

Roottop damag

NSC

NSC

Problem Statement

12 billion dollars are spent yearly due to hurricane ! Rooftop temperatures in the U.S. can exceed 75°C and damage to non-structural components (NSC). The decrease the anchor strenght by up to 70%. influence of adverse environmental conditions and I

Temperature Effects

highly-dynamic loads has not been quantified.

'Bomb cyclone' (2019)

Finite Element Modeling

Finite element (FE) models can capture the main anchor

Load

Concrete

stress

reduction

System-Level Analysis

Wind loads are highly dynamic and repetitive. They promote loads higher than the static capacity and significant inelastic displacements, damaging the NSC.

Concrete Cracking Effects

Conclusions

NSC anchorage is subjected to existing rooftop concrete ! cracking, which can reduce the anchor capacity by 20%.

The hurricane dynamic load capacity was found to be comparable to the static capacity. Hurricane loads cause inelastic displacement, which damages the NSC before its load capacity is reached.

Thermally-resistant resins must be used to prevent

premature temperature-related anchor failure.

Rooftop concrete cracking increases the concrete breakout angle, reducing its load-resisting

area.

www.iabseny2019.com