak load capacities of 
the beams were calculated with good accuracy; the ratio of 
the calculated-to-observed ultimate load for all 12 beams had 
a mean of 1.05 with a coefficient of variation (COV) of 
6.1%. The midspan deflections at maximum loads were 
calculated with a reasonable calculated-to-observed mean 
ratio of 0.82 and a COV of 12.8%. The general tendency in 
the analytical results was to underestimate deflections, 
giving stiffer responses than the experimental responses. 
Analyses of these beams with a more rigorous finite element 
tool also provided similarly stiffer responses (Vecchio and 
Shim 2004). The softer experimental behaviors may possibly 
be attributable to the irregularities in the test setup.

Failure displacements are particularly important when 
determining the ductility of structures. For these beams, they 
were calculated with a mean of 0.93 and a COV of 18.3%. 
ACI Structural Journal/January-February 2010



Fig. 6—Comparison of midspan load-deflection responses for Vecchio and Shim (2004) beams.
The more scattered nature of these results should be 
expected since the post-peak ductility of shear-critical beams 
containing little or no shear reinforcement is largely 
governed by mechanisms heavily dependent on the concrete 
tensile strength, itself a property prone to wide scatter. Three 
different failure modes were reported in the experimental 
study: diagonal tension failures for all three beams 
containing no shear reinforcement; shear-compression failures 
for the intermediate-span beams containing shear reinforce-
ment; and flexure-compression failures for the long-span beams 
containing shear reinforcement. For all twelve beams, these 
failure modes were calculated accurately by the analyses.

A second series of beams examined was that tested by 
Angelakos et al. (2001), involving 12 beams subjected to 
monotonically increasing point loads applied at their 
midspans in a displacement-controlled mode. These beams 
differed from the Vecchio and Shim (2004) beams in three 
important aspects: the beam cross sections were larger with 
1000 x 300 mm (39.4 x 11.8 in.) dimensions; the shear span-
depth ratios were lower at 2.7; and the longitudinal rein-
forcement amounts were smaller with uneven distributions. 
With large cross sections and low transverse reinforcement 
ratios ranging from 0.0 to 0.08%, size effects, aggregate 
interlock, concrete post-cracking tensile stresses, and crack 
slip are expected to be significant mechanisms in the 
behavior of these beams. Furthermore, with the lower shear 
span-to-depth ratio, concrete direct strut action, which is 
neglected in the sectional calculations of the proposed proce-
dure, will play a more significant role in the responses. Some 
of these beams were fabricated with high-strength 
concrete, representing an additional challenge. 

The strength of beams containing little or no reinforcement is 
highly sensitive to such mechanisms as tension softening, 
tension stiffening, and aggregate interlock, all of which are 
directly related to the tensile strength of concrete. The tensile 
strength of concrete, however, is not constant relative to the 
compressive strength but varies with a number of parameters 
such as the volume of concrete, gradient of longitudinal 
strain, and the presence of restrained shrinkage strains 
(Collins and Mitchell 1991). A lower-bound estimate of the 
tensile strength, given by Eq. (3) as recommended by CSA 
A23.3-04, was used for all analyses in this paper. Consequently, 
when analyzing a specimen with no or little reinforcement, more 
scattered predictions should typically be anticipated.

ft 0.33 fc= (3)

The frame models for these beams consisted of six 
members, taking advantage of symmetry to represent one-
half of the beam length, as shown in Fig. 3. Sectional models 
were created using approximately 40 concrete layers in the 
same manner as the Vecchio and Shim (2004) beams. As recom-
mended by Angelakos et al. (2001), the maximum aggregate 
size used in the analyses was taken as zero for the beams 
having concrete strengths greater than 65 MPa (9.4 ksi) (that 
is, for Beams DB165, DB165M, DB180, and DB180M) as 
cracks pass through, rather than going around the aggregate, 
causing aggregate interlock to be ineffective.

As shown in Fig. 7, the peak load capacities of the beams 
were calculated reasonably well with a mean of 1.07 and a 
COV of 16.7% for the calculated-to-observed strength ratio. 
The COV is somewhat higher than normally expected with 
75ACI Structural Journal/January-February 2010



Fig. 7—Comparison of midspan load-deflection responses for Angelakos et al. (2001) beams.
nonlinear analyses for the reasons noted previously. The 
failure modes of all the beams were accurately calculated as 
diagonal-tension failures. For the specimens containing no 
shear reinforcement, the analytically determined failures 
occurred suddenly in the compression zone of Member 5, 
similar in nature to the experimental behavior. For the beams 
containing shear reinforcement, the calculated responses 
typically involved the failure of Member 2 with significantly 
more diagonal cracking prior to the failures, as compared to 
the beams containing no shear reinforcement. A diagonal-
tension failure mode was also observed in the experiments 
with diagonal cracks extending between the point load at the 
midspan and the support.

MODELING OF FRAMES
The first frame specimen examined was that tested by 

Duong et al. (2007), involving the one-bay, two-story frame 
shown in Fig. 8(a). The test frame was designed to imitate the 
details of the clinker preheater tower described previously, 
reproducing the shear deficient characteristics of the 
beams: the beams’ span-depth ratio, shear and longitudinal 
reinforcement amounts, and material strengths. The testing 
of the frame was performed in two phases: Phase A for a 
single cycle, consisting of a forward and reverse loading, and 
Phase B, for a sequence of complete cycles after the frame 
had been repaired with fiber-reinforced polymer (FRP) wrap. In 
both phases, a monotonic lateral load was applied to the 
second-story beam in a displacement-controlled mode, while 
two constant column loads were applied throughout the 
testing to simulate the axial force effects of higher stories.

A frame model of the structure was created using member 
lengths approximately equal to half of the cross section 
depth, that is, 200 mm (7.9 in.). Because frame models are 
typically based on centerline dimensions, stiffened end 
zones are normally used to account for the overlapping 
portions of the beams and columns in the joint regions, as 
shown with bold lines in Fig. 8(b). One way of achieving this 
is to increase both the longitudinal and transverse reinforce-
ment amounts in the end zone members. Based on a limited 
study, a multiplier of 1.5 or larger was found to perform satis-
factorily for this purpose; a factor of 2 was used throughout 
this study. The bolts used in the experiment to fix the base 
beam to the strong floor were represented by simple 
supports. Six member types were used to create the 
sectional models of the beam, column, and base 
members. An additional six member types were used for 
the stiffened end zone members. Typically, 30 concrete layers 
were used, as shown in Fig. 8(c). Refer to Guner (2008) for the 
complete details of the sectional models.

In the experimental study, once significant shear damage 
took place, the frame was unloaded to prevent total failure; 
the frame was to be retrofitted and retested in the Phase B 
program. Because a determination of the failure condition 
was desired in this analytical assessment, however, the frame 
was loaded to failure. As shown in Fig. 9, the frame’s 
maximum load capacity was calculated with good accuracy, 
having a calculated-to-observed ratio of 1.06. The gradual 
decrease in the lateral stiffness in the prepeak region was 
captured well. In addition, the lateral load levels causing the 
first yielding of several reinforcement components were 
76 ACI Structural Journal/January-February 2010



Fig. 8—Duong et al. (2007) frame: (a) structural details; 
(b) frame model; and (c) sectional models.

Fig. 9—Comparison of load-deflection responses for 
Duong et al. (2007) frame.

Fig. 10—Structural details of Vecchio and Emara (1992) frame.

Fig. 11—Comparison of load-deflection responses for 
Vecchio and Emara (1992) frame.
estimated reasonably. The calculated crack widths also 
showed a strong correlation to the experimental crack 
widths, as documented in Guner (2008). The damage mode 
of the frame was experimentally classified as flexure-shear 
with significant shear damage of Beam 1N accompanied by 
flexural mechanisms involving flexural cracking and reinforce-
ment yielding. A similar failure mechanism was determined 
analytically. The first drop in the load capacity of the frame, 
at 48 mm (1.9 in.) displacement, was caused by the shear 
failure of Beam 1S. Because the top-story beam was intact, 
the frame continued to carry increased deformations until a 
shear failure of Beam 2S, at 68 mm (2.7 in.) displacement, 
which caused the second drop in Fig. 9. After that, the only 
remaining load-resisting mechanism was a cantilever column.

The second frame specimen investigated was that tested by 
Vecchio and Emara (1992). This frame differs from the Duong 
et al. (2007) frame in three important aspects: the frame was 
flexure-critical with well-confined cross sections; the beams’ 
span-depth ratios were larger at 8.75; and, lastly, higher column 
axial loads were applied, as shown in Fig. 10.
ACI Structural Journal/January-February 2010
The frame model for this specimen was created using member 
lengths in the range of half of the cross section depth; that is, 
200 mm (7.9 in.). Stiffened end zones were used for the reasons 
explained previously. Three member types were used to create 
sectional models of the beam, column, and base members; three 
additional member types were used for the stiffened end zones of 
these members. Typically, 40 concrete layers were used in the 
sectional models (refer to Guner [2008] for the details of the frame 
and sectional models). The frame was loaded to a lateral 
displacement of 155 mm (6.1 in.) and then unloaded to a net 
lateral load of zero, as was done in the experiment.
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Fig. 12—Comparison of responses for Vecchio and Balopoulou 
(1990) frame.

Table 2—Comparison of crack widths for Vecchio 
and Balopoulou (1990) frame

Analysis Test

Initial shrinkage crack widths, mm

Base 0.16 to 0.20

0.20 to 0.25Columns 0.10 to 0.11

Beams 0.10 to 0.18

Crack widths, mm, for P = 300 kN

Columns 0.20 0.25

Beams 0.51 0.75

Note: 1 mm = 0.04 in.; 1 kN = 0.225 kips.
As apparent from Fig. 11, the frame’s maximum load 
capacity was estimated with excellent accuracy, having a 
calculated-to-observed ratio of 0.98. The lateral stiffness of 
the frame was calculated with reasonable accuracy. Upon 
entirely unloading the frame, the residual displacement was 
calculated with 14% overestimation. The total energy dissipated 
by the frame was calculated with high accuracy: 44.6 kNm 
(32.9 kips-ft) compared to the experimental value of 44.4 kNm 
(32.7 kips-ft). The experimentally observed damage mode of 
the frame involved ductile plastic hinging of both beam ends 
(Beam 1N, 1S, 2N, and 2S) and both column bases (BN and 
BS), including yielding of both the tension and compression 
reinforcement and some concrete crushing. The analytical 
damage mode was mainly caused by the plastic hinging of 
the column bases, including yielding of both tension and 
compression reinforcement and crushing of concrete, 
especially in the BS area. The first- and second-story beams 
ends were calculated to be extensively damaged with crack 
widths as high as 9.0 mm (0.35 in.) and tensile reinforcement 
strains reaching 47 × 10–3. The compression reinforcement 
at the beam ends, however, did not yield but typically reached 
80% of their yield strain in the analysis (Guner 2008).

Of particular interest in the behavior of this frame is the 
influence of the second-order effects (that is, P- effects), 
which accounted for 12% of the total overturning moment 
acting on this frame at ultimate. For illustrative purposes, the 
analysis was repeated without considering geometric 
nonlinearity based on a small displacements assumption. 
As shown in Fig. 11, the net lateral load continued 
increasing with the increased lateral displacement, 
causing an overestimation of the frame’s strength. Of 
another interest is the effect of shear deformations on the 
response of this frame. As a result of an investigation, the 
Vecchio and Emara (1992) concluded that shear deformations 
contributed to the total deformations of this frame as much 
as 20%, despite a predominantly flexural failure mode.

The third frame investigated was that tested by Vecchio 
and Balopoulou (1990). This frame was almost identical to 
the Vecchio and Emara (1992) frame shown in Fig. 10. The 
only significant difference, other than the loading condition, 
was that the top reinforcement was cut back to two No. 20 
bars in the central 500 mm (19.7 in.) length of the first-story 
beam. The loading of this frame involved applying a mono-
tonically increasing vertical load in the center of the first-
story beam until the failure occurred.

Taking advantage of the symmetry of the test setup, only 
one-half of the frame was modeled with member lengths in 
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the range of half of the cross section depth, that is, 200 mm 
(7.9 in.). Four member types were used to create sectional 
models of the beam, column, and base members. Three 
additional member types were used in the stiffened end 
zones of these members. Concrete shrinkage strains of –0.5 ×
10–3 were also applied to all members in the model, 
reflecting the degree of shrinkage reported by Vecchio and 
Balopoulou (1990).

The analytically and experimentally obtained first-story 
midspan load-deflection responses are compared in Fig. 12. 
The experimental load-deflection response reported by 
Vecchio and Balopoulou (1990) was terminated well before 
the failure of the frame for equipment safety reasons; hence, 
the stroke-deflection response for the complete test, as 
measured by the loading machine including the flexibility of 
the machine, is also compared to the analytical load-deflection 
response in Fig. 12. The analytical load-deflection response 
showed excellent agreement with the experimental response. 
The frame’s strength, stiffness, and failure deflection, the 
latter being particularly important when calculating the 
frame’s ductility, were calculated accurately. The maximum 
flexural crack widths were also calculated with reasonable 
accuracy, as shown in Table 2. The experimental failure 
mode of the frame involved a combination of a flexural 
collapse mechanism (that is, a three-hinge mechanism 
formed at the ends and the midspan of the first-story beam) 
and a final shear failure near the midspan of the first-story 
beam. A similar failure mechanism was calculated 
analytically with the plastic hinges forming under 
approximately 20% larger applied loads.

Of particular interest in the behavior of this frame are the 
axial restraint effects caused by the columns, commonly 
known as “membrane action.” Subjected to monotonic 
loads, the first-story beam of the frame elongated due to the 
average tensile strains on the tension face being much larger 
in magnitude than the compressive strains on the opposing 
face. The columns, however, provided axial restraint and 
thus induced axial compression forces in the beam. The 
accurate calculation of this second-order axial force is 
essential for the accurate simulation of the frame behavior 
because the axial force can significantly increase the shear 
and flexural strength of the beam. To show the significance 
of this effect, a first-order plastic analysis of the frame was 
performed with a simple three-hinge mechanism assumed 
for the first-story beam. For the applied midspan load Pu of 
380 kN (85.4 kips) and using a linear-elastic frame analysis, 
the axial force in the beam was determined as –12 kN (–2.7 kips), 
the shear force as 190 kN (42.7 kips), and the moment at the 
midspan as 190 kNm (140.1 kips-ft). A nonlinear sectional 
analysis was then performed, finding the shear and moment 
ACI Structural Journal/January-February 2010



Fig. 13—Lefas et al. (1990) shear walls: (a) structural 
details; (b) frame model; and (c) sectional model.

Fig. 14—Comparison of load-deflection responses for Lefas 
et al. (1990) shear walls.
capacities as 220 kN (49.5 kN) and 186 kNm (137.2 kips-ft), 
respectively. Hence, a flexural failure was predicted at Pu = 
380 kN (85.4 kips), 30% less than the actual failure load. This 
underestimation occurred because the linear-elastic frame 
analysis calculated the axial compression force in the beam to 
be much less than the experimental value. In addition, the 
failure mechanism was determined incorrectly to be a 
flexural failure of the midspan section; in fact, a shear 
failure was observed near the midspan. This shows the necessity 
of nonlinear frame analysis procedures incorporating second-
order effects, such as membrane action, for accurate simulations
of the frame behavior. 
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MODELING OF SHEAR WALLS
The shear wall specimens examined here were the Type II 

walls tested by Lefas et al. (1990), having shear span-depth 
ratios of 2.1, as shown in Fig. 13(a). The walls were subjected 
to monotonically increasing horizontal loads, applied on the 
top spreader beams. Constant axial loads were applied on 
some of the walls as well. Note that shear walls with shear 
span-depth ratios of less than 2.0 are prone to significant direct 
strut action and thus are not appropriate for modeling with 
procedures based on layered sectional analysis.

The frame models of the walls were created with varying 
member lengths. A length of 58.5 mm (2.3 in.) (approximately 
10% of the wall width) was used toward the base of the 
walls, where a concentration of plastic deformation was 
expected. The member lengths were gradually increased 
toward the top, as shown in Fig. 13(b). The base beam was 
not modeled; rather, the walls were assumed to be fixed at 
the base. One member type, discretized into 48 concrete 
layers (10.0 mm [0.4 in.] x 14 layers, 18.5 mm [0.7 in.] x 20 layers, 
and 10.0 mm [0.4 in.] x 14 layers) as shown in Fig. 13(c), was used 
for the sectional model. To simulate the top loading beam, 
an artificial member type was created by multiplying the 
reinforcement ratios of the first type by a factor of 2. Local 
conditions at the region through which the load is introduced 
are not particularly important in the sectional calculations. 
Out-of-plane reinforcement was assigned to the layers 
constituting the concealed columns at the flange edges, and 
transverse reinforcement was assigned to all layers except 
the 10 mm (0.4 in.) thick clear-cover layers.

As shown in Fig. 14, the strengths of the walls were calculated 
reasonably well with a mean of 0.93 and a COV of 5.5% 
for the calculated-to-observed strength ratio. The slight 
underestimation of the strengths is likely associated with 
some measure of direct strut action having occurred in the 
walls, given their shear span-depth ratios of 2.1. The lateral 
stiffnesses of the walls were also calculated reasonably well. The 
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general tendency was to slightly underestimate the experimental 
deflections, thereby giving slightly stiffer responses. Note that, 
in the experiments, reinforcement strain penetration into the 
wall bases may have noticeably affected the lateral stiff-
nesses of the walls. In the analyses, however, the base beams 
were not included in the model; a fixed base assumption was 
made. Note that for the walls with constant axial forces (that 
is, SW22, SW23, and SW25), the analytical underestimations 
of the deflections are minimal. This can be attributed to 
less strain penetration into the bases in these experiments.

The lateral loads causing the first yielding of the longitudinal 
reinforcement were calculated with a reasonable calculated-to-
observed mean of 0.92 and a COV of 7.7%. The discrepancy to 
the low side may be associated with the softening effect of the 
base beam in the experiment. The experimental behaviors of 
the walls typically involved flexural mechanisms with the 
final failures caused by crushing of the concrete in the compres-
sion toe, which was initiated by near vertical cracks reaching 
the toe. Similar flexure-dominated behaviors were obtained 
for all of the walls in the analytical study.

CURRENT LIMITATIONS AND 
RECOMMENDATIONS FOR FUTURE WORK

As is typical with frame analysis of this type, the procedure 
uses centerline dimensions of the cross sections together 
with stiffened joint panel zone members; therefore, failure 
modes involving beam-column joint panel zones cannot be 
captured. Such failures are typical for joints having improper 
reinforcement detailing or insufficient confinement. A 
nonlinear member type for beam-column joints is required to 
further improve the capabilities of the proposed procedure; 
future work will be directed in this area. For the present, 
however, in the case of unusual or improper joint panel zone 
reinforcement detailing, or in cases where analysis results 
indicate possible joint distress, a detailed nonlinear finite 
element analysis of the joint should be undertaken. The 
sectional forces determined by the proposed procedure can 
be an important asset for such analyses, providing more realistic 
estimates of the boundary zone forces than would otherwise 
be obtained from linear elastic analyses. A detailed 
discussion of the application of finite element procedures 
for frame joints can be found in Sagbas (2007).

The procedure assumes perfect bond between concrete 
and reinforcement; therefore, bond slip of reinforcing bars 
are neglected. In addition, longitudinal reinforcement buckling 
provisions are not currently incorporated into the procedure 
proposed. Future work will be directed toward including 
these important mechanisms.

DISCUSSION OF RESULTS
Considering all 33 structures modeled, two-thirds of 

which were shear-critical, a mean of 1.03 and a COV of 
11.9% were achieved for the calculated-to-observed strength 
ratio. As for the failure displacements, a mean of 0.85 with a 
COV of 20.7% were obtained. Considering the challenges 
involved in modeling shear-critical structures, these ratios 
can be regarded as satisfactory, particularly because several 
of the structures considered were influenced by complex 
second-order mechanisms. The failure modes and total 
energy dissipations of the structures modeled were 
calculated accurately. In addition, computed parameters 
such as reinforcement strain responses, crack widths, and 
member deformations showed strong correlations with the 
experimental results. The stiffnesses of the structures examined 

were captured reasonably well with slightly stiffer analytical 
responses than the experimental responses. 

The cement clinker preheater tower discussed at the outset 
was reanalyzed with the proposed procedure (VecTor5) to 
gauge the improvements made over the predecessor procedure 
(TEMPEST). As before, the calculated frame response was 
governed by shear failures of some of the upper-story beams 
at approximately the same level of top-story lateral displace-
ment (0.47 m [1.5 ft]). The calculated lateral shear strength 
(5693 kN [1280 kips]), however, was 27% less than that 
found from TEMPEST; recall that the TEMPEST calcula-
tions exhibited some numerical instability and lack of 
convergence in the final load stages, causing it to somewhat 
overshoot the failure load. Throughout the VecTor5 analysis, 
excellent convergence factors and negligible unbalanced forces 
were realized, providing confidence in the validity of the 
load-deflection response computed. More details of this 
comparison are provided by Guner (2008).

It is notable that all analyses reported herein were 
performed with the use of default material behavior models 
and analysis options. No decisions regarding the expected 
behavior, failure mode, or selection of appropriate parameter 
values were made prior to the analyses. No additional calculations, 
such as moment-axial force or shear force-shear deformation 
responses of the cross sections, were performed. In addition, the 
analyses required little computation time. For the beams analyzed, 
approximately 1 minute was required; the longest analysis time of 
approximately 6 minutes, using a laptop computer, was 
required for the Duong et al. (2007) frame.

The newly implemented shear protection algorithm, which 
approximately takes into account the increased strengths of 
D-regions, performed well. Premature shear failures of 
sections adjacent to beam-column panel zones, point load 
application areas, and supports were prevented. The newly 
implemented shear failure check algorithm also performed 
well. Sudden shear failures of several structures (for 
example, DB0.53M, DB140M, and Duong et al. (2007) 
frame) were detected that would otherwise have gone 
unnoticed with significant unbalanced shear forces and 
gradually diminishing load-deflection responses.

SUMMARY AND CONCLUSIONS
An analytical procedure was developed for the nonlinear 

analysis of reinforced concrete frame structures under 
pushover and monotonic loads. The procedure employs 
nonlinear sectional analyses within a stiffness-based 
linear-elastic frame analysis algorithm through the use of 
an unbalanced force approach. The nonlinear sectional 
analyses are made to capture shear mechanisms through 
modeling based on the DSFM. Verification of the accuracy 
of the procedure was undertaken by performing analyses 
for 33 mostly shear-critical previously tested specimens. 
The results of the investigations conducted support the 
following conclusions:

1. Consideration of shear effects is essential for safe and 
realistic evaluation of strength and ductility of reinforced 
concrete frames because shear-critical frames continue to be 
found in practice.

2. Most available tools either ignore shear effects 
altogether, employ rudimentary shear models, or are 
overly-complex, requiring precalculation of shear hinge 
properties using separate software and selection of numerous 
analysis options. Typically, they result in severe overestimations 
of strength and ductility in shear-critical structures.
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3. Classical stiffness-based frame analysis algorithms 
provide a simple, fast, and accurate analytical base for the 
implementation of nonlinear sectional fiber models.

4. The implementation of an unbalanced force approach, 
combining linear-elastic frame analysis algorithms with 
nonlinear sectional analysis routines, provides a suitable 
platform for accurate modeling of the nonlinear behavior of 
frame structures.

5. The implementation of the DSFM into a sectional 
analysis procedure produces simple and accurate simulations of 
the nonlinear sectional behavior of frame elements, 
particularly those that are shear-critical.

6. The analytical procedure developed accurately simulates 
the experimental responses of frame structures subjected to 
pushover and monotonic loads with high levels of accuracy. 
Strengths, stiffnesses, ductilities, and failure modes are 
captured accurately. Computed parameters such as crack 
widths, reinforcement strains, and member deformations 
are also simulated well.

7. Based on a total-load secant-stiffness formulation, the 
analytical procedure developed exhibits excellent 
convergence and numerical stability characteristics, 
requiring little computational time.

8. Further work is required to accurately model the 
behavior of frames heavily influenced by joint panel distress, 
bond slip, or compression bar buckling.
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