Design Recommendations for Helical Pile Anchorages Subjected to Cyclic Load Reversals

Prepared for
Helical Piles and Tiebacks Committee

By

Sundar Chiluwal

M.S. candidate
\&
Serhan Guner
Assistant Professor

The University of Toledo
Department of Civil \& Environmental Engineering

COLLEGE OF ENGINEERING
THE UNIVERSITY OF TOLEDO

Sponsored by
Deep Foundation Institute (DFI)

August 2019

ACKNOWLEDGMENTS

The authors would like to thank the members of the Helical Piles and Tiebacks Committee for their feedback and support throughout this study.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Deep Foundation Institute (DFI). This report does not constitute standard specifications, or regulations.

Executive Summary

Helical piles present a significant potential to create resilient, durable, and faster-to-construct foundations. Helical piles are anchored to concrete foundations with a termination bracket. Although significant research has been conducted on the cyclic-load behavior of helical piles, there is a lack of research on the helical pile anchorage zones. The current codes (e.g. ACI 3182019, IBC-2018) have no specific design provisions for these zones. The anchorage zones are susceptible to concrete cracking when subjected to the uplift components of the cyclic loading, which may reduce the resiliency of the entire system or cause long-term durability issues.

The objective of this study is to understand and quantify the influence of anchorage zone detailing on the global behavior of concrete foundations and develop recommendations for their efficient design. Pile cap systems supported by helical piles are designed for this purpose. Highfidelity nonlinear finite element models are developed and experimentally verified with the results from nine large-scale helical foundation specimens. The verified models are employed to conduct 162 response simulations for helical pile cap systems to quantify the influence of the anchorage conditions on the load, deformation, cracking, and failure behaviors. This study examines various combinations of bracket types (i.e., single, double, and studded brackets), embedment depths h_{e} (i.e., bottom, middle, and top for the single bracket; and bottom and middle for the studded bracket), longitudinal reinforcement percentages $\boldsymbol{\rho}_{x}$ (i.e., $0.2,0.4$ and 0.8%), and shear span to depth ratios a / d (i.e., $1.68,1.42$ and 1.11), and three loading types (i.e., monotonic tension, monotonic compression and reversed cyclic). The analysis of variance and the factorial design methods are employed to quantify the statistical significance of the changes in the simulation result due to the changes in the parameters examined. The simulation results, which inherently include the influence and failure modes of the helical pile anchorage zones, are compared with the traditional global analysis methods to assess the significance and consequences of considering or neglecting the anchorage zone behavior. The results are analyzed to identify the undesirable design configurations that result in anchorage zone failure and propose recommendation for their optimum design.

The results of the investigations demonstrate that the helical pile-to-foundation anchorages may govern the entire system capacity for the load conditions involving uplift and reversed-cyclic forces. The traditional global analysis methods, which neglect the influence of the anchorage zones, are found to significantly overestimate the capacity of the helical foundations (up to 2.2
times in this study). These results justify the recommendation of performing an explicit capacity check of the anchorage zones in addition to the structural and geotechnical checks for the global foundation and helical pile capacities. The findings of this study are also applicable to micro piles which incorporate similar termination bracket details. Detailed conclusions and recommendations are provided below.

Monotonic and Cyclic Tension (subjected to uplift forces)

- The helical pile-to-foundation anchorage zone detailing significantly influences the global tensile capacity of the helical pile cap foundations.
- The tensile load capacities of the foundation systems (all of which are doubly and symmetrically reinforced) are found to be only $\mathbf{5 4 \%}$ of their compression load capacities. If analyzed with the traditional sectional analysis methods, which neglect the influence of the anchorage zones, their load capacities in tension (i.e., a point load applied upwards) and compression (i.e., a point load applied downwards) would be incorrectly calculated as equal.
- Anchorage zone failure is predicted for the bottom h_{e} of the single bracket type, with a decrease in the global load capacity by 25% on average. It is recommended that the middle h_{e} be used if the single bracket termination is to be used.
- The statistical analysis of the results indicates that the combination of low a/d ratios, high $\boldsymbol{\rho}_{\boldsymbol{x}}$, and the middle $\boldsymbol{h}_{\boldsymbol{e}}$ yields the highest tension load capacity for the single bracket. These analyses also indicate that h_{e} dictates the effectiveness of ρ_{x} and a / d ratio. In other words, if larger tensile load capacities are desired, h_{e} should be changed from bottom to middle, as opposed to using the bottom h_{e} and increasing the ρ_{x} percentage or reducing the a / d ratio with hopes to increase the load capacity (which is not effective).
- The double bracket type has only one embedment depth which provides satisfactory responses with no anchorage zone failure in all simulations contained in this study.
- The studded bracket type has two h_{e} positions. While no anchorage zone failure is predicted, major anchorage zone cracking is observed for the bottom h_{e}. For the configurations involving the bottom h_{e}, the change of the bracket type from single to studded improves the foundation capacity by an average of 22\%; consequently, the studded bracket may be preferred over the single bracket for the bottom h_{e}. For the most optimum results, however, the middle h_{e} is recommended for both the single and studded bracket types.
- Although the bottom h_{e} of the single bracket type demonstrated the least-favorable behavior, it can still be successfully used for resisting uplift forces if a special anchorage zone detailing is developed (e.g., sufficient amounts of vertical ties or stirrups in the anchorage zone). This recommendation is also applicable to the bottom h_{e} of the studded bracket type.
- When designing the helical pile-to-foundation connections, special attention should be given to light and tall structures where one of the foundation load cases may be tensile in nature.

Monotonic and Cyclic Compression

- The helical pile-to-foundation anchorages are found to not influence the monotonic compression load capacity of the helical pile foundations in any of the bracket types examined; no anchorage failures are predicted.
- The statistical analyses show that the \boldsymbol{h}_{e} parameter has no significant contribution on the monotonic compression capacity of the helical foundations.
- To maximize the load capacity, high ρ_{x} and low a / d ratios should be used for all bracket types.
- The compression capacity of the foundations examined are found, on average, to be 1.85 times higher than their tension capacity. Consequently, particular attention should be paid to the connection design when there is a load case involving net uplift forces.
- For the cyclic compression loading, anchorage zone cracks and reduced load capacities (up to 10%) are predicted for the top $\boldsymbol{h}_{\boldsymbol{e}}$ of the single bracket in some design configurations. It is recommended to follow the tension load recommendations (above) for the load cases involving cyclic load reversals.

Table of Contents

Executive Summary iii
Table of Contents vi
List of Figures xi
List of Tables xiv
List of Variables XV

1. Introduction 1
1.1 Background 1
1.2 Problem Statement 2
1.3 Research Objectives 2
1.4 Report Outline 3
2. Literature Review 4
2.1 Introduction 4
2.2 Helical Piles 4
2.3 Types of Helical Piles 4
2.4 Components of the Helical Piles 5
2.5 Research on Helical Piles and Concrete Foundations 5
2.6 Research on Helical Pile Connectors for Retrofitting 6
2.7 Anchorage Brackets for the New Foundation Constructions 6
2.8 Helical Pile Anchorage Using New Construction Bracket 7
2.9 Failure Modes and Load Transfer Mechanisms 8
2.9.1 Headed Anchor Bolt Failure Modes Subjected to Tension Load 9
2.9.1.1 Steel Failure 10
2.9.1.2 Pullout Failure 10
2.9.1.3 Concrete Cone Breakout Failure 10
2.9.1.4 Concrete Splitting Failure 11
2.9.1.5 Side-Face Blowout Failure 11
2.10 Influencing Parameters Selected for this Study 11
3. Design of Helical Foundation 12
3.1 Introduction 12
3.2 Helical Foundation Components 12
3.2.1 New Construction Bracket Types 12
3.2.2 Helical Shaft 13
3.2.3 Pile Cap 13
3.3 Helical Foundations 13
3.4 Parameters to be investigated 15
3.4.1 Embedment Depths (h_{e}) 15
3.4.2 Longitudinal Reinforcement Ratios (ρ_{x}) 16
3.4.3 Shear Span to Depth (a/d) Ratios 17
4. Numerical Simulation Approach 18
4.1 Introduction 18
4.2 Selection of Finite Element Program 18
4.3 Numerical Approach using Finite Element Program VecTor2 18
4.3.1 Element Library 19
4.3.2 Material Models in VecTor2 19
4.3.3 Equivalent Cone Method (ECM) 21
4.4 Experimental Verification of the Numerical Simulation Approach 22
4.5 Material Modeling of Helical Foundations 26
4.5.1 Pile Cap 26
4.5.2 Helical Pile Shaft 26
4.5.3 Bracket Types 27
4.5.4 Anchor Bolt 27
4.5.5 Longitudinal Reinforcement Percentages 28
4.6 Finite Element Modeling of the Helical Foundations 30
4.6.1 Single Bracket Type 30
4.6.2 Double Bracket Type 31
4.6.3 Studded Bracket 32
5. Numerical Simulation Results 33
5.1 Introduction 33
5.2 Effect of h_{e} on the Load Capacity 34
5.2.1 Tensile Load Behavior 34
5.2.1.1 Single Bracket Type Subjected to Monotonic and Cyclic Tension 36
5.2.2 Compressive Load Behavior 37
5.3 Effect of $\rho_{\mathrm{x}} \%$ on the Load Capacity 38
5.3.1 Tensile Load Behavior 38
5.3.2 Compressive Load Behavior 40
5.4 Effect of a/d ratios on the Load Capacity 41
5.4.1 Tensile Load Behavior 41
5.4.2 Compressive Load Behavior 42
5.5 Effect of h_{e} on the Displacement Capacity 43
5.5.1 Tensile Load Behavior 43
5.5.2 Compressive Load Behavior 44
5.6 Comparison of Loading Types 45
5.7 Failure Modes 45
5.7.1 Failure Mode Subjected to Monotonic Tension 45
5.7.1.1 Failure Mode of Single Bracket Anchorages 45
5.7.1.2 Failure Mode of Double Bracket Anchorages 46
5.7.1.3 Failure Mode of Studded Bracket Anchorages 47
5.7.2 Failure Mode Subjected to Monotonic Compression 47
5.7.3 Failure Mode Subjected to Reversed-cyclic 48
5.7.3.1 Failure Mode of Single Bracket Anchorages 48
5.7.3.2 Failure Mode of Double Bracket Anchorages 48
5.7.3.3 Failure Mode of Studded Bracket Anchorages 49
6. Statistical Analysis. 50
6.1 Introduction 50
6.2 Statistical Analysis of Experiments 50
6.3 Analysis Set Up 51
6.4 Results under Tension Load 52
6.4.1 Single Bracket Type 52
6.4.2 Double Bracket Type 54
6.4.3 Studded Bracket Type 55
6.4.4 Comparison of Bracket Types 56
6.5 Results under Compressive Load 58
6.5.1 Single Bracket Type 58
6.5.2 Double Bracket Type 59
6.5.3 Studded Bracket Type 60
6.5.4 Comparison of Bracket Types 61
6.6 Model Adequacy Checking 62
6.6.1 The Normality Assumption 62
6.6.2 The Independence and Constant Variance Assumption 64
7. Global Concrete Foundation Checks 68
7.1 Introduction 68
7.2 Global Checks for the Concrete Foundation 68
7.2.1 Methods 68
7.3 Global Checks for Diab's Experimental Foundation Specimens 68
7.3.1 Monotonic Tension 68
7.3.2 Monotonic Compression 69
7.4 Global Checks for the Helical Foundations Examined in this Study 69
7.4.1 Monotonic Tension 70
7.4.2 Monotonic and Cyclic Compression 71
8. Conclusions and Recommendations 73
9. References 75
Appendix A Nonlinear Finite Element Analysis of Single Bracket Anchorages. 79
Subjected to Monotonic Tension 80
a/d ratio $=1.68, \rho_{x}=0.2 \%$ 80
a/d ratio $=1.68, \rho_{x}=0.4 \%$ 81
a/d ratio $=1.68, \rho_{x}=0.8 \%$ 82
a/d ratio $=1.42, \rho_{x}=0.2 \%$ 84
a/d ratio $=1.42, \rho_{x}=0.4 \%$ 85
a/d ratio $=1.42, \rho_{x}=0.8 \%$ 86
a/d ratio $=1.11, \rho_{x}=0.2 \%$ 87
a/d ratio $=1.11, \rho_{x}=0.4 \%$ 89
a/d ratio $=1.11, \rho_{x}=0.8 \%$ 90
Subjected to Monotonic Compression 91
a/d ratio $=1.68, \rho_{x}=0.2 \%$. 91
a/d ratio $=1.68, \rho_{x}=0.4 \%$ 92
a/d ratio $=1.68, \rho_{x}=0.8 \%$, 93
a/d ratio $=1.42, \rho_{x}=0.2 \%$ 95
a/d ratio $=1.42, \rho_{x}=0.4 \%$ 96
a/d ratio $=1.42, \rho_{x}=0.8 \%$ 97
a/d ratio $=1.11, \rho_{x}=0.2 \%$ 99
a/d ratio $=1.11, \rho_{x}=0.4 \%$, 100
a / d ratio $=1.11, \rho_{\mathrm{x}}=0.8 \%$, 101
Subjected to Reversed-Cyclic Loads 103
a/d ratio $=1.68, \rho_{x}=0.2 \%$, 103
a/d ratio $=1.68, \rho_{x}=0.4 \%$. 105
a/d ratio $=1.68, \rho_{x}=0.8 \%$. 106
a/d ratio $=1.42, \rho_{x}=0.2 \%$ 108
a/d ratio $=1.42, \rho_{x}=0.4 \%$ 109
a/d ratio $=1.42, \rho_{x}=0.8 \%$ 111
a/d ratio $=1.11, \rho_{x}=0.2 \%$. 112
a/d ratio $=1.11, \rho_{x}=0.4 \%$. 114
a/d ratio $=1.11, \rho_{x}=0.8 \%$. 115
Appendix B Nonlinear Finite Element Analysis of Double Bracket Anchorages 117
Subjected Monotonic Tension 118
a/d ratio $=1.68$ 118
a/d ratio $=1.42$ 119
a/d ratio = 1.11 120
Subjected to Monotonic Compression 121
a/d ratio $=1.68$ 121
a/d ratio $=1.42$ 122
a/d ratio = 1.11 123
Subjected to Reversed-Cyclic Loads 124
a/d ratio $=1.68$ 124
a/d ratio $=1.42$ 125
a/d ratio $=1.11$ 126
Appendix C Nonlinear Finite Element Analysis of Studded Bracket Anchorages 128
Subjected to Monotonic Tension 129
a/d ratio $=1.68, \rho_{x}=0.2 \%$. 129
a/d ratio $=1.68, \rho_{x}=0.4 \%$. 130
a/d ratio $=1.68, \rho_{x}=0.8 \%$ 131
a / d ratio $=1.42, \rho_{\mathrm{x}}=0.2 \%$. 132
a/d ratio $=1.42, \rho_{x}=0.4 \%$. 133
a/d ratio $=1.42, \rho_{x}=0.8 \%$ 134
a/d ratio $=1.11, \rho_{x}=0.2 \%$ 135
a/d ratio $=1.11, \rho_{x}=0.4 \%$. 136
a/d ratio $=1.11, \rho_{x}=0.8 \%$. 137
Subjected to Monotonic Compression 138
a/d ratio $=1.68, \rho_{x}=0.2 \%$. 138
a/d ratio $=1.68, \rho_{x}=0.4 \%$ 139
a/d ratio $=1.68, \rho_{x}=0.8 \%$. 140
a/d ratio $=1.42, \rho_{x}=0.2 \%$ 141
a/d ratio $=1.42, \rho_{x}=0.4 \%$ 142
a / d ratio $=1.42, \rho_{\mathrm{x}}=0.8 \%$ 143
a/d ratio $=1.11, \rho_{x}=0.2 \%$ 144
a/d ratio $=1.11, \rho_{x}=0.4 \%$ 145
a/d ratio $=1.11, \rho_{x}=0.8 \%$, 146
Subjected to Reversed-Cyclic Loads 147
a/d ratio $=1.68, \rho_{x}=0.2 \%$. 147
a/d ratio $=1.68, \rho_{x}=0.4 \%$ 148
a/d ratio $=1.68, \rho_{x}=0.8 \%$ 149
a/d ratio $=1.42, \rho_{x}=0.2 \%$ 151
a/d ratio $=1.42, \rho_{x}=0.4 \%$. 152
a/d ratio $=1.42, \rho_{x}=0.8 \%$. 153
a / d ratio $=1.11, \rho_{\mathrm{x}}=0.2 \%$. 155
a/d ratio $=1.11, \rho_{x}=0.4 \%$. 156
a/d ratio $=1.11, \rho_{x}=0.8 \%$ 157
Appendix D Hand Calculation Details 159

List of Figures

Figure 1-1: Tensile uplift force in a (a) Transmission tower subjected to wind load (Adoptedfrom Guner and Carrière 2016), (b) Wind turbine subjected to wind load, (c) Residential buildingsubjected to seismic load.1
Figure 1-2: Helical pile anchored with the single bracket type. 2
Figure 2-1: Helical piles (a) Square shaft (un-grouted); (b) Square shaft (grouted); (c) Round shaft (grouted); (d) Round shaft (un-grouted) (DFI 2014) 4
Figure 2-2: Components of a helical pile (a) Triple helix lead section; (b) Helical extension section (DFI 2014). 5
Figure 2-3: Anchorage of helical piles (Supportworks 2018) 6
Figure 2-4: Commonly used bracket types in the new foundations construction. 7
Figure 2-5: Shear span to depth depth ratio of a typical deep foundation 8
Figure 2-6: The effect of a / d ratio on the shear strength of beams without stirrups-shear at cracking and failure (Kani 1967). 9
Figure 2-7: Modes of failures for deep beams with a / d ratio 1.5 to 2.5 (MacGregor and James 2012). 9
Figure 2-8: Failure modes of headed anchors subjected to tension load (ACI 318-19). 10
Figure 2-9: Concrete cone breakout failure subjected to tension load (Nilsson et al. 2011). 11
Figure 4-1: Material elements used (a) Plane-stress rectangle; (b) Truss bar. 19
Figure 4-2: Material models simulated in VecTor2. 20
Figure 4-3: (a) Palermo model of cyclic response for concrete; (b) Seckin w/Bauschinger-HP4 model of hysteretic response for ductile steel reinforcement (Wong et al. 2013). 21
Figure 4-4: Surface area for (a) 3D; (b) 2D concrete breakout shapes 21
Figure 4-5: Flowchart of the Equivalent Cone Method, EMC (Almeida Jr and Guner 2019), 22
Figure 4-6: Specimen dimensions for T1. 23
Figure 4-7: Numerical model for Diab's foundation specimen T4. 24
Figure 4-8: Simulated and experimental load-displacement responses. 25
Figure 4-9: Cracking pattern and failure mode comparisons for grade beams (a) T1; (b) T2; (c) T3. 25
Figure 4-10: Concrete properties 26
Figure 4-11: Helical shaft properties. 27
Figure 4-12: Material properties for (a) Bracket type; (b) Stud 28
Figure 4-13: Material properties for anchor bolt 28
Figure 4-14: Material properties for (a) Rebar No.6; (b) Rebar No. 7 29
Figure 4-15: Material properties for rebar No. 8 29
Figure 4-16: Numerical models: single bracket type (1.42 a/d ratio) - h_{e} (a) bottom; (b) middle; (c) top. 30
Figure 4-17: Numerical models: single bracket type (middle h_{e}) - a / d ratios (a) 1.68; (b) 1.42; (c)
1.11. 31
Figure 4-18: Numerical models: double bracket type - a / d ratios (a) 1.68; (b) 1.42; (c) 1.11. 31
Figure 4-19: Numerical models: studded bracket type (1.42 a/d ratio) - h_{e} (a) bottom; (b) middle. 32
Figure 4-20: Numerical models: single bracket type (middle h_{e}) - a/d ratios (a) 1.68; (b) 1.42; (c) 1.11. 32
Figure 5-1: One of the sample simulation subjected to reversed-cyclic. 33
Figure 5-2: Effect of h_{e} of single and double bracket types on the load capacity subjected to monotonic and cyclic tension. 35
Figure 5-3: Trend for effect of h_{e}. 36
Figure 5-4: Effect of h_{e} of single and double bracket types on the load capacity subjected to monotonic and cyclic compression. 37
Figure 5-5: Effect of $\rho_{x} \%$ on the load capacity subjected to monotonic and cyclic tension. 38
Figure 5-6: Plot of average load capacities for changing $\rho_{x} \%$. 39
Figure 5-7: Effect of $\rho_{x} \%$ on the load capacity subjected to monotonic and cyclic compression. 40
Figure 5-8: Effect of a / d ratio on the load capacity subjected to monotonic and cyclic tension. 41
Figure 5-9: Plot of average load capacities for changing a / d ratio. 42
Figure 5-10: Effect of a / d ratio on the load capacity subjected to monotonic and cyclic compression. 42
Figure 5-11: Effect of h_{e} on the displacement capacity subjected to monotonic and cyclic tension. 43
Figure 5-12: Effect of h_{e} on the displacement capacity subjected to monotonic and cyclic compression. 44
Figure 5-13: Plot of average load capacities subjected to different loading types 45
Figure 5-14: Crack Patterns (a) Splitting of concrete around bracket zone; (b) Flexural cracks around top longitudinal reinforcement. 46
Figure 5-15: (a) Flexural cracks around top longitudinal reinforcement; (b) Flexural cracks around top longitudinal reinforcement with local cracks around the bottom plate. 46
Figure 5-16: (a) Flexural cracks around top longitudinal reinforcement; (b) Flexural cracks around top longitudinal reinforcement with local cracks around the bottom plate 47
Figure 5-17: (a) Flexural cracks around top longitudinal reinforcement; 47
Figure 5-18: (a) Anchorage zone cracks around bracket zone and flexural cracks around longitudinal reinforcement; (b) Flexural cracks around longitudinal reinforcement; (c) Shear failure. 48
Figure 5-19: (a) Shear cracks; (b) Flexural cracks around longitudinal reinforcement. 48
Figure 5-20: (a) Shear cracks; (b) Flexural cracks around longitudinal reinforcement 49
Figure 6-1: Example of a load-displacement curve extracted from one of the numerical analysis. 52
Figure 6-2: Normal probability plots of the residuals of the single bracket types under
(a)compression and (b) tension analyses; studded bracket types under (c) compression and (d)tension analyses; and double bracket types under (e) compression and (f) tension analyses.... 64Figure 6-3: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; (d) predicted values for thesingle bracket type under compression65
Figure 6-4: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; (d) predicted values for the single bracket type under tension 65
Figure 6-5: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; (d) predicted values for the studded bracket type under compression. 66
Figure 6-6: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; (d) predicted values for the studded bracket type under tension. 66
Figure 6-7: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; and (d) predicted values for the double bracket type under compression 67
Figure 6-8: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; (d) predicted values for the double bracket type under tension. 67
Figure 7-1: Comparison among experimental and predicted capacities subjected to monotonic tension for Diab's foundations. 69
Figure 7-2: Comparison among experimental and predicted capacities subjected to monotonic compression for Diab's foundations. 69
Figure 7-3: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic tension in ρ_{x} of 0.2%. 70
Figure 7-4: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic tension in ρ_{x} of 0.4%. 70
Figure 7-5: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic tension in ρ_{x} of 0.8%. 71
Figure 7-6: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic compression in ρ_{x} of 0.2% 71
Figure 7-7: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic compression in ρ_{x} of 0.4%. 72
Figure 7-8: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic compression in ρ_{x} of 0.8%, 72
Figure 8-1: Three bracket types examined in the study, illustrated in the same pile cap for comparison purposes 73

List of Tables

Table 3-1: Properties of a single bracket type. 13
Table 3-2: Properties of a single helical pile. 13
Table 3-3: Properties of an anchor bolt. 13
Table 3-4: Rebar quantities 16
Table 4-1: Default concrete material models 20
Table 4-2: Default reinforcement material models. 20
Table 4-3: Diab's foundation specimen dimensions 23
Table 4-4: Simulated and experimental load capacities 24
Table 6-1: Analysis of the sums of squares of single bracket type under tension 53
Table 6-2: ANOVA analysis for single bracket type under tension 53
Table 6-3: Analysis of the sums of squares of double bracket type under tension. 54
Table 6-4: ANOVA analysis for double bracket type under tension. 55
Table 6-5: Analysis of the sums of squares of studded bracket type under tension. 55
Table 6-6: ANOVA analysis for studded bracket type under tension 56
Table 6-7: Analysis of the sums of squares of all types of bracket under tension 57
Table 6-8: ANOVA analysis for all types of piles under tension 57
Table 6-9: Analysis of the sums of squares of single bracket type under compression 58
Table 6-10: ANOVA analysis for single bracket type under compression. 58
Table 6-11: Analysis of the sums of squares of double bracket type under compression 59
Table 6-12: ANOVA analysis for double bracket type under compression. 59
Table 6-13: Analysis of the sums of squares of studded bracket type under compression. 60
Table 6-14: ANOVA analysis for studded bracket type under compression. 61
Table 6-15: Analysis of the sums of squares of all types of brackets under compression. 62

List of Variables

h_{e}	Embedment depth
ρ_{x}	Longitudinal reinforcement
a / d ratio	Shear span to depth ratio, which is either 1.68, 1.42, or 1.11
Tens.	Monotonic tension load
Comp.	Monotonic compression load
Сус.	Reversed-cyclic load
T	Top embedment depth of 460 mm (18.1") for the bracket
M	Middle embedment depth of 300 mm (11.8") for the bracket
B	Bottom embedment depth of $140 \mathrm{~mm}(5.5$)) for the bracket
1.68 T	Helical pile with a / d ratio $=1.68$ at top embedment depth (460 mm)
1.68 B	Helical pile with a / d ratio $=1.68$ at bottom embedment depth (140 mm)
1.68 M	Helical pile with a / d ratio $=1.68$ at middle embedment depth (300 mm)
$\mathrm{Pu}^{\text {u}}$	Ultimate load capacity subjected to monotonic load
$\mathrm{P}_{\mathrm{u}-\mathrm{T} / \mathrm{B}}$	Ratio of P_{u} for the top embedment depth to that for the bottom embedment depth
$\mathrm{P}_{\mathrm{u}-\mathrm{m} / \mathrm{B}}$	Ratio of P_{u} for the middle embedment depth to that for the bottom embedment depth
P_{t}	Ultimate load capacity of the tensile curve of reversed-cyclic load
$\mathrm{P}_{\mathrm{t}-\mathrm{T} / \mathrm{B}}$	Ratio of P_{t} for the top embedment depth to that for the bottom embedment depth
$\mathrm{P}_{\mathrm{t}-\mathrm{M} / \mathrm{B}}$	Ratio of P_{t} for the middle embedment depth to that for the bottom embedment depth
P_{c}	Ultimate load capacity of the compression curve of reversed-cyclic load
$\mathrm{P}_{\text {C-T/B }}$	Ratio of P_{c} for the top embedment depth to that for the bottom embedment depth
$\mathrm{P}_{\mathrm{C}-\mathrm{M} / \mathrm{B}}$	Ratio of P_{c} for the middle embedment depth to that for the bottom embedment depth
δ_{u}	Displacement capacity subjected to monotonic load
$\delta_{u-T / B}$	Ratio of δ_{u} for the top embedment depth to that for the bottom embedment depth
$\delta_{u-M / B}$	Ratio of δ_{u} for the middle embedment depth to that for the bottom embedment depth
δ_{t}	Displacement capacity of the tensile curve of reversed-cyclic load
$\delta_{\text {t-T/B }}$	Ratio of δ_{t} for the top embedment depth to that for the bottom embedment depth
$\delta_{\text {t-M/B }}$	Ratio of δ_{t} for the middle embedment depth to that for the bottom embedment depth
δ_{c}	Displacement capacity of the compression curve of reversed-cyclic load
$\delta_{\text {C-T/B }}$	Ratio of δ_{c} for the top embedment depth to that for the bottom embedment depth

$\delta_{C-M / B} \quad$ Ratio of δ_{c} for the middle embedment depth to that for the bottom embedment depth
Stiff Initial stiffness
Flexural Flexural failure
Splt-brkt Anchorage zone failure in tensile splitting
Bracket Infl. Significant anchorage zone influence on the global foundation response

1. Introduction

1.1 Background

Tall and light structures such as power transmission towers, telecom towers, wind turbines, masts, and chimneys, have lower weight and experience significant cyclic loads due to wind, seismic, or vehicular traffic forces. These cyclic forces induce large overturning moments on the foundations. When the structure undergoes significant overturning, one end is subjected to compression and the other to tension forces (see Fig 1-1). The foundation design of such structures is typically governed by tensile demands due to the inherent weakness of the concrete in tension. Tensile uplift forces can also develop in the foundations because of hydrostatic pressure such as in submerged platforms, jetting structures, and underground water tanks. These uplift forces must be safely transmitted to the ground without creating foundation problems such as cracking, differential settlement, and excessive deformations.

Figure 1-1: Tensile uplift force in a (a) Transmission tower subjected to wind load (Adopted from Guner and Carrière 2016), (b) Wind turbine subjected to wind load, (c) Residential building subjected to seismic load.

Helical piles (Fig 1-2) are typically used in these types of structures since they provide a costeffective, practical, and resilient solution for resisting significant tension forces. Helical piles are generally connected to the superstructures through shallow concrete foundations such as pile caps, grade beams, where they are terminated with a steel bracket.

Figure 1-2: Helical pile anchored with the single bracket type.

1.2 Problem Statement

In order to develop the full potential of helical piles, it is imperative that helical pile-to-foundation connections are properly designed to resist the applied tensile loads. These connections should be able to resist major cyclic deterioration and develop the moment demands on the pile while remaining essentially rigid. Additionally, the distribution and the deformation of the concrete foundations may be influenced by these connection or anchorage zones. Ineffective anchorage zones will be susceptible to long-term cracking and deterioration subjected to cyclic loads. However, there is limited research and associated knowledge on the influence of pile-tofoundation anchorages on the holistic response of foundation systems. Consequently, helical pile anchorages are designed in practice with little confidence, using unproven approaches such as 'assumed stress limits' or 'good engineering judgement.'

1.3 Research Objectives

The objective of this study is to understand the influence of pile anchorage conditions on the holistic behavior of helical foundations and develop preliminary design guidelines for the correct design of anchorage zones. The main focus will be the reversed-cyclic load conditions with reverse cycles applying net tensile uplift loads. The results of this study will demonstrate the behavior of commonly-used anchorage bracket types, indicate what bracket types are more suitable under what loading conditions, what design details should be avoided, and how the influencing parameters of the configurations affect the anchorage response. The research findings will also be applicable to micro pile-to-foundation anchorages owing to the use of similar termination brackets. The following specific tasks will be performed to achieve the objectives:

- One-way foundations (i.e., pile cap strips) will be designed to connect the helical piles with the steel column base to better isolate and understand the bracket response.
- The response of commonly-used bracket types will be investigated with an experimentallyverified numerical modeling method.
- The influence of design parameters (i.e., embedment depth, longitudinal reinforcement percentage, and shear span to depth ratio) on the load, deformation, cracking, and failure behavior of the entire foundation will be quantified in the presence of monotonic compression and tension and reversed-cyclic load conditions.
- The interaction among the parameters will be examined to quantify how the change in multiple design parameters affect the system capacity using statistical methods called the ANOVA and the factorial design.
- The capacity of the holistic helical foundations obtained from the numerical analysis will be compared with the traditional global concrete foundation checks (i.e., sectional flexure and shear checks) to assess the significance of considering/neglecting the anchorage zone behavior.

1.4 Report Outline

The report contains nine chapters and four appendices organized as follows.

Chapter 1 briefly introduces helical piles, discusses the potential issues with helical pile anchorages, and outlines the project objectives. Chapter 2 reviews the research literature and the limited past investigation on the helical pile anchorage zones. In addition, it reviews failure modes and load transfer mechanisms applicable to helical pile anchorage zones. Chapter 3 presents the design details of the helical foundations to be investigated numerically. Chapter 4 describes the 2D nonlinear finite element modelling (FEM) approach to simulate the different bracket types in the study. Chapter 5 provides the analysis detail for the numerical simulations in terms of load-displacement responses, crack patterns, and failure modes, and also compares the load capacities obtained from various design configurations. Chapter 6 presents the statistical methods (i.e., ANOVA and factorial design) to study the influence of the parameters examined in the study. Chapter 7 compares the helical foundation capacity with the traditional global concrete foundation checks (i.e., sectional flexure and shear) to assess the significance of considering/neglecting the anchorage zone behavior. Chapter 8 includes the conclusions and recommendations of this study. Chapter 9 lists the references cited.

Appendices A to C present the simulated response details for the single, double, and studded bracket types in terms of the load-displacement responses, failure modes, and crack patterns, respectively. Appendix D provides the design detailing and samples of the global concrete foundation checks performed.

2. Literature Review

2.1 Introduction

The objective of this chapter is to introduce the helical piles and investigate the past research carried out on the helical foundations (i.e., helical piles and concrete foundations). The related failure modes and load transfer mechanisms of deep foundations and headed anchors are discussed and can be of assistance in understanding the behavior of different anchorage conditions. The influencing parameters selected on this study are briefly explained at the end of the chapter.

2.2 Helical Piles

Helical piles are the steel foundation elements consisting of a shaft with one or more helical bearing plates and a termination bracket. They are also referred to as helical anchors, screw piles, helix piers, screw anchors, helical piers, torque piles, or torque anchors. A foundation system comprised of helical piles is called the helical foundation. Helical piles are commonly used for retrofitting existing structures, supporting tall, light, and overturning-moment-dominated structures, and creating new foundations for buildings and industrial structures.

2.3 Types of Helical Piles

The commonly used helical piles are available in round or square shapes. The square shapes have a solid cross-section, whereas the round shapes have tubular sections. The helical piles can be grouted to improve their properties (see Fig 2-1). If needed, the square pile can be connected with the round pile to make a hybrid pile.

Figure 2-1: Helical piles (a) Square shaft (un-grouted); (b) Square shaft (grouted); (c) Round shaft (grouted); (d) Round shaft (un-grouted) (DFI 2014).

2.4 Components of the Helical Piles

The main components of a helical pile are helices (i.e., helical blades), a lead section (shaft), and extensions as shown in Fig 2-2. The helices are driven to the required bearing layer of soil with the help of a torque motor, using a number of extensions.

Figure 2-2: Components of a helical pile (a) Triple helix lead section; (b) Helical extension section (DFI 2014).

2.5 Research on Helical Piles and Concrete Foundations

Current studies are limited to the individual checks of the helical piles and the concrete foundations (e.g., pile caps, grade beams) without considering the influence of the anchorages.

The geotechnical literature focuses on the axial load behavior of isolated piles and consistently demonstrates the suitability of helical piles for axial loads, namely, tensile loads (e.g., Elkasabgy and El Naggar 2013, Cerato and Victor 2009, and Livneh and El Naggar 2008) and compressive loads (e.g., Elsherbiny and El Naggar 2013, and Pack 2009). There is intensive research to increase the capacity of the helical piles. New techniques are developed to increase the capacity of the helical piles such as grouted piles where cement grout around the pile shaft is introduced to increase the axial capacity (Vickars and Clemence 2000), steel fiber-reinforced grout shaft where steel fiber is added to the grout to increase the ductility capacity (EI Sharnouby and EI Naggar 2012), and grouted shaft enclosed in FRP tube to increase the overall pile performance (Sakr et al. 2004). The structural literature, on the other hand, exclusively focuses on the behavior of supported traditional pile caps subjected to compression (e.g., Cao 2009, Suzuki et al. 1998, Suzuki and Otsuki 2002, Suzuki et al. 2000, Otsuki and Suzuki 1996, and Adebar et al. 1990). Both
the geotechnical and structural literature is lacking in accounting for the influence of the helical pile-to-foundation connections for uplift load conditions.

2.6 Research on Helical Pile Connectors for Retrofitting

The available research is limited to the retrofitting of the existing foundations. Existing foundations are connected externally with special connectors using bolts. Available research includes monotonic and cyclic lateral behavior of specialized connectors (El Naggar et al. 2007), numerical investigation of the response of expansion anchors used to attach helical pile connectors to concrete foundation (Sharnouby and El Naggar 2010), and the experimental testing of eight foundations with two types of connectors (i.e., with and without uplift brackets) under various load conditions (Youssef et al. 2006).

2.7 Anchorage Brackets for the New Foundation Constructions

Helical piles are terminated with a bracket/plate which is cast inside concrete foundations (i.e., shallow foundations, pile caps or grade beams) as shown in Fig 2-3. The bracket types are used to safely transfer vertical tension or compression loads from the new foundation construction to the helical piles by reducing the bearing stress induced in the helical pile shaft. There are different bracket types on the market that are available in the termination of the helical piles. Some of the commonly used bracket types are shown in Fig 2-4.

Figure 2-3: Anchorage of helical piles (Supportworks 2018).

Bracket types as shown in Fig 2-4 are welded to a sleeve. The sleeve can be with or without the bolt holes. The sleeve without the bolt is welded directly to the helical shaft. The presence of bolts depends upon the type of loads the foundation is subjected to.

2.8 Helical Pile Anchorage Using New Construction Bracket

There is very limited research conducted on this topic. Pack (2009) investigated the bearing stresses of the concrete in front of the bracket and concluded that the ultimate bearing stress can be used as the safety limit as per the International Building Code (IBC 2018).

Labuda et al. (2013) performed a failure investigation of a helical anchor tie-down system supporting an Olympic size swimming pool where the brackets were welded to the helical shaft without the use of a sleeve. He found that the failure of the pool slab was due to the separation of the weld used to connect the helical shaft to the bracket and the crack lines propagated along the weld lines. He concluded that, even if the bracket to shaft connection had been constructed as per the original design (i.e., pinned connection using bolts), it still would have failed through other types of anchorage failures.

Bracket type for square shaft subjected to

Bracket type for square shaft subjected to compression and uplift

Bracket type for round shaft
subjected to compression and

Figure 2-4: Commonly used bracket types in the new foundations construction.
Diab (2015) investigated helical piles with single bracket terminations, both experimentally and numerically. He found that the anchorage behavior is affected by the concrete compressive strength, pile embedment depth, beam reinforcement ratio, and pile cap detailing. All grade
beams experienced a concrete breakout failure. Diab's study experimentally showed that the anchorage zones might govern the entire system response.

2.9 Failure Modes and Load Transfer Mechanisms

Most of the concrete foundations are deep in nature. The pile caps investigated in this research are deep beams; as such, it is necessary to investigate the shear failure mode and the load transfer mechanisms associated with it. The deep beam action may have some influence on the behavior of the anchorage conditions. A beam is classified as deep if its shear span to depth ratio (a / d) is smaller than 2.0 (see Fig 2-5).

Figure 2-5: Shear span to depth depth ratio of a typical deep foundation.
Kani (1967) concluded that the shear strength of a beam increases with the decrease in the beam depth (see Fig 2-6). The shear capacity of the concrete depends upon the shear span to depth ratio, the longitudinal reinforcement percentage, and concrete tensile strength (MacGregor and James 2012). The failure mode of the deep beam could be either a shear-tension failure or shear compression failure after the initiation of a diagonal crack as shown in Fig 2-7. The presence of the longitudinal reinforcement increases the shear capacity of the beam due to dowel action.

Figure 2-6: The effect of a / d ratio on the shear strength of beams without stirrups-shear at cracking and failure (Kani 1967).

Figure 2-7: Modes of failures for deep beams with a / d ratio 1.5 to 2.5 (MacGregor and James 2012).

2.9.1 Headed Anchor Bolt Failure Modes Subjected to Tension Load

The helical piles act like the anchor bolts where the termination brackets behave similar to the headed anchor bolts. Anchor bolts can fail through different modes of failures when they are subjected to tensile load as shown in Fig 2-8.

Figure 2-8: Failure modes of headed anchors subjected to tension load (ACI 318-19).

2.9.1.1 Steel Failure

When the applied load stresses the steel beyond its ultimate capacity, a steel failure occurs. The ultimate capacity of the steel depends upon the strength and the cross-sectional area of the steel. A headed anchor can yield in this manner when other modes of failures are prevented.

2.9.1.2 Pullout Failure

The pullout failure occurs due to the lack of sufficient frictional resistance, where an anchor slips out of the concrete with insignificant damage to the concrete. The pullout force depends upon the friction. Due to large termination brackets used in helical piles, this type of failure is not expected.

2.9.1.3 Concrete Cone Breakout Failure

Concrete cone breakout is a conical crack that originates from the tip of the anchor head and propagates towards the edge of the concrete due to tensile stress flow (see Fig 2-8). The angle of the cone varies from 35° to 45° depending on the embedment depth of the anchor bolt.

Figure 2-9: Concrete cone breakout failure subjected to tension load (Nilsson et al. 2011).

2.9.1.4 Concrete Splitting Failure

Concrete splitting failure occurs when an anchor is installed close to the edge of the concrete or the spacing between anchors is too small.

2.9.1.5 Side-Face Blowout Failure

When the headed anchors are close to an edge, the concrete between the anchor head and the concrete edge could fail resulting in side face blowout failure.

2.10 Influencing Parameters Selected for this Study

Some of the critical parameters for the concrete pile-pile cap systems are embedment depth of the piles in the pile caps (Chan and Chee 2000, Richards et al. 2011, and Xiao and Chen 2013), reinforcement ratio in the pile caps (Richards et al. 2011, and Tortola et al. 2018), and shear span to depth (a / d) ratios (Suzuki et al. 2000, and Tortola et al. 2018). These parameters are selected for investigating in this study to understand if they have similar influences on the helical pile-topile cap systems subjected to reversed-cyclic loads. In addition to the single bracket type, the studded and double brackets will also be investigated since the literature reviewed indicated that they are also used, albeit less commonly, in current construction projects.

3. Design of Helical Foundation

3.1 Introduction

The objective of this chapter is to design a one-way pile cap for the pile-to-foundation anchorage and choose the commonly used helical pile foundation components for the numerical simulations. One-way foundations (i.e., pile cap strips) supported by two helical piles are to be modeled to better isolate the anchorage zone response.

3.2 Helical Foundation Components

3.2.1 New Construction Bracket Types

Three different new construction bracket types are to be investigated as shown in Fig 3-1. The single bracket type has a single plate connected to a helical pile shaft as shown in Fig 3-1a. The dimensions and the strength of the single bracket type is listed in Table 3-1. The double bracket type has two plates spaced between $320 \mathrm{~mm}\left(12.6^{\prime \prime}\right)$ as shown in Fig 3-1b. The studded bracket type has a single plate with four studs as shown in Fig 3-1c. The length of the stud is 160 mm ($6.3^{\prime \prime}$) welded on the top surface of the plate. The center-to-center spacing between the studs in both directions (i.e., in-plane and out-of-plane spacing of the studs) is 160 mm ($6.3^{\prime \prime}$). The studs have a termination head on their top surface. The studs are No. 6 steel bars of Grade 60 (2.36") and the terminations are $60 \mathrm{~mm}\left(2.36^{\prime \prime}\right)$ long. To more effectively compare the bracket type responses, the same dimensions and properties are used in all the bracket types.

Figure 3-1: (a) Single bracket type; (b) Double bracket type; (c) Studded bracket type. (Supportworks, 2018).

Table 3-1: Properties of a single bracket type.

Length $\mathbf{m m}$ (in)	Breadth $\mathbf{m m}$ (in)	Thickness $\mathbf{m m}$ (in)	$\left.\begin{array}{c}\text { Area } \\ \mathbf{m m}^{2} \text { (in }\end{array}\right)$	Grade MPa (ksi)
$260(10.24)$	$260(10.24)$	$20(0.79)$	$67600(105)$	$345(50)$

3.2.2 Helical Shaft

A square shaft (SS) is selected with properties given in Table 3-2.
Table 3-2: Properties of a single helical pile.

Shaft size mm (in)	Metal area $\mathbf{m m}^{2}\left(\right.$ in $\left.^{2}\right)$	Uplift Capacity kN (kips)	Helix grade MPa (ksi)
$51(2)$	$2530(4)$	$668(150)$	$552(80)$

3.2.3 Pile Cap

The pile cap is 2100 mm ($82.7^{\prime \prime}$) thick with a cross-sectional dimension of $600 \mathrm{~mm}\left(23.6^{\prime \prime}\right) \times 800$ mm (31.5"). The dimension of the pile cap is similar to the dimensions recommended by Concrete Reinforcing Steel Institute (CRSI) which publishes a design guide for pile systems (CRSI 2015). A steel column ($300 \mathrm{~mm}\left\{11.8^{\prime \prime}\right\} \times 300 \mathrm{~mm}\left\{11.8^{\prime \prime}\right\}$) anchored with four bolts is supported by the pile cap strip. The properties of the anchor bolts are shown in Table 3-3. The compressive strength of the concrete used was 20.7 MPa (3 ksi).

Table 3-3: Properties of an anchor bolt.

Length mm (in)	Diameter mm (in)	Area mm^{2} (in $\left.{ }^{2}\right)$	Grade MPa (ksi)
$460(18.11)$	$38(1.50)$	$1140(1.80)$	$724(105)$

3.3 Helical Foundations

The designed helical foundations connected with single bracket, double bracket, and studded bracket types are shown in Figs 3-2, 3-3 and 3-4, respectively.

Figure 3-2: Helical pile with single bracket anchorage.

Figure 3-3: Helical pile with double bracket anchorage.

Figure 3-4: Helical pile with studded bracket anchorage.

3.4 Parameters to be investigated

Three influencing parameters, $h_{e,} \rho_{x}$ percentage, and a / d ratio, are to be investigated.

3.4.1 Embedment Depths $\left(h_{e}\right)$

In the study, h_{e} is the distance from the bottom of the pile cap to the top of the bracket. The single bracket has three h_{e} : bottom $h_{e}\left(140 \mathrm{~mm}\left\{5.5^{\prime \prime}\right\}\right.$ up from the bottom of the pile cap), middle $h_{e}\left(300 \mathrm{~mm}\left\{11.8^{\prime \prime}\right\}\right.$ up from the bottom of the pile cap) and top $h_{e}\left(460 \mathrm{~mm}\left\{18.1^{\prime \prime}\right\}\right.$ up from the bottom of the pile cap); the studded bracket has two h_{e}; and the double bracket has one h_{e}. For unbiased comparisons, the positions of the plates in the studded and double brackets are taken in the same way as in the single bracket for their respective h_{e}, as shown in Fig 3-5.

(a)

Figure 3-5: Different of the h_{e} (a) single bracket type; (b) double bracket type; (c) double bracket type.

3.4.2 Longitudinal Reinforcement Ratios (ρ_{x})

Three different ρ_{x} percentages are selected for the investigation: minimum ρ_{x} percentage and two and three times the minimum ρ_{x} percentage.

Table 3-4 summarizes the total area of the $\rho_{x} \%$ to be used in the numerical simulations. An equal amount of reinforcement area is used in the compression zone since the pile cap strip will be subjected to reversed-cyclic loads.

Table 3-4: Rebar quantities.

$\boldsymbol{\rho}_{\boldsymbol{x}}$ $\%$	Bar size	No. of bars	Diameter $\mathbf{m m}($ in $)$	Total area $\mathbf{m m}^{2}\left(\mathbf{i n}^{2}\right)$
0.2	$\# 5$	5	$15.88(0.63)$	$1000(1.55)$
0.4	$\# 6$	7	$19.05(0.75)$	$2000(3.10)$
0.8	$\# 7$	10	$22.23(0.88)$	$3880(6.01)$

3.4.3 Shear Span to Depth (a / d) Ratios

The three a / d ratios to be used are $1.68,1.42$, and 1.11 for all the brackets. " a " and " d " are the shear span and the effective depth, respectively. Shear spans to be used are 865 (34 "), 725 (28.5"), and $565 \mathrm{~mm}\left(22.3^{\prime \prime}\right)$, whereas the effective depth of the pile cap is 514 mm , as shown in Fig 3-6.

Figure 3-6: Different a / d ratios (a) 1.68; (b) 1.42; (c) 1.11.

4. Numerical Simulation Approach

4.1 Introduction

The aim of the research is to develop nonlinear finite element models which can accurately show the behavior of the helical pile foundation and the possible failure modes of the helical pile anchorage. The objective of this chapter is to briefly explain the numerical simulation approach that was taken to perform numerical investigation for the study. Finite element software VecTor2 was delineated in the beginning and followed by material properties and the numerical models of the simulations.

4.2 Selection of Finite Element Program

Most of the finite element programs capture only the linear behavior of the structure (i.e., up to the yielding of the structure). The post-peak responses (i.e., ultimate load-displacement responses, failure modes, crack patterns) are difficult to capture in these programs. However, the anchorage between the helical pile shaft and the concrete pile cap exhibits nonlinear behavior. Along with the nonlinearity, the program should be able to capture the post-peak response of the structure. Therefore, it is necessary to select a program which can accommodate these behaviors. Therefore, unlike other programs, VecTor2 is a 2D nonlinear finite element software packaged with commonly used constitutive models to represent concrete behavior, steel behavior, and the interface between concrete and steel. VecTor2 has options to capture different conditions of concrete structures (i.e., concrete softening, tension softening/stiffening, dowel action, buckling, and confinement) which are necessary for helical pile anchorage.

4.3 Numerical Approach using Finite Element Program VecTor2

Computer program VecTor2 (VTAG 2019) is an advanced nonlinear finite element analysis platform for modeling concrete elements with disturbed regions and anchorage zones. Consequently, it is one of the most suited simulation platforms for this study. VecTor2 has been continuously developed since the 1990s at the University of Toronto, Canada. The formulation is based on the Disturbed Stress Field Model (Vecchio 2000) which is an extension of the Modified Compression Field Theory (MCFT) (Vecchio and Collins 1986). The MCFT models reinforced concrete as an orthotropic material using a smeared, rotating crack approach within a total-load, secant-stiffness solution algorithm, and allows the consideration of the coupled flexure, axial, and shear effects. The MCFT can consider the interaction of normal and shear stresses and accounts for such influences as aggregate interlock, tension stiffening, compression softening, and dowel action, all of which are important for this study. The MCFT has been validated with over 200 large-scale experimental tests and is currently used in the Canadian Code CSA A23.3 (CSA 2014) and American Code AASHTO LFRD (AASHTO 2014) as the required method for calculating the shear strengths of concrete members.

4.3.1 Element Library

Finite element models constructed for VecTor2 use a fine mesh of low-powered elements. This methodology has advantages of computational efficiency and numerical stability. It is also well suited for reinforced concrete structures, which require a relatively fine mesh to model reinforcement detailing and three local crack patterns. The element library includes a three-node constant strain triangle, a four-node plane stress rectangular element, a four-node quadrilateral element for modeling concrete with smeared reinforcement, a two-node truss-bar for modeling discrete reinforcement, and a two-node link and a four-node contact element for modeling bondslip mechanisms.

(a)

(b)

Figure 4-1: Material elements used (a) Plane-stress rectangle; (b) Truss bar.
In this study, the concrete was modelled as a four-node plane stress rectangular element (see Fig 4-1 (a)) with a mesh size of $20 \mathrm{~mm} \times 20 \mathrm{~mm}$, without smeared reinforcement due to the absence of transverse reinforcement in the design foundations. The longitudinal reinforcement was modeled as a two-node truss-bar (see Fig 4-1 (b)). The bond between the steel and the concrete was assumed to be perfect and bond slip wasn't considered.

4.3.2 Material Models in VecTor2

VecTor2 has several concrete constitutive and behavioral models (Wong et al. 2013, Akkaya et al. 2019) that can capture complex nonlinear behavior of the structure including secondary effects such as compression softening, tension stiffening, tension softening, and tension splitting. VecTor2 can also model the cyclic loading and hysteretic response, concrete expansion and confinement, bond slip, reinforcement buckling, reinforcement dowel action, crack shear slip deformations, and crack allocation processes. Tables 4-1 and 4-2 show the default models used for the simulations. Fig 4-2 is the screenshot of the software graphics showing different constitutive models. Fig 4-3 shows the cyclic response of concrete and steel materials used in this program for the concrete and reinforcement responses respectively.

Table 4-1: Default concrete material models.

Concrete Behaviour	Default Model
Compressive Base Curve	Hognestad
Compression Post-Peak	Modified Park-Kent
Compression Softening	Vecchio 1992-A
Tension Stiffening	Modified Bentz 2003
Tension Softening	Linear
Confined Strength	Kupler/Richart
Concrete Dilation	Variable-Isotropic
Cracking criterion	Mohr-Coulomb (Stress)
Crack Width Check	Agg/5 Max crack width
Crack Slip	Walraven

Table 4-2: Default reinforcement material models.

Reinforcement Behavior	Default Model
Hysteretic Response	Bauchinger Effect (Seckin)
Dowel Action	Tassios (Crack Slip)
Buckling	Akkaya 2012 (Modified Dhakal-Maekawa)

Figure 4-2: Material models simulated in VecTor2.

Figure 4-3: (a) Palermo model of cyclic response for concrete; (b) Seckin w/Bauschinger-HP4 model of hysteretic response for ductile steel reinforcement (Wong et al. 2013).

4.3.3 Equivalent Cone Method (ECM)

The helical pile-to-foundation anchorages exhibit three-dimensional cone breakout failures when subjected to tensile and uplift forces. The concrete breakout is a three-dimensional phenomenon that presents a conical shape (see Fig 4-4a). However, 2D numerical simulations consider a constant stress distribution along the entire thickness of the foundations, consequently predicting a trapezoidal breakout shape (see Fig 4-4b). Therefore, an appropriate thickness must be used in 2D numerical simulations to account for this difference and accurately predict the connection load capacity. The ECM (Almeida Jr 2019, Almeida Jr and Guner 2019) is employed in this study to calculate an equivalent thickness of the concrete foundations to be used in the 2D numerical simulations.

3D breakout surface 2D breakout surface

(a)

(b)

Figure 4-4: Surface area for (a) 3D; (b) 2D concrete breakout shapes.
The first step of the method is to create and run a 2D model with an estimated concrete thickness equal to three times the embedment depth $h_{e f}$ of the bracket type (see Fig 4-5). The cracking angle $\vartheta_{c r}$ and vertical extent $h_{\text {trap }}$ of the crack are determined from the simulation results and used to calculate the concrete cone surface area $A s_{\text {cone }}$ and the trapezoidal surface area $A s_{\text {trap }}$
according to Equations 4.1 and 4.2, respectively. The equivalent thickness $t_{2 D}$ is calculated using Equation 4.3 and used in 2D models to accurately estimate the load capacity.

Calculate the concrete cone surface area:

$$
\begin{equation*}
A s_{\text {cone }}=\frac{1}{2} \pi h_{\text {cone }}\left(B_{\text {cone }}+b_{\text {cr }}\right) \tag{4.1}
\end{equation*}
$$

Calculate the trapezoidal surface area:
$A s_{\text {trap }}=6 h_{e f}\left(\sqrt{\left(\frac{B_{t r a p}-b_{c r}}{2}\right)^{2}+h_{\text {trap }}^{2}}\right)$

Update the concrete thickness in the 2D FE model to $t_{2 D}$ and rerun the analysis

Figure 4-5: Flowchart of the Equivalent Cone Method, EMC (Almeida Jr and Guner 2019).
where:
$h_{\text {ef }}=$ Anchor embedment depth
$b_{c r}=$ Base of the cracked trapezoidal and cone shapes
$B_{\text {cone }}=$ Base of the cracked cone shape (3D)
$B_{\text {trap }}=$ Base of the cracked trapezoidal shape (2D)
$h_{\text {trap }}=$ Height of the cracked trapezoidal shape (2D)
$A s_{\text {cone }}=$ Surface area of the cracked cone shape (3D)
$A s_{\text {trap }}=$ Surface area of the cracked trapezoidal shape (2D)
$t_{2 D}=$ Equivalent concrete/beam thickness

4.4 Experimental Verification of the Numerical Simulation Approach

To verify the modelling approach used in this study, Diab's experimental results (Diab 2015) are used. The specimen configurations are similar to the ones designed in this study. Nine grade beams of different helical pile-to-grade beam anchorages are tested under monotonic tension loading. Diab's foundations consisted of a single bracket embedded into a $500 \times 500 \times 1600 \mathrm{~mm}^{3}$ $\left(19.7 \times 19.7 \times 63 \mathrm{in}^{3}\right)$ beam, as shown in Fig 4-5. The parameters investigated are h_{e}, ρ_{x}, bracket width b_{w}, shear reinforcement ratio ρ_{y}, and the concrete compressive strength f^{\prime}. Each
configuration is presented in Table 4-3; more details can be found at Diab (2015). Using the ECM (Almeida Jr and Guner 2019), the equivalent thickness of the grade beams ranges from 327 mm (12.9") to 417 mm (16.4").

Figure 4-6: Specimen dimensions for T1.
Table 4-3: Diab's foundation specimen dimensions.

Diab's Foundation	Concrete $\boldsymbol{f}^{\prime} \boldsymbol{c}$ $(\mathbf{M P a})$	Embedment Depth $\left(\boldsymbol{h}_{\boldsymbol{e}}\right)$ $\mathbf{m m}(\mathbf{i n})$	Plate Width $(\mathbf{m m})$	Longitudinal Reinforcement	Stirrups

Only half of the foundations are modeled to take advantage of symmetry as shown in Fig 4-6. A vertical roller is used at the top of the steel plate while horizontal rollers are added to the right edge of the model to account for the symmetry. The load is applied as an uplift displacement at the top of the bracket in small displacement steps.

Figure 4-7: Numerical model for Diab's foundation specimen T4.
The load capacities obtained from VecTor2 using equivalent thickness of ($t_{e q}$) are compared to the experimental load capacities as shown in Table 4-4. The load capacities obtained from the developed numerical models ($\mathrm{P}_{\text {simulation }}$) are in an excellent agreement with the experimental ($\mathrm{P}_{\text {Experimental }}$) ones with a very low coefficient of variation 6\%.

Table 4-4: Simulated and experimental load capacities.

Grade Beams	$\mathbf{P}_{\text {Experiment }}$ $\mathbf{k N}$ (kips)	$\mathbf{P}_{\text {Simulation }}$ kN (kips)	$\mathbf{P}_{\text {Experiment }} / \mathbf{P}_{\text {Simulation }}$
T1	$154(34.62)$	$153(34.4)$	1.02
T2	$200(44.96)$	$190(42.71)$	0.94
T3	$235(52.83)$	$243(54.63)$	1.02
T4	$204(45.86)$	$215(48.33)$	1.03
T5	$241(54.18)$	$222(49.91)$	0.92
T6	$223(50.13)$	$227(51.03)$	1.03
T7	$253(56.88)$	$287(64.52)$	1.14
T8	$256(57.55)$	$265(59.57)$	1.01
T9	$256(57.55)$	$265(59.57)$	1.01
Average	-	-	1.01
COV	-	-	6%

The load-displacement responses of three specimens, namely, T1, T2, and T3, are shown in Fig 47. The numerical models provided a good agreement with the experimental results as they were able to simulate the load capacity and overall behavior accurately. The initial stiffnesses are overestimated. This could be attributable to the fact that numerical models are perfectly supported while the experimental specimen supports and loading system are expected to exhibit some flexibility. The experimental specimens may also have some shrinkage cracking which could make their initial stiffnesses softer.

Figure 4-8: Simulated and experimental load-displacement responses.

Figure 4-9: Cracking pattern and failure mode comparisons for grade beams (a) T1; (b) T2; (c) T3.

The cracking patterns at the peak load levels obtained from the numerical models developed are compared with those from the experimental testing. As seen in Fig 4-8, the cracking pattern and the crack angles match very well.

4.5 Material Modeling of Helical Foundations

The dimensions, types, strength, and components of helical pile system investigated in this study are discussed in Chapter 3. In this section, material modeling is discussed.

4.5.1 Pile Cap

The concrete pile cap has the dimension of $2100 \times 800 \times 600 \mathrm{~mm}^{3}\left(82.7 \times 31.5 \times 23.6 \mathrm{in}^{3}\right)$ (see Chapter 3) with a concrete strength of 20.7 MPa (3 ksi). The important properties of concrete are given in Fig 4-9.

Figure 4-10: Concrete properties.

4.5.2 Helical Pile Shaft

The pile shaft with dimensions of $51 \times 51 \mathrm{~mm}\left(2^{\prime \prime} \times 2^{\prime \prime}\right)$ is modelled as $60 \times 44 \mathrm{~mm}\left(2.4^{\prime \prime} \times 1.7^{\prime \prime}\right)$ to match with the meshing size. The total cross section area remains approximately the same. The pile length extending outside the pile cap is taken as 200 mm (7.9"). The ultimate strength of the helical shaft is selected as $552 \mathrm{MPa}(80 \mathrm{ksi})$. The helical shaft properties are shown in Fig 4-10.

Figure 4-11: Helical shaft properties.

4.5.3 Bracket Types

To fit the finite element mesh of $20 \mathrm{~mm} \times 20 \mathrm{~mm}\left(0.79^{\prime \prime} \times 0.79^{\prime \prime}\right)$, a bracket size of $260 \mathrm{~mm} \times 260$ $\mathrm{mm}\left(10.24^{\prime \prime} \times 10.24^{\prime \prime}\right)$ with a thickness of $20 \mathrm{~mm}\left(0.79^{\prime \prime}\right)$ is used. All three bracket types have the same properties. In addition, the studded bracket has four studs. The studs are No. 6 rebars and modeled as rectangular with a dimension of $28.5 \times 20 \mathrm{~mm}^{2}\left(1.12 \times 0.79 \mathrm{in}^{2}\right)$ to match their equivalent cross-sectional areas. Each stud represents two studs because in-plane view of the stud overlaps the out-of-plane position. The length of the stud is $160 \mathrm{~mm}\left(6.3^{\prime \prime}\right)$ welded on the top surface of the bracket. The center-to-center spacing between the studs in both directions (i.e., in-plane and out-of-plane) is 160 mm ($6.3^{\prime \prime}$). The studs have a termination on the top surface. This termination is modelled as a small element of steel with dimensions of $60 \times 20 \times 20 \mathrm{~mm}^{3}$ $\left(2.36 \times 0.79 \times 0.79 \mathrm{in}^{3}\right)$. No. 6 studs and the termination steel had same strengths as given in Fig 4-11.

4.5.4 Anchor Bolt

The size of the anchor bolt used is $40 \times 57 \mathrm{~mm}^{2}\left(1.6 \times 2.2 \mathrm{in}^{2}\right)$, which is equivalent to two times the area of the anchor bolt because each anchor bolt in the model represents two anchor bolts (i.e., in-plane and out-of-plane). The length of the anchor bolts is 460 mm ($18.11^{\prime \prime}$) and the head of the anchor bolts is modeled with the dimensions of $120 \times 20 \times 57 \mathrm{~mm}^{3}\left(4.7 \times 0.79 \times 2.24 \mathrm{in}^{3}\right)$ since each of them is equivalent to two anchor heads. The material properties of the anchor bolts are shown in Fig 4-12.

(a)

(b)

Figure 4-12: Material properties for (a) Bracket type; (b) Stud.

4.5.5 Longitudinal Reinforcement Percentages

The influences of three different longitudinal reinforcement percentage are investigated in this study.

Figure 4-13: Material properties for anchor bolt.

No.5, No.6, and No. 7 bars are used to create ρ_{x} of $0.2 \%, 0.4 \%$, and 0.8%. All bars are Grade 60 and their properties are given in Figs 4-13 and 4-14.

-Reinforcemerk Properties		
Reference Type: Ductie Sieel Reinforcemert		*
Clost-Sectional Area	1000	mm 2
Reinforcemenk Diameter, Db:	15875	mm
Yield Strength Fy	414	MPa
Ulimate Strenth. Fur	600	MPa
Elastic Modulis, Es:	200000	MPa
Strain Hadering Strain, esk	8	me
Ulimate Strin ex	120	me
Themal Expansion Coefficient. Ce:	0	1 C
Prestrain. Dep:	0	me
Unsuppoited Length Ratio, bit:	0	
Color		

(a)

Renforcement Propeties	
Reference Type:	Ductile Steel Reirforcement
Cross•Sectionsl Area	
Reirforcement Diameter, Db:	$\sqrt{1995} \mathrm{~mm}$
Yield Strength, Fy:	mm
Ulimate Strength, Fu:	$\sqrt{414} \mathrm{MPa}$
Elastic Modulus, Es:	$\sqrt{600} \mathrm{MPa}$
Strain Hardering Strain, esh:	$\sqrt{200000} \mathrm{MPa}$
Ultimate Stran, eu:	$\sqrt{8} \mathrm{C}$
Thermal Expansion Coetficient, Cs:	$\sqrt{120} \mathrm{me}$
Prestrain, Dep:	$\sqrt{0}$
Unsupported Length Ratio, b/t:	$\sqrt{0}$
Color	

(b)

Figure 4-14: Material properties for (a) Rebar No.6; (b) Rebar No.7.

Reinforcement Properties		
Reference Type: Ductile Steel Reinforcement		∇
Cross-Sectional Area:	3880	mm2
Reinforcement Diameter, Db:	22.225	mm
Yield Strength, Fy:	414	MPa
Ullimate Strength, Fu:	600	MPa
Elastic Modulus, Es:	200000	MPa
Strain Hardening Strain, esh:	8	me
Ultimate Strain, eu:	120	me
Thermal Expansion Coefficient, Cs:	0	$1 / \mathrm{C}$
Prestrain, Dep:	0	me
Unsupported Length Ratio, b/t:	0	
Color		

Figure 4-15: Material properties for rebar No.8.

4.6 Finite Element Modeling of the Helical Foundations

The graphical illustrations of the models are presented for each bracket separately.

4.6.1 Single Bracket Type

Fig 4-15 shows three h_{e} of the single bracket types when the a / d ratio is 1.42 . Fig 4-16 shows three a / d ratios when the single bracket types h_{e} is at the middle.

Figure 4-16: Numerical models: single bracket type (1.42 a/d ratio) - h_{e} (a) bottom; (b) middle; (c) top.

Figure 4-17: Numerical models: single bracket type (middle h_{e}) - a / d ratios (a) 1.68; (b) 1.42; (c) 1.11.

4.6.2 Double Bracket Type

The graphical illustrations showing the variation of the a / d ratios are shown in Fig 4-17. The double bracket has only one h_{e}.

Figure 4-18: Numerical models: double bracket type - a / d ratios (a) 1.68; (b) 1.42; (c) 1.11.

4.6.3 Studded Bracket

The graphical illustrations showing the variation of the h_{e} and a / d ratio are given below. Fig 4-18 shows the h_{e} of the bracket type when the a / d ratio is 1.42 . Fig 4-19 shows three a / d ratios when the bracket type's h_{e} is at the middle.

Figure 4-19: Numerical models: studded bracket type (1.42 a/d ratio) - h_{e} (a) bottom; (b) middle.

Figure 4-20: Numerical models: single bracket type (middle h_{e}) - a / d ratios (a) 1.68; (b) 1.42; (c) 1.11.

5. Numerical Simulation Results

5.1 Introduction

The objective of this chapter is to analyze the result of numerical simulations conducted in Chapter 4 . The results are analyzed in terms of the bracket types, $h_{e}, a / d$ ratio, and $\rho_{x} \%$, Their influence on the ultimate load capacities, failure modes, and crack patterns is discussed.

The results of the reversed-cyclic loading were analyzed under 'cyclic compression' and 'cyclic tension,' as shown in Fig 5-1, for side-by-side comparison with the monotonic loading. Therefore, the cyclic tension represents the part of the reversed-cyclic load where the pile gets the uplift effect and the cyclic compression represents the part of the reversed-cyclic load where the pile gets the compressive load effect. Similarly, the monotonic tension represents the pure uplift force applied gradually until the failure, whereas the monotonic compression represents the pure compressive load applied gradually until the failure. Therefore, three loading types are categorized into four load types (i.e., monotonic tension and compression and cyclic tension and compression). The parameters investigated are the h_{e} of the brackets, the ρ_{x} (i.e., $0.2 \%, 0.4 \%$ and 0.8%) of the pile cap, and a / d ratios (i.e., $1.68,1.42$ and 1.11).

Figure 5-1: One of the sample simulation subjected to reversed-cyclic.

For single bracket type, 81 numerical simulations are performed using three h_{e}, three $\rho_{x} \%$ and three a / d ratios. The details of the single bracket type analyses are given in Appendix A. For the double bracket type, 27 numerical simulations were performed using one h_{e}, three $\rho_{x}(0.2,0.4$ and 0.8%) and three a / d ratios ($1.68,1.42,1.11$). The details of the double bracket type analysis are given in Appendix B. For studded bracket type, 54 numerical simulations were performed using two h_{e} (bottom and middle), three $\rho_{x} \% ~(0.2,0.4$ and 0.8%) and three a / d ratios (1.68, 1.42, 1.11). The details of the studded bracket type are given in Appendix C.

All simulations are performed in a displacement-controlled mode to be able to obtain the postpeak responses. Each simulation takes about ten minutes to complete. The following simulation
results are used in the assessments: nonlinear load vs. deflection responses, the peak failure loads, the failure displacement, the initial stiffness, the failure mechanism, and the influence of the bracket zone.

5.2 Effect of $\boldsymbol{h}_{\boldsymbol{e}}$ on the Load Capacity

5.2.1 Tensile Load Behavior

Figs 5-2a and 5-2c represent the load capacity of the single bracket type subjected to monotonic and cyclic tension respectively, whereas Figs 5-2b and 5-2d represent the load capacity of the studded bracket type subjected to monotonic and cyclic tension, respectively. The single bracket type in Figs 5-2a and 5-2c has 27 simulations each, and the studded bracket type in Figs 5-2b and 5-2d has 18 simulations each. The single bracket type had three h_{e} (i.e., bottom, middle, and top) and the studded bracket had two h_{e} (i.e., bottom and middle). The notations for the bottom and middle h_{e} of studded bracket type are the same as that for the single bracket type (i.e., 'B' for bottom h_{e} and ' M ' for middle h_{e}). The red lines, yellow lines, and blue lines represent shear span to depth ratio of $1.11,1.42$, and 1.68 , respectively, whereas the dotted lines, dashed lines, and continuous lines represent $0.8,0.4$, and $0.2 \rho_{x} \%$ respectively.

Figure 5-2: Effect of h_{e} of single and double bracket types on the load capacity subjected to monotonic and cyclic tension.

- For the single bracket type in Figs 5-2a and 5-2c, when changing the h_{e} from bottom to middle, the load capacity increases by an average of 30% and 28% when subjected to monotonic and cyclic tension, respectively.
- For the single bracket type in Figs 5-2a and 5-2c, all the lines at the middle (M) and top (T) h_{e} are essentially horizontal, which shows that the load capacity remains very similar for the middle and top h_{e} when subjected to monotonic and cyclic tension.
- For the studded bracket type in Figs 5-2b and 5-2d, all the lines at the bottom (B) and middle (M) h_{e} are essentially horizontal, which shows that the load capacity remains very similar for the bottom and middle h_{e} when subjected to monotonic and cyclic tension, except for the red dotted lines' with a / d ratio 1.11 and $0.8 \rho_{x} \%$ reinforcement, in which the load capacity increases by less than 9% when changing the h_{e} from bottom to middle.

5.2.1.1 Single Bracket Type Subjected to Monotonic and Cyclic Tension

Figure 5-3: Trend for effect of h_{e}.
Total dotted points $-=\mathbf{2 7}$ simulations for each loading
In Fig 5-3, B, M, and T represent the simulations under bottom, middle, and top h_{e} respectively. The simulation results for the bottom h_{e} are concentrated as compared to the middle and top h_{e} for the monotonic tension and the cyclic tension loadings. Therefore, for bottom h_{e}, increasing $\rho_{x} \%$ and decreasing a / d ratio did not increase the capacity significantly. In other words, the load capacity couldn't be efficiently increased when the bottom h_{e} was subjected to monotonic tension or cyclic tension loadings. It is recommended to use other h_{e} if a larger load capacity is required.

5.2.2 Compressive Load Behavior

Figure 5-4: Effect of h_{e} of single and double bracket types on the load capacity subjected to monotonic and cyclic compression.

- For the single bracket type in Figs 5-4a and 5-2c, all the lines at the bottom (B), middle (M), and top (T) h_{e} are essentially horizontal, which shows that the load capacity remains very similar for all the h_{e} when subjected to monotonic and cyclic compression. An exception is observed in Fig 5-4c for the red dotted line' with a/d ratio 1.11 and 0.8% reinforcement, and blue continuous line - with a / d ratio 1.68 and 0.8% reinforcement in which the load capacity decreased by 8% and 9% respectively when changing the h_{e} from middle to top and bottom to middle respectively.
- For the studded bracket type in Figs 5-4b and Figs 5-4d, all the lines at the bottom (B) and middle (M) h_{e} are essentially horizontal, which shows that the load capacity remains very similar for the bottom and middle h_{e} when subjected to monotonic and cyclic compression.

5.3 Effect of $\rho_{x} \%$ on the Load Capacity

5.3.1 Tensile Load Behavior

Figs 5-5a and 5-5d, Figs 5-5b and 5-5e, and Figs 5-5c and 5-5f represent the load capacity of the single bracket, double bracket, and studded bracket types respectively subjected to monotonic and cyclic tension. The double bracket type has one h_{e}. The notation for the h_{e} of the double bracket type is Top (T), which is the same as that of the single bracket type.

		LEGEND		
.......... 1.11 T	- - 1.11 M	- 1.11 B 1.42 T	- - 1.42 M
$\bigcirc 1.42$ B 1.68 T	- -1.68 M	-1.68 B	

Figure 5-5: Effect of $\rho_{x} \%$ on the load capacity subjected to monotonic and cyclic tension.

- For the single bracket type in Figs 5-5a and 5-5d, increasing the $\rho_{x} \%$ does not significantly affect the load capacity for the bottom h_{e} (i.e., -_, _-_ and -_) when subjected to monotonic and cyclic tension. On the other hand, for the middle and top h_{e}, represented by dotted and dashed lines, increasing the $\rho_{x} \%$ increases the load capacity significantly.
- For the double bracket type in Figs 5-5b and 5-5e, the load capacity is similar to that of the top h_{e} of the single bracket type when subjected to monotonic and cyclic compression, except for the red dotted line $\# \ldots \ldots$ with $0.8 \rho_{x} \%$ in which the load capacity decreases by a
negligible 6\% when the bracket type is changed from single to double and subjected to monotonic tension.
- For the studded bracket type in Figs 5-5c and 5-5f, the load capacity of the bottom or middle h_{e} is similar to that of the middle or top h_{e} of the single bracket type when subjected to monotonic and cyclic compression.
- For the configurations involving bottom h_{e}, the change of bracket type from single to studded improves the foundation capacity by an average of 22\% (compare the blue lines in Figs 5-5a and 5-2d with Figs 5-5c and 5-5f).
- The tensile capacity of all bracket types increases with higher $\rho_{x} \%$ (as shown by the increasing slopes in Fig 5-5 or the bar graphs in Fig 5-6). The loads in Fig 5-6 represents the average of the loads of all the configurations involving a particular $\rho_{x} \%$. For the single bracket type, the capacity increases by an average of 24% and 19%; for the double bracket type, by an average of 29% and 24%; and for the studded bracket type, by an average of 28% and 22%, when $\rho_{x} \%$ is increased from 0.2% to 0.4%, and 0.4% to 0.8% respectively. The cyclic tension shows similar gains in the load capacity.

Figure 5-6: Plot of average load capacities for changing $\rho_{x} \%$.

5.3.2 Compressive Load Behavior

LEGEND				
.......... 1.11 T	-1.11 M	- 1.11 B	…… 1.42 T	- -1.42 M
$\bigcirc 1.42$ B 1.68 T	- -1.68 M	-1.68 B	

Figure 5-7: Effect of $\rho_{x} \%$ on the load capacity subjected to monotonic and cyclic compression.

- For the double bracket type, the load capacity is similar to that of the top h_{e} of the single bracket type (compare Fig 5-7a with Fig 5-7b, and Fig 5-7d with Fig 5-7e) when subjected to monotonic and cyclic compression.
- For the studded bracket type in Figs 5-7c and 5-7f, the load capacity of the bottom or middle h_{e} is similar to that of the middle or top h_{e} of the single bracket type when subjected to monotonic and cyclic compression.
- Similar to the tensile capacity, the compression capacity of all bracket types increases with higher $\rho_{x} \%$ (as shown by the increasing slopes in Fig 5-7). For the single bracket type, the capacity increases by an average of 24\%; for the double bracket type, by an average of 25%; and for the studded bracket type, by an average of 24%, when the $\rho_{x} \%$ is increased from 0.2% to 0.4%, or 0.4% to 0.8% respectively. The cyclic compression shows similar gains in the load capacity.

5.4 Effect of a / d ratios on the Load Capacity

5.4.1 Tensile Load Behavior

Figure 5-8: Effect of a / d ratio on the load capacity subjected to monotonic and cyclic tension.

- For the single bracket type in Figs 5-8a and 5-2d, all three blue lines (i.e., ——.......... , and - -) are almost flat, which shows that the decrease in the a / d ratio does not significantly affect the load capacity of the bottom h_{e} when subjected to monotonic and cyclic tension. On the other hand, for the middle and top h_{e}, represented by dotted and dashed lines, decreasing the a / d ratio increases the load capacity significantly.
- Unlike $\rho_{x} \%$, the tensile capacity of all bracket types increases with lower a / d ratio (as shown by the increasing slopes in Fig 5-8 or the bar graphs in Fig 5-9). The loads in Fig 5-9 represents the average of the loads of all the configurations involving a particular a / d ratio. For the single bracket type, the capacity increases by an average of 17% and 20%; for the double bracket type, by an average of 20% and 24%; and for the studded bracket type, by an average of 20% and 22%, when the a / d ratio is decreased from 1.68 to 1.42 , and 1.42 to 1.11 respectively. The cyclic tension shows similar gains in the load capacity.

Figure 5-9: Plot of average load capacities for changing a / d ratio.

5.4.2 Compressive Load Behavior

Figure 5-10: Effect of a / d ratio on the load capacity subjected to monotonic and cyclic compression.

- The load capacity of all bracket types increases with the increase in $\rho_{x} \%$ and decrease in a / d ratios similar to the tensile loading. This increase is more pronounced for the lowest $\rho_{x} \%$ as apparent from the bilinear nature of the solid lines in Fig 5-10a, Fig 5-10b, and Fig 5-10c. When the a / d ratio is changed from 1.42 to 1.11 , the capacity increases for ρ_{x} of $0.2,0.4$, and 0.8 percentages are $43 \%, 29 \%$, and 19% respectively in all three graphs.
- Unlike longitudinal reinforcement, the compressive capacity of all bracket types increases with lower a / d ratios (as shown by the increasing slopes in Fig 5-10). For all the bracket types, the capacity increases by an average of 21% and 29%, when the a / d ratio is decreased from 1.68 to 1.42 , and 1.42 to 1.11 respectively. The cyclic compression shows similar gains in the load capacity.

5.5 Effect of h_{e} on the Displacement Capacity

5.5.1 Tensile Load Behavior

Figure 5-11: Effect of h_{e} on the displacement capacity subjected to monotonic and cyclic tension.

- One general trend is that, for the single bracket type in Fig 5-11a, when changing the h_{e} from bottom to middle, the displacement capacity increases by an average of 55% when subjected to monotonic tension.
- For the single bracket type in Figs 5-11a and \mathbf{c}, when changing the h_{e} from middle to top, the displacement capacity remains very similar when subjected to monotonic and compression tension.
- For the studded bracket type in Figs 5-11b and d, when changing the h_{e} from middle to top, the displacement capacity remains very similar when subjected to monotonic and compression tension.

5.5.2 Compressive Load Behavior

Figure 5-12: Effect of h_{e} on the displacement capacity subjected to monotonic and cyclic compression.

- For the single bracket type in Figs 5-12a and 5-12c, all the lines are essentially horizontal which shows that the load capacity remains very similar for all the h_{e} when subjected to monotonic tension.
- For the studded bracket type in Figs 5-12b and 5-12d, all the lines are essentially horizontal which shows that the load capacity remains very similar for all the h_{e} when subjected to monotonic and cyclic tension.

5.6 Comparison of Loading Types

Concrete is inherently weak in tensile loading. It is expected that helical pile foundations exhibit lower capacity in this type of loading in the absence of any vertical shear reinforcement. The same phenomenon applies to the cyclic components of the reversed-cyclic loading. Each blue and orange bar in Fig 5-13 presents the average capacity of the 54 combined simulations of all the bracket types in a particular loading type. The helical pile foundation is found to be around 1.85 times stronger in compression than in tension which is similar to that of Diab's experimental specimens (Diab 2015), which were 1.82 times stronger in compression.

Figure 5-13: Plot of average load capacities subjected to different loading types.

5.7 Failure Modes

For all the brackets, there was no yielding of longitudinal reinforcement. The failure modes were either flexural, or shear failure, or anchorage failure.

5.7.1 Failure Mode Subjected to Monotonic Tension

All h_{e} exhibited first cracking in similar uplift loads (i.e., less than 5\% difference).

5.7.1.1 Failure Mode of Single Bracket Anchorages

- Failure cracks are either flexural around the top longitudinal reinforcement or splitting of the concrete around the bracket zone as shown in Fig 5-14.
- The widespread and less-concentrated crack patterns (see Fig 5-14b) give higher load capacity as compared to concentrated crack patterns (see Fig 5-14a).
- Bottom h_{e} exhibits splitting of concrete around anchorage zone (see Fig 5-14a) where the cracks are concentrated around smaller regions. On the other hand, all top h_{e} and most middle h_{e} exhibits flexural cracks around longitudinal reinforcement (i.e., Fig 5-14b) where cracks are widespread and less concentrated. In other words, the bottom h_{e} exhibits the least preferable crack patterns.

Figure 5-14: Crack Patterns (a) Splitting of concrete around bracket zone; (b) Flexural cracks around top longitudinal reinforcement.

5.7.1.2 Failure Mode of Double Bracket Anchorages

Figure 5-15: (a) Flexural cracks around top longitudinal reinforcement; (b) Flexural cracks around top longitudinal reinforcement with local cracks around the bottom plate.

- The crack patterns are flexural around the top longitudinal reinforcement for lower reinforcement percentage (see Fig 5-15a). Addition of local cracks around the bottom plate are predicted for higher reinforcement percentage (see Fig 5-15b). However, no premature failure is predicted in any of these simulations.

5.7.1.3 Failure Mode of Studded Bracket Anchorages

Figure 5-16: (a) Flexural cracks around top longitudinal reinforcement; (b) Flexural cracks around top longitudinal reinforcement with local cracks around the bottom plate.

- The crack patterns are flexural around the top longitudinal reinforcement for lower reinforcement percentage (see Fig 5-16a). The addition of local cracks around the bottom plate is predicted for higher reinforcement percentage (see Fig 5-16b). However, no anchorage zone failure is predicted for the bottom h_{e}.

5.7.2 Failure Mode Subjected to Monotonic Compression

Figure 5-17: (a) Flexural cracks around top longitudinal reinforcement;
(b) Shear cracks.

- For all the bracket types, the flexural cracks are predicted around bottom longitudinal reinforcement, where the cracks propagated from the tip of the anchor bolts to the helical pile supports through the concrete around the bottom reinforcement (see Fig 5-17a), except for the simulations with an a / d ratio of 1.11 and $\rho_{x} \%$ of 0.4 or 0.8 where shear failures occur (see Fig 5-17b). With the decreasing shear span, the beams become deeper and the shear failure governs on the condition that sufficient $\rho_{x} \%$ is provided.

5.7.3 Failure Mode Subjected to Reversed-cyclic

5.7.3.1 Failure Mode of Single Bracket Anchorages

Figure 5-18: (a) Anchorage zone cracks around bracket zone and flexural cracks around longitudinal reinforcement; (b) Flexural cracks around longitudinal reinforcement;
(c) Shear failure.

- Failure cracks are either combinations of anchorage zone cracks around bracket zone and flexural cracks around the longitudinal reinforcement (i.e., in Fig 5-18a), or flexural cracks around the longitudinal reinforcement (i.e., in Fig 5-18b), or shear cracks (i.e., in Fig 5-18c).
- Bottom h_{e} exhibits splitting of concrete around anchorage bracket zone (see Fig 5-18a) for which the load capacity is lower than that of the top and middle h_{e} which exhibit failure cracks as shown in Fig 5-18b or Fig 5-18c.
- For the simulations with higher $\rho_{x} \%$ and lower a / d ratio, shear failure is predicted for the middle and top h_{e} (see Fig 5-18c).

5.7.3.2 Failure Mode of Double Bracket Anchorages

Figure 5-19: (a) Shear cracks; (b) Flexural cracks around longitudinal reinforcement.

- The simulations with an a / d ratio of 1.1 and, $\rho_{x} \%$ of 0.4 or 0.8 exhibit shear cracks (see Fig 5-19a) whereas all other simulations exhibit splitting of concrete around the longitudinal reinforcement (see Fig 5-19b).

5.7.3.3 Failure Mode of Studded Bracket Anchorages

Figure 5-20: (a) Shear cracks; (b) Flexural cracks around longitudinal reinforcement

- The simulations with an a / d ratio of 1.1 and, $\rho_{x} \%$ of 0.4 or 0.8 exhibit shear cracks (see Fig 5-20a) whereas all other simulations exhibit splitting of concrete around longitudinal reinforcement (see Fig 5-20b).

6. Statistical Analysis

6.1 Introduction

The objective of this chapter is to use statistical methods to analyze the influence of the pile anchorage conditions on the global behavior of concrete foundations and to develop conclusions and recommendations for the efficient design of helical piles' anchorage zones. The analysis of variance and factorial design methods were used to study the influence of the different analyzed parameters on the monotonic compressive and tensile load capacity of concrete foundations. Since the response of the helical pile foundation subjected to the reversed-cyclic load was similar to that of the monotonic loading, this analysis holds true for the reversed-cyclic also.

6.2 Statistical Analysis of Experiments

Experimental design methods have found broad application in many disciplines. Much of the research in engineering, science, and industry is empirical and makes extensive use of experimentation. Statistical methods can greatly increase the efficiency of these experiments and often strengthens the conclusions so obtained. Statistical analysis methods are particularly important in cases when it is not obvious that the difference in the experimental result caused by the change of an analyzed parameter level is large enough to imply that the different configurations are different or not (Montgomery 2013). Throughout this chapter, two important concepts of statistical analysis of experiments will be extensively used: the Analysis of Variance (ANOVA) and the factorial design (Fisher 1992).

The analysis of variance relies on the partitioning of the total variability of the collected dataset into its component parts. In statistical analysis, the total sum of squares is used as a measure of the overall variability in the data (see Equation 6-1).

$$
\begin{equation*}
S S_{T}=\sum_{i=1}^{a} \sum_{j=1}^{n}\left(y_{i j}-\bar{y} .\right)^{2} \tag{6-1}
\end{equation*}
$$

where i is the different levels of the parameter a being investigated, n is the number of replicates for each experiment, $y_{i j}$ is the collected result under level i and replicate j, and $\bar{y}_{. .}$is the average of all the collected results.

The fundamental ANOVA identity states that the total sum of squares can be decomposed into the sum of squares of the treatments plus the sum of squares of the random error (see Equation 6-2).

$$
\begin{equation*}
S S_{T}=S S_{\text {Treatments }}+S S_{E} \tag{6-2}
\end{equation*}
$$

where $S S_{\text {Treatments }}$ is the sum of squares of the treatments (which comprise the sum of the individual sum of squares of each parameter being investigated and their respective interactions), and $S S_{E}$ is the sum of squares of the error.

This identity indicates that the sum of squares of the individual treatments (i.e., the different parameters analyzed in the experiment) can be used to determine if the changes in the
experimental result due to the changes in the different parameters are statistically significant or not. The checking of the significance of a parameter is part of a hypothesis test. The most common hypothesis test is that $\mathbf{1}$) the means of the results do not change with a change in the parameters levels (also called the null hypothesis) or that $\mathbf{2}$) the means of the results do change with a change in the parameter levels (also called the alternative hypothesis). The ANOVA analysis relies on the data to follow a chi-squared distribution (Satterthwaite 1946) and defines the ratio F_{0} in order to test if the null hypothesis is true (see Equation 6-3). If the calculated F_{0} value of a given treatment effect is higher than a given threshold, that treatment effect has statistical significance in the experiment.

$$
\begin{equation*}
F_{0}=\frac{M S_{\text {Treatments }}}{M S_{E}} \tag{6-3}
\end{equation*}
$$

where $M S_{\text {Treatments }}$ is the mean square of the treatments, and $M S_{E}$ is the mean square of the error.

The factorial design is an efficient type of experiment when two or more parameters are analyzed. In a factorial design, in each complete replicate of the experiment all possible combinations of the levels of the parameters are investigated. For example, if two parameters A and B are investigated in a fictitious experiment, and each of these parameters have two levels such as low (-) and high (+), a factorial design would have, in each replicate, $2^{2}=4$ combinations investigated (i.e., $A-B-, A+B-, A+B+A-B+$). This type of design is more efficient than one-factor-at-a-time type of experiments and it is necessary when the interaction between the different parameters may be present to avoid misleading conclusions. The ANOVA analysis can be used in analyzing factorial designed experiments in order to indicate which parameters (or their interaction) are statistically significant.

To allow the use of ANOVA and factorial design concepts, the experimentally collected data is usually assumed to follow a model and a set of pre-determined assumptions. The most commonly used model (and the one used in this study) is given in Equation 6-4 alongside the assumptions that the errors are normally and independently distributed with mean zero and constant but unknown variance σ^{2}. These assumptions are the foundations on which the ANOVA and factorial designs are built and they must be appropriately checked to ensure the accuracy of the conclusions.

$$
\begin{equation*}
y_{i j}=\mu+\tau_{i}+\beta_{\mathrm{j}}+(\tau \beta)_{\mathrm{ij}}+\epsilon_{i j} \tag{6-4}
\end{equation*}
$$

where μ is the overall mean effect, τ_{i} is the effect of the $i_{t h}$ level of the first parameter, b_{j} is the effect of the $j_{t h}$ level of the second parameter, $(\tau B)_{i j}$ is the effect of the interaction between τ_{i} and b_{j}, and $\epsilon_{i j}$ is the random error component.

6.3 Analysis Set Up

In this study, the four different parameters being investigated are h_{e} of the bracket, $\rho_{x} \%, a / d$ ratio, and different types of helical pile brackets. For each of these parameters there are, in general, three different levels (i.e., $1.11,1.42$, and 1.68 for the a / d ratio, $0.2 \%, 0.4 \%$, and 0.8% for the ρ_{x}, bottom, middle, and top for the h_{e}, and single bracket, studded bracket, and double bracket types for the 'bracket'). Thus, this constitutes a 3^{4} factorial design. However, some of the
foundations do not have three levels for all the parameters, such as the studded bracket type has only two h_{e}, and the double bracket type has only one h_{e}. As such, the statistical analysis was performed on a set of three factorial designs, one for each type of brackets. The results of the individual statistical analysis can be considered to perform a single analysis including the bracket types as an investigated parameter.

For each type of bracket analyzed, two response variables were considered: 1) the peak load capacity under monotonic compressive load and 2) the peak load capacity under monotonic tensile load. Fig 6-1 shows how the response variable was collected from the load-displacement curve obtained for each numerical analysis performed.

Figure 6-1: Example of a load-displacement curve extracted from one of the numerical analysis.
To enable an easier representation, the three analyzed parameters were categorized in the following way: $(\boldsymbol{A}) a / d$ ratio; $(\boldsymbol{B}) \rho_{x} ;(\boldsymbol{C}) h_{e}$ of the bracket type; and their respective interactions are represented as $\boldsymbol{A B}, \boldsymbol{A C}$, etc.

6.4 Results under Tension Load

6.4.1 Single Bracket Type

For the single bracket, Table 6-1 shows the results of the analysis of the sums of squares of each analyzed parameter. The a / d ratio, ρ_{x}, and h_{e} parameters dominated this process, accounting for 87.8% of the total variability, whereas all of the two- and three-parameter interactions accounted for the remaining 12.2%. This conclusion diverges from the case of compression load, where h_{e} was found to be insignificant. In addition to the three main effects, the $A C$ and $B C$ interactions appear to have some significance, which was statistically studied in an ANOVA analysis.

Table 6-1: Analysis of the sums of squares of single bracket type under tension.

Parameters	Sum of Squares	\% Contribution
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	296668.13	28.1%
$\boldsymbol{\rho}_{\boldsymbol{x}} \%(B)$	378332.08	35.8%
$\boldsymbol{h}_{\boldsymbol{e}}(\mathbf{C})$	251923.19	23.9%
$\mathbf{A B}$	1143.31	0.1%
$\mathbf{A C}$	51825.61	4.9%
$\mathbf{B C}$	73869.78	7.0%
$\mathbf{A B C}$	1943.85	0.2%
Total	1055705.94	

The ANOVA analysis in Table 6-2 was used to confirm the magnitude of these effects. The nonsignificant parameters (and their interactions) were moved to the residual term of the ANOVA table and only the main parameters $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$, and the two-parameter interactions $\boldsymbol{A C}$ and $\boldsymbol{B C}$ were considered in the final model. The high values of F_{0} (and consequently lower values of the p value), corroborated the conclusions that parameters $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ are statistically significant in this experiment. In addition, the $\boldsymbol{A C}$ and $\boldsymbol{B C}$ interactions, although contributing significantly less (see Table 6-1), are also statistically significant.

Table 6-2: ANOVA analysis for single bracket type under tension.

Parameters	Sum of Squares	Degrees of Freedom	Mean Squares	$\mathbf{F}_{\mathbf{0}}$	P-val
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	296668.13	2	148334.06	576.58	<0.01
$\boldsymbol{\rho}_{\boldsymbol{x}} \%(B)$	378332.08	2	189166.04	735.30	<0.01
$\boldsymbol{h}_{\boldsymbol{e}}(\mathbf{C})$	251923.19	2	125961.59	489.62	<0.01
AC	51825.61	4	12956.40	50.36	<0.01
BC	73869.78	4	18467.44	71.78	<0.01
Residual (LOF)	3087.16	12	257.26		
Total	1055705.94	26			

The $A B, A C$, and $B C$ interactions are plotted in Fig 6-2a, Fig 6-2b, and Fig 6-2c to provide a visual investigation of the influence of the calculated significant parameters on the tensile load supported by the helical pile. The similar slopes of the three curves in Fig 6-2a verified the conclusion of no interaction between these two main effects. The different slopes in the $\boldsymbol{A C}$ and BC plots showed the statistically calculated (see Table 6-2) interaction between these parameters. This interaction indicated that as a / d ratio increased, the tension load capacity provided by the different embedment depths diminished (see Fig 6-2b). Similarly, as the $\rho_{x} \%$ decreased, the tension load capacity provided by the different h_{e} diminished (see Fig 6-2c). In addition, the analyses of Fig 6-2b and Fig 6-2c showed that there is no difference in tension load capacity when the h_{e} parameter has a value of mid or top. The combined analysis of Fig 6-2 can be used to conclude that the combination of low a / d ratio, high ρ_{x}, and either mid or top h_{e} yields the highest tension load capacity.

Figure 6-2: Tension load under different (a) a / d ratio and $\rho_{x} \%$ combinations, (b) a / d ratio and h_{e} combinations, and (c) $\rho_{x} \%$ and h_{e} combinations.

6.4.2 Double Bracket Type

For the double bracket, Table 6-3 shows the results of the analysis of the sums of squares of each analyzed parameter. Note that Table 6-3 shows the results of only two parameters since the double bracket type studied has only one h_{e}. Similar to the results calculated for the single bracket type, the a / d ratio and $\rho_{x} \%$ parameters dominated this process, accounting for 99.9% of the total variability, whereas the two-parameter interaction accounted for the remaining 0.1%.

Table 6-3: Analysis of the sums of squares of double bracket type under tension.

Parameters	Sum of Squares	Degress of Freedom	$\%$ Contribution
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	172254.89	2	43.2%
$\boldsymbol{\rho}_{\mathrm{x}} \%(B)$	225923.56	2	56.7%
$\mathbf{A B}$	438.44	4	0.1%
Total	398616.89	8	

The ANOVA analysis in Table 6-4 was used to confirm the magnitude of these effects. The twoparameter interaction was moved to the residual term of the ANOVA table and only the main parameters \boldsymbol{A} and \boldsymbol{B} were considered in the final model. The high values of F_{0} (and consequently lower values of the p-value), corroborated the conclusions that only parameters \boldsymbol{A} and \boldsymbol{B} are statistically significant in this experiment.

Table 6-4: ANOVA analysis for double bracket type under tension.

	Sum of Squares	Degrees of Freedom	Mean Squares	F0	P-val
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	172254.89	2	86127.44	785.75	<0.01
$\boldsymbol{\rho}_{\mathbf{x}} \%$ (B)	225923.56	2	112961.80	1030.57	<0.01
Residual (LOF)	438.44	4	109.61		
Total	398616.89	8			

The $\boldsymbol{A B}$ interaction is plotted in Fig 6-3 to provide a visual investigation of the influence of the observed significant parameters on the compressive load supported by the helical pile. The similar slopes of the three curves in Fig 6-3 verified the conclusion of no interaction between these two main effects. It can also be concluded from Fig 6-3 that the combination of low a / d ratio and high $\rho_{x} \%$ yielded the highest compressive load capacity.

Figure 6-3: Tension load under different a / d ratio and $\rho_{x} \%$ combinations.

6.4.3 Studded Bracket Type

For the studded bracket, Table 6-5 shows the results of the analysis of the sums of squares of each analyzed parameter. The a / d ratio and $\rho_{x} \%$ parameters dominated this process, accounting for 89.9% of the total variability, whereas the h_{e} parameter and all of the two- and threeparameter interactions accounted for the remaining 1.1\%.

Table 6-5: Analysis of the sums of squares of studded bracket type under tension.

Parameters	Sum of Squares	\% Contribution
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	290250.33	41.8%
$\boldsymbol{\rho}_{\boldsymbol{x}} \%(\mathbf{B})$	397126.33	57.1%
$\boldsymbol{h}_{\boldsymbol{e}}(\mathbf{C})$	1530.89	0.2%
$\mathbf{A B}$	2559.33	0.4%
$\mathbf{A C}$	1756.78	0.3%
$\mathbf{B C}$	750.11	0.1%
ABC	872.22	0.1%
Total	694846.00	

The ANOVA analysis in Table 6-6 was used to confirm the magnitude of these effects. The nonsignificant parameters (and their interactions) were moved to the residual term of the ANOVA table and only the main parameters \boldsymbol{A} and \boldsymbol{B} were considered in the final model. The high values of F_{0} (and consequently lower values of the p-value), corroborated the conclusions that only parameters \boldsymbol{A} and \boldsymbol{B} are statistically significant in this experiment.

Table 6-6: ANOVA analysis for studded bracket type under tension.

Parameters	Sum of Squares	Degrees of Freedom	Mean Squares	F $_{0}$	P-val
A	290250.33	2	145125.17	252.58	<0.01
B	397126.33	2	198563.17	345.59	<0.01
Residual (LOF)	7469.33	13	574.56		
Total	694846.00	17			

The $\boldsymbol{A B}$ interaction is plotted in Fig 6-4 to provide a visual investigation of the influence of the observed significant parameters on the compressive load supported by the helical pile. The similar slopes of the three curves in Fig 6-4 verified the conclusion of no interaction between these two main effects. It can also be concluded from Fig 6-4 that the combination of low a / d ratio and high $\rho_{x} \%$ yielded the highest compressive load capacity.

Figure 6-4: Tension load under different a / d ratio and $\rho_{x} \%$ combinations.

6.4.4 Comparison of Bracket Types

The analysis of each individual helical pile revealed that the embedment depth was only statistically significant for the single bracket. Thus, to allow a direct comparison of all threebracket type helical piles, the h_{e} parameter was removed and an additional 'bracket type' (C) parameter was introduced in the statistical analysis. The results corresponding to the optimal h_{e} alternative for the single bracket type (i.e., the top h_{e}) was used in this analysis. Table 6-7 shows the results of the analysis of the sums of squares for the new set of analyzed parameters. Similar to the results calculated for each individual bracket type of helical piles, the a / d ratio and $\rho_{x} \%$ parameters dominated the experiment, accounting for 99.9% of the total variability, whereas the 'bracket type' parameter and all of the two- and three-parameter interactions accounted for the remaining 0.1\%.

Table 6-7: Analysis of the sums of squares of all types of bracket under tension.

Parameters	Sum of Squares	Degrees of Freedom	$\%$ Contribution
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	510635.68	2	43.3%
$\boldsymbol{\rho}_{\mathbf{x}} \%$ (B)	666456.46	2	56.6%
Bracket Type (C)	131.16	2	0.0%
AB	1101.68	4	0.1%
AC	48.99	4	0.0%
BC	108.17	4	0.0%
ABC	40.98	8	0.0%
Total	1178523.12	26	

The results of the ANOVA analysis considering only parameters \boldsymbol{A} and \boldsymbol{B} in the final model are shown in Table 6-8. The high values of F_{0} (and consequently lower values of the p-value), corroborates the conclusions that parameters \boldsymbol{A} and \boldsymbol{B} are statistically significant in this experiment.

Table 6-8: ANOVA analysis for all types of piles under tension.

Parameters	Sum of Squares	Degrees of Freedom	Mean Squares	\mathbf{F}_{0}	P-val
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	510635.68	2	255317.84	3925.28	<0.01
$\boldsymbol{\rho}_{\mathbf{x}} \%$ (B)	666456.46	2	333228.23	5123.09	<0.01
Residual (LOF)	1430.98	22	65.04		
Total	1178523.12	26			

The $\boldsymbol{A B}$ interaction is plotted in Fig 6-5 to provide a visual investigation of the influence of the observed significant parameters on the compressive load supported by the helical pile. The similar slopes of the three curves in Fig 6-5 verified the conclusion of no interaction between these two main effects. It can also be noted through the investigation of Fig 6-5 and Fig 6-2, Fig 6-3, and Fig 6-4 that the tensile capacity of all the three brackets analyzed have similar magnitudes, which corroborates the conclusion that this parameter has no influence in the compressive capacity. From Fig 6-5 it can also be concluded that the combination of low a / d ratio and high $\rho_{x} \%$ yields the highest compressive load capacity.

Figure 6-5: Tension load under different a / d ratio and $\rho_{x} \%$ combinations.

6.5 Results under Compressive Load

6.5.1 Single Bracket Type

For the single bracket type, Table 6-9 shows the results of the analysis of the sums of squares of each analyzed parameter. The '\% contribution' column measures the contribution of each parameter effect (and their respective interactions) relative to the total sum of squares. This contribution is a rough but effective guide to the relative importance of each parameter effect. The a / d ratio and $\rho_{x} \%$ parameters dominated this process, accounting for 99.4% of the total variability, whereas the h_{e} parameter and all of the two- and three-parameter interactions accounted for the remaining 0.6%.

Table 6-9: Analysis of the sums of squares of single bracket type under compression.

Parameters	Sum of Squares	\% Contribution
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	2017357.19	52.5%
$\boldsymbol{\rho}_{\boldsymbol{x}} \%(B)$	1801655.49	46.9%
$\boldsymbol{h}_{\boldsymbol{e}}(\mathbf{C})$	1123.74	0.0%
$\mathbf{A B}$	24017.62	0.6%
$\mathbf{A C}$	478.04	0.0%
BC	531.59	0.0%
ABC	160.92	0.0%
Total	3845324.60	

The ANOVA analysis in Table 6-10 was used to confirm the magnitude of these effects. The nonsignificant parameters (and their interactions) were moved to the residual term of the ANOVA table and only the main parameters \boldsymbol{A} and \boldsymbol{B} were considered in the final model. The high values of FO (and consequently lower values of the p-value), corroborated the conclusions that only parameters \boldsymbol{A} and \boldsymbol{B} are statistically significant in this experiment.

Table 6-10: ANOVA analysis for single bracket type under compression.

Parameters	Sum of Squares	Degrees of Freedom	Mean Squares	F $_{0}$	P-val
A	2017357.19	2	1008678.60	843.38	<0.01
B	1801655.49	2	900827.75	753.20	<0.01
Residual (LOF)	26311.91	22	1196.00		
Total	3845324.59	26			

The $A B$ interaction is plotted in Fig 6-6 to provide a visual investigation of the influence of the observed significant parameters on the compressive load supported by the helical pile. The similar slopes of the three curves in Fig 6-6 verified the conclusion of no interaction between these two main effects. It can also be concluded from Fig 6-6 that the combination of low a / d ratio and high $\rho_{x} \%$ yielded the highest compressive load capacity.

Figure 6-6: Compressive load under different a / d ratio and $\rho_{x} \%$ combinations.

6.5.2 Double Bracket Type

For the double bracket type, Table 6-11 shows the results of the analysis of the sums of squares of each analyzed parameter. Note that Table 6-11 shows the results of only two parameters since the double bracket type studied has only one h_{e}. Similar to the results calculated for the single bracket type, the a / d ratio and $\rho_{x} \%$ parameters dominated this process, accounting for 99.4% of the total variability, whereas two-parameter interaction accounted for the remaining 0.6%.

Table 6-11: Analysis of the sums of squares of double bracket type under compression.

Parameters	Sum of Squares	\% Contribution
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	681014.89	51.9%
$\boldsymbol{\rho}_{\mathbf{x}} \%(B)$	622576.89	47.5%
AB	8193.78	0.6%
Total	1311785.56	

The ANOVA analysis in Table 6-12 was used to confirm the magnitude of these effects. The twoparameters interaction was moved to the residual term of the ANOVA table and only the main parameters \boldsymbol{A} and \boldsymbol{B} were considered in the final model. The high values of F_{0} (and consequently lower values of the p-value), corroborated the conclusions that only parameters \boldsymbol{A} and \boldsymbol{B} are statistically significant in this experiment.

Table 6-12: ANOVA analysis for double bracket type under compression.

Parameters	Sum of Squares	Degrees of Freedom	Mean Squares	$\mathbf{F}_{\mathbf{0}}$	P-val
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	681014.89	2	340507.40	166.23	<0.01
$\boldsymbol{\rho}_{\mathbf{x}} \%$ (B)	622576.89	2	311288.40	151.96	<0.01
Residual (LOF)	8193.78	4	2048.44		
Total	1311785.56	8			

The $\boldsymbol{A B}$ interaction is plotted in Fig 6-7 to provide a visual investigation of the influence of the observed significant parameters on the compressive load supported by the helical pile. The
similar slopes of the three curves in Fig 6-7 verified the conclusion of no interaction between these two main effects. It can also be concluded from Fig 6-7 that the combination of low a/d ratio and high $\rho_{x} \%$ yielded the highest compressive load capacity.

Figure 6-7: Compressive load under different α / d ratio and $\rho_{x} \%$ combinations.

6.5.3 Studded Bracket Type

For the studded bracket type, Table 6-13 shows the results of the analysis of the sums of squares of each analyzed parameter. Similar to the results calculated for the single bracket type, the a / d ratio and $\rho_{x} \%$ parameters dominated this process, accounting for 99.4% of the total variability, whereas the h_{e} parameter and all of the two- and three-parameter interactions accounted for the remaining 0.6%.

Table 6-13: Analysis of the sums of squares of studded bracket type under compression.

Parameters	Sum of Squares	\% Contribution
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	1351428.78	52.2%
$\boldsymbol{\rho}_{\boldsymbol{x}} \%(B)$	1222343.11	47.2%
$\boldsymbol{h}_{\boldsymbol{e}}(\mathbf{C})$	93.39	0.0%
$\mathbf{A B}$	15275.56	0.6%
AC	63.44	0.0%
BC	80.44	0.0%
ABC	170.22	0.0%
Total	2589454.94	

The ANOVA analysis in Table 6-14 was used to confirm the magnitude of these effects. The nonsignificant parameters (and their interactions) were moved to the residual term of the ANOVA table and only the main parameters \boldsymbol{A} and \boldsymbol{B} were considered in the final model. The high values of F_{0} (and consequently lower values of the p-value), corroborated the conclusions that only parameters \boldsymbol{A} and \boldsymbol{B} are statistically significant in this experiment.

Table 6-14: ANOVA analysis for studded bracket type under compression.

Parameters	Sum of Squares	Degrees of Freedom	Mean Squares	F $_{0}$	P-val
A	1351428.78	2	675714.39	560.11	<0.01
B	1222343.11	2	611171.56	506.61	<0.01
Residual (LOF)	15683.06	13	1206.39		
Total	2589454.94	17			

The $A B$ interaction is plotted in Fig 6-8 to provide a visual investigation of the influence of the observed significant parameters on the compressive load supported by the helical pile. The similar slopes of the three curves in Fig 6-8 verified the conclusion of no interaction between these two main effects. It can also be concluded from Fig 6-8 that the combination of low a / d ratio and high $\rho_{x} \%$ yielded the highest compressive load capacity.

Figure 6-8: Compressive load under different a / d ratio and $\rho_{x} \%$ combinations.

6.5.4 Comparison of Bracket Types

The analysis of each individual helical pile revealed that the h_{e} was not statistically significant for the compression load capacity of the piles. Thus, this parameter was removed and an additional 'bracket type' (C) parameter was introduced in the statistical analysis to enable a direct comparison of all three-bracket type helical piles. Table 6-15 shows the results of the analysis of the sums of squares for the new set of analyzed parameters. Similar to the results calculated for each individual bracket type of helical piles, the a / d ratio and $\rho_{x} \%$ parameters dominated the experiment, accounting for 89.9% of the total variability, whereas the 'bracket type' parameter and all of the two- and three-parameter interactions accounted for the remaining 1.1\%.

Table 6-15: Analysis of the sums of squares of all types of brackets under compression.

Parameters	Sum of Squares	Degrees of Freedom	\% Contribution
$\boldsymbol{a} / \boldsymbol{d}$ ratio (A)	2017216.81	2	51.9%
$\boldsymbol{\rho}_{\mathbf{x}} \%$ (B)	1830286.80	2	47.0%
Bracket Type (C)	824.30	2	0.0%
$\mathbf{A B}$	29304.43	4	0.8%
$\mathbf{B C}$	2233.90	4	0.1%
AC	2392.19	4	0.1%
ABC	4585.65	8	0.1%
Total	3886844.07	26	

The $\boldsymbol{A B}$ interaction is plotted in Fig 6-9 to provide a visual investigation of the influence of the observed significant parameters on the compressive load supported by the helical pile. The similar slopes of the three curves in Fig 6-9 verified the conclusion of no interaction between these two main effects. It can also be noted through the investigation of Fig 6-9 and Fig 6-7, Fig 6-8, and Fig 6-9, that the compressive capacity of all the three bracket type analyzed have similar magnitudes, which corroborates the conclusion that this parameter has no influence in the compressive capacity. From Fig 6-9 it can also be concluded that the combination of low a / d ratio and high $\rho_{x} \%$ yields the highest compressive load capacity.

Figure 6-9: Compressive load under different a / d ratio and $\rho_{x} \%$ combinations.

6.6 Model Adequacy Checking

In this section, the three assumptions made in order to make use of the ANOVA analysis and factorial designs (see Section 6.1 for details on the assumptions made) were checked.

6.6.1 The Normality Assumption

A useful procedure to test this assumption is to construct a normal probability plot of the residuals of the experiment. The residuals can be calculated from the difference of the predicted result (i.e., the value calculated using a regression curve fitted to the analyzed data) and the actual collected response for each individual parameter combination. If the underlying error
distribution is normal, this plot will resemble a straight line. In addition, when using such a plot to check the normality, more emphasis should be put on the central values than on the extremes.

Fig 6-10, which shows the normal probability plots for the analyses performed on this study, indicates that, in general, all the analyses' data follow a normal probability distribution. For a few analyses (such as in Fig 6-10a, Fig 6-10c, Fig 6-10d, and Fig 6-10e), some residual points might be visually characterized as outliers. To check if these points characterize real outliers, the standardized residual equation (see Equation 6-2) was used. Equation 6-2 assists in analyzing outlier residuals because a residual bigger than 3 or 4 standard deviations from zero is a potential outlier.

$$
\begin{equation*}
d_{i j}=\frac{e_{i j}}{\sqrt{M S_{E}}} \tag{6-2}
\end{equation*}
$$

where $e_{i j}$ is the residual for the level i of the first parameter and level j of the second parameter, $M S_{E}$ is the mean square of the error. The residual $e_{i j}$ is calculated using Equation 6-3.

$$
\begin{equation*}
e_{i j}=y_{i j}-\hat{y}_{i j} \tag{6-3}
\end{equation*}
$$

where $y_{i j}$ is the observation under the $i_{t h}$ level of parameter A and $j_{t h}$ level of parameter B; and $\hat{y}_{i j}$ is the estimate of the corresponding observation. In this study, a linear regression model of the data was fitted in order to obtain the estimate of the observations.
Using Equation 6-2 to analyze the possible outlier residuals mentioned above, the standardized residual values fell between 2.5 and 3.3 standard deviations from zero. Although some of them are within the range of 3 or 4 standard deviations from zero, they only exceed this threshold by a slight margin. Thus, in this study, these points were not considered outliers.

Figure 6-2: Normal probability plots of the residuals of the single bracket types under (a)compression and (b) tension analyses; studded bracket types under (c) compression and (d) tension analyses; and double bracket types under (e) compression and (f) tension analyses.

6.6.2 The Independence and Constant Variance Assumption

To test the independence of the variance's assumption, a plot of the residuals of each analysis in time order of data collection can be used to detect if any strong correlation between the residuals exists. A clear visual pattern between the residuals in this plot indicates a correlation and, thus, non-independence of the residuals. Since the data collected in this study resulted from computational analyses, the data collection order is not as significant as it is when physical experimentation is employed. For this reason, the checking of this assumption was not considered in this study.

To test the independence and constant variance assumption, several residual plots can be constructed. A clear visual pattern between the residuals in these plots indicates a correlation and, thus, non-independence of the residuals. Similarly, the range of the residuals (i.e., the range between the minimum and maximum values) can be used to check the constant variance assumption. In this study, for each analysis performed, the residuals were plotted against the main factor levels and the predicted results (see Section 6.3.1 for a definition of 'predicted results'). The plots for each analysis are shown in Fig 6-11 to Fig 6-16. From these plots, for all of the analyses, even though the variance of the residuals changed slightly, they were not drastically different to constitute a clear violation of the constant variance assumption. On the other hand, the residuals plotted against the $\rho_{x} \%$ parameter indicated a clear pattern for all the analyses (except for single bracketed piles under tension). The presence of this clear pattern may indicate a non-independence of the residuals when the $\rho_{x} \%$ parameter is considered. In addition, the exhibited pattern (i.e., negative values for low $\rho_{x} \%$, positive values for medium $\rho_{x} \%$, and negative values for high $\rho_{x} \%$) may indicate interaction between $\rho_{x} \%$ and a / d ratio, as confirmed in the analysis of the parameter effects in the sections 6.1 and 6.2 . In those sections, some of these interactions were smaller (and, thus, removed from the final model) and some were more significant, which explains how the observed residual patterns were more evident than others in some plots. Data transformation can be used to eliminate or minimize this interaction; however,
no transformation used in this study could entirely prevent the observed pattern without affecting the other two assumptions of the model. Thus, since this clear pattern only occurred when considering the $\rho_{x} \%$ factor, no transformation or treatment of this non-independent variance assumption was further performed in this study.

Figure 6-3: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; (d) predicted values for the single bracket type under compression.

Figure 6-4: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; (d) predicted values for the single bracket type under tension.

Figure 6-5: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; (d) predicted values for the studded bracket type under compression.

Figure 6-6: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; (d) predicted values for the studded bracket type under tension.

Figure 6-7: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; and (d) predicted values for the double bracket type under compression.

Figure 6-8: Analysis of residuals and (a) a / d ratio; (b) $\rho_{x} \%$; (c) h_{e}; (d) predicted values for the double bracket type under tension.

7. Global Concrete Foundation Checks

7.1 Introduction

The objective of this chapter is to assess the significance of considering/neglecting the anchorage zone behavior. The numerical \& experimental results which incorporate the influence and failure modes of the helical pile-to-foundation connections are compared with the global foundation checks (i.e., sectional flexure and shear checks) which calculate the global strength of the concrete foundations while neglecting the influence of the anchorage conditions.

7.2 Global Checks for the Concrete Foundation

7.2.1 Methods

The global sectional strengths of the experimental specimens (in Diab's foundations - see Section 4.4) and and the pile caps (investigated in this study) are calculated to compare with the obtained nonlinear simulation results. The global capacities are calculated based on three different methods; sectional flexure, sectional shear and Strut and Tie Method (STM). If the concrete foundations fail in flexure due to the yielding of reinforcement, sectional flexure (ACl 318-19) governs; if the beams fail in shear, sectional shear (ACI 318-19) dominates. Sectional prediction methods can predict the global capacities of the slender beams. For the deep concrete foundations (e.g., Diab's foundations and pile caps investigated in this study), STM prediction (ACI 318-19, CSA A23.3-2014) provide more accurate results provided the foundations include sufficient amounts of longitudinal reinforcements with proper anchorage. In this section, all three predictions will be compared with the nonlinear simulation results to assess the consequences of using each method.

7.3 Global Checks for Diab's Experimental Foundation Specimens

7.3.1 Monotonic Tension

The experimental capacities (indicated by black bars in Fig 7-1) are much smaller than those predicted by the global analysis method. This result confirms that the anchorage capacity governs the entire foundation response and that the use of the global foundation checks (which neglect the anchorage capacity) can be dangerously unsafe (i.e., overestimates the foundation system capacity on average by 2.2 times.)

Figure 7-1: Comparison among experimental and predicted capacities subjected to monotonic tension for Diab's foundations.

7.3.2 Monotonic Compression

The experimental capacities (indicated by black bars in Fig 7-2) are smaller than those predicted by the global analysis method. This result confirms that the anchorage capacity may govern the entire foundation response and that the use of the global foundation checks (which neglect the anchorage capacity) may be unsafe (i.e., overestimates the foundation system capacity on average by 1.44 times.)

Figure 7-2: Comparison among experimental and predicted capacities subjected to monotonic compression for Diab's foundations.

7.4 Global Checks for the Helical Foundations Examined in this Study

The global strengths of the pile caps are calculated and compared with the results obtained from the nonlinear simulations (which include the anchorage response). Due to large volume of data obtained from 162 simulations, only some significant results will be shown.

7.4.1 Monotonic Tension

The anchorage capacity governs the holistic behavior of the helical foundations in most of the cases for ρ_{x} of 0.2% (see Fig 7-3) since the nonlinear FE simulation results are smaller than any of the global foundation prediction results except for a few cases (e.g., top and middle h_{e} in a / d ratio of 1.11).

Figure 7-3: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic tension in ρ_{x} of 0.2%.

The sectional method shear prediction values are known to be overly conservative (i.e., very low) for deep beams (e.g., all the foundations considered in this study) as clearly demonstrated by many studies (e.g., Baniya and Guner 2019). Considering the deep beam effects, the correct shear prediction results would have been higher than the simulated results in Figs 7-4 and 7-5 and the anchorage capacity would have still governed. Note that the STM is not applicable here due to its negligence of the tensile stresses in concrete.

Figure 7-4: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic tension in ρ_{x} of 0.4%.

Figure 7-5: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic tension in ρ_{x} of 0.8%.

7.4.2 Monotonic and Cyclic Compression

For the illustration purpose, the comparison of the obtained results with the global pile cap strengths is shown (see Fig 7-6) for the single bracket type subjected to monotonic tension. For the ρ_{x} of 0.2%, the simulated results are higher than any of the global strength prediction methods which shows that the anchorage zone does not govern the response of the foundations.

Figure 7-6: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic compression in ρ_{x} of 0.2%.

Figures 7-7 and 7-8 show the results for the well-reinforced helical foundations with a ρ_{x} of 0.4\% and 0.8% respectively. These higher reinforcement percentages make the deep beam action more effective, thereby increasing their shear strengths. As such the STM becomes applicable and provide similarly accurate results to the FE simulations. The sectional shear predictions become excessively overly-conservative (i.e., very low) due to the inability of this method to consider the deep beam action (Baniya and Guner 2019). The sectional flexure capacities are
much higher (due to high $\rho_{x} \%$) and thus do not govern the responses. Based on these results, for the monotonic and cyclic compression, the connection capacity does not govern in any of the bracket types since the FE simulation results are either higher or similar to those from other methods.

Figure 7-7: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic compression in ρ_{x} of 0.4%.

Figure 7-8: Comparison among simulation and predicted capacities for single bracket type subjected to monotonic compression in ρ_{x} of 0.8%.

8. Conclusions and Recommendations

Three bracket types (i.e., single, double and studded) are numerically investigated using the experimentally-verified nonlinear finite element models. The parameters investigated are the embedment depths h_{e} of the brackets (i.e., bottom, middle and top for the single bracket; top for the double bracket; and middle and top for the studded bracket) longitudinal reinforcement percentages $\boldsymbol{\rho}_{x}$ (i.e., $0.2 \%, 0.4 \%$ and 0.8%) of the pile caps, and the shear span to depth ratios a / d (i.e., $1.68,1.42$ and 1.11) subjected to three types of loadings (i.e., monotonic tension, monotonic compression and reversed-cyclic). The results of the reversed-cyclic loading are divided into 'cyclic compression' and 'cyclic tension' to allow for a consistent comparison with the monotonic compression and monotonic tension loads. Fig 7-1 illustrates the variables.

Figure 8-1: Three bracket types examined in the study, illustrated in the same pile cap for comparison purposes.

The results of the investigations demonstrate that the helical pile-to-foundation anchorages may govern the entire system capacity for the load conditions involving uplift and reversed-cyclic forces. The traditional global analysis methods, which neglect the influence of the anchorage zones, are found to significantly overestimate the capacity of the helical foundations (up to 2.2 times in this study). These results justify the recommendation of performing an explicit capacity check of the anchorage zones in addition to the structural and geotechnical checks for the global foundation and helical pile capacities. The findings of this study are also applicable to micro piles which incorporate similar termination bracket details. Detailed conclusions and recommendations are provided below.

Monotonic and Cyclic Tension (subjected to uplift forces)

- The helical pile-to-foundation anchorage zone detailing significantly influences the global tensile capacity of the helical pile cap foundations.
- The tensile load capacities of the foundation systems (all of which are doubly and symmetrically reinforced) are found to be only $\mathbf{5 4 \%}$ of their compression load capacities. If analyzed with the traditional sectional analysis methods, which neglect the influence of the anchorage zones, their load capacities in tension (i.e., a point load applied upwards) and compression (i.e., a point load applied downwards) would be incorrectly calculated as equal.
- Anchorage zone failure is predicted for the bottom h_{e} of the single bracket type, with a decrease in the global load capacity by 25% on average. It is recommended that the middle h_{e} be used if the single bracket termination is to be used.
- The statistical analysis of the results indicates that the combination of low a/d ratios, high $\boldsymbol{\rho}_{\boldsymbol{x}}$, and the middle $\boldsymbol{h}_{\boldsymbol{e}}$ yields the highest tension load capacity for the single bracket. These analyses also indicate that h_{e} dictates the effectiveness of ρ_{x} and a / d ratio. In other words, if larger tensile load capacities are desired, h_{e} should be changed from bottom to middle, as opposed to using the bottom h_{e} and increasing the ρ_{x} percentage or reducing the a / d ratio with hopes to increase the load capacity (which is not effective).
- The double bracket type has only one embedment depth which provides satisfactory responses with no anchorage zone failure in all simulations contained in this study.
- The studded bracket type has two h_{e} positions. While no anchorage zone failure is predicted, major anchorage zone cracking is observed for the bottom h_{e}. For the configurations involving the bottom h_{e}, the change of the bracket type from single to studded improves the foundation capacity by an average of 22%; consequently, the studded bracket may be preferred over the single bracket for the bottom h_{e}. For the most optimum results, however, the middle h_{e} is recommended for both the single and studded bracket types.
- Although the bottom h_{e} of the single bracket type demonstrated the least-favorable behavior, it can still be successfully used for resisting uplift forces if a special anchorage zone detailing is developed (e.g., sufficient amounts of vertical ties or stirrups in the anchorage zone). This recommendation is also applicable to the bottom h_{e} of the studded bracket type.
- When designing the helical pile-to-foundation connections, special attention should be given to light and tall structures where one of the foundation load cases may be tensile in nature.

Monotonic and Cyclic Compression

- The helical pile-to-foundation anchorages are found to not influence the monotonic compression load capacity of the helical pile foundations in any of the bracket types examined; no anchorage failures are predicted.
- The statistical analyses show that the $\boldsymbol{h}_{\boldsymbol{e}}$ parameter has no significant contribution on the monotonic compression capacity of the helical foundations.
- To maximize the load capacity, high ρ_{x} and low a / d ratios should be used for all bracket types.
- The compression capacity of the foundations examined are found, on average, to be 1.85 times higher than their tension capacity. Consequently, particular attention should be paid to the connection design when there is a load case involving net uplift forces.
- For the cyclic compression loading, anchorage zone cracks and reduced load capacities (up to 10%) are predicted for the top $\boldsymbol{h}_{\boldsymbol{e}}$ of the single bracket in some design configurations. It is recommended to follow the tension load recommendations (above) for the load cases involving cyclic load reversals.

9. References

AASHTO, 2014. LRFD bride design specifications. Washington, DC, USA: American Association of State Highway and Transportation Officials.

ACl Committee 318, 2019. Building code requirements for structural concrete and commentary (ACI 318R-19), American Concrete Institute, Farmington Hills, MI, USA, 623 p.

Adebar, P., Kuchma, D., and Collins, M.P., 1990. Strut-and-tie models for the design of pile caps: an experimental study. ACI Structural Journal, 87(1): 81-92. Retrieved from https://trid.trb.org/view/307069

Akkaya, Y., Guner, S., and Vecchio, F.J., 2019. A constitutive model for the inelastic buckling behavior of reinforcing bars. ACI Structural Journal, 116(3): 195-204. Retrieved from http://www.utoledo.edu/engineering/faculty/serhanguner/docs/JP11 Akkaya et al 2019.pdf

Almeida Jr, S. A., 2019. Modeling of concrete anchors supporting non-structural components subjected to strong wind and adverse environmental conditions. M.S. Thesis. The University of Toledo, Ohio, U.S., 90 pp. Retrieved from https://www.utoledo.edu/engineering/faculty/serhanguner/docs/T6 Almeida MS 2019.pdf

Almeida Jr, S. A., and Guner, S., 2019. A practical methodology for the analysis of adhesive anchors in adverse environments for hurricane resilience. Engineering Structures (submitted).

Baniya, P., and Guner, S., 2019. A specialized strut-and-tie method for predicting shear capacities of bridge pier caps," Engineering Structures, V. 198, pp. 1-
9. http://www.utoledo.edu/engineering/faculty/serhanguner/docs/JP13 Baniya Guner 2019.pdf

Cao, J., 2009. The shear behaviour of the reinforced concrete four-pile caps. Ph.D. Thesis, School of Civil Engineering and the Environment, University of Southampton, Southampton, UK, 2009, 287 p. Retrieved from https://eprints.soton.ac.uk/73699/

Cerato, A., and Victor, R., 2009. Effects of long-term dynamic loading and fluctuating water table on helical anchor performance for small wind tower foundations. Journal of Performance of Constructed Facilities, 23(4): 251-61. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000013

Chan, T. K., and Poh, C. K., 2000. Behavior of precast reinforced concrete pile caps. Construction and Building Materials, 14(2): 73-78. https://doi.org/10.1016/S0950-0618(00)00006-4

CRSI., 2015. Design guide for pile caps (1st ed.). Concrete Reinforcing Steel Institute, Schaumburg, IL, 156 p. Retrieved from http://resources.crsi.org/resources/design-guide-for-pile-caps

CSA A23.3., 2014. Design of concrete structures. Canadian Standards Association, Mississauga, ON, Canada., 668 p.

Diab, M.A.M., 2015. Behavior of helical pile connectors for new foundations. Ph.D. Thesis, School of Civil and Environment Engineering, University of Western Ontario, London, Ontario, Canada, 638 p. Retrieved from https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=4736\&context=etd

DFI, 2014. University presentation on helical piles and anchors (powerpoint slides). Helical Piles and Tiebacks Committee, Deep Foundation Institute. Retrived from http://www.dfi.org/update/HPTUniv01notes.pdf

El Naggar, M. H., Youssef, M. A., and Ahmed, M., 2007. Monotonic and cyclic lateral behaviour of helical pile specialized connectors. Engineering Structures, 29(10): 2635-2640. https://doi.org/10.1016/i.engstruct.2007.01.018

El Sharnouby, M. M., and El Naggar, M. H., 2010. Numerical investigation of the response of expansion anchors used to attach helical pile connectors to concrete foundations. Canadian Journal of Civil Engineering, 37(6): 866-877. https://doi.org/10.1139/L10-025

El Sharnouby, M. M., and El Naggar, M. H., 2012. Axial monotonic and cyclic performance of fibre-reinforced polymer (FRP) - steel fibre-reinforced helical pulldown micropiles (FRPRHPM). Canadian Geotechnical Journal, 49(12), 1378-1392. https://doi.org/10.1139/cgj-2012-0009

Eligehausen, R., and Sawade, G., 1985. Verhalten von Beton auf Zug. (Behaviour of concrete under tension). Betnwerk. Fertigteil-Technik, 5, 315-322.

Elkasabgy, M., and El Naggar, M.H., 2013. Dynamic response of vertically loaded helical and driven steel piles. Canadian Geotechnical Journal, 50(5): 521-535. https://doi.org/10.1139/cgj-2011-0126

Elsherbiny, Z.H., and El Naggar, M.H., 2013. Axial compressive capacity of helical piles from field tests and numerical study. Canadian Geotechnical Journal, 50(12): 1191-1203. https://doi.org/10.1139/cgj-2012-0487

Fisher, R. A., 1992. Statistical methods for research workers. In: Kotz S., Johnson N.L. (Ed.) Breakthroughs in Statistics. Springer Series in Statistics (Perspectives in Statistics), Springer, New York, NY, 360 p.

Guner, S., and Carrière, J., 2016. Analysis and strengthening of caisson foundations for uplift loads. Canadian Journal of Civil Engineering, 43(5): 411-419. Retrieved from http://www.utoledo.edu/engineering/faculty/serhan-guner/docs

IBC., 2018. International Building Code. International Code Council, Inc, New Jersey.
Kani G.N.J., 1967. How safe are our large reinforced concrete beams? ACI Journal Proceedings, 11(13): 128-141. https://doi.org/10.14359/7549

Labuda, T., Corley, G.W., and Murphy, M., 2013. Failure investigation of a helical anchor tiedown system supporting an olympic size swimming pool. Proceedings of the Seventh International Conference on Case Histories in Geotechnical Engineering, Chicago, April 29May 4, Scholoars' Mine, Missouri University of Science and Technology, 7 p. Retrieved from http://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=3223\&context=icchge

Livneh, B., and El Naggar, M.H., 2008. Axial testing and numerical modeling of square shaft helical piles under compressive and tensile loading. Canadian Geotechnical Journal, 45(8): 1142-1155. https://doi.org/10.1139/T08-044
MacGregor, J.G., and James W.K., 2012. Reinforced concrete: mechanics and design (6 ${ }^{\text {th }}$ ed). Pearson Education, Inc., Upper Saddle River, New Jersey, 1177 p.

Montgomery, D. C., 2013. Design and analysis of experiments (8th ed). John Wiley \& Sons, Inc, Hoboken, NJ, 724 p.

Nilsson, M., Ohlsson, U., and Elfgren, L., 2011. Effects of surface reinforcement on bearing capacity of concrete with anchor bolts. Cement and Concrete Research, 44(11): 161-174. Retrieved from https://nordicconcrete.net/wp-content/uploads/2011/01/Vol-43-Proceedings-Finland-2011.pdf

Otsuki, K., and Suzuki, K., 1996. Experimental study on bending ultimate strength of four-pile caps. Transactions of the Japan Concrete Institute, 482: 93-102. Retrieved from https://ci.nii.ac.jp/naid/110004303171
Pack, J.S., 2009. Design and inspection guide for helical piles and helical tension anchors (4th ed.). Intermountainhelicalpiers Inc, Denver, CO, 194 p. Retrieved from http://www.intermountainhelicalpiers.com/downloads/DesignGuide4Rev2.pdf

Richards, P.W., Rollins, K.M., and Stenlund, T.E., 2011. Experimental testing of pile-to-cap connections for embedded pipe piles. Journal of Bridge Engineering 2011, 16(2): 286-94. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000144
Sakr, M., Naggar, M. H. El, and Nehdi, M., 2004. Load transfer of fibre-reinforced polymer (FRP) composite tapered piles in dense sand. Canadian Geotechnical Journal, 41(1): 70-88. https://doi.org/10.1139/t03-067

Satterthwaite, F. E., 1946. An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110-114.

Supportworks, 2018. Retrieved from https://commercial.supportworks.com/case-study/casestudies.html

Suzuki, K., Otsuki, K., and Tsubata, T., 1998. Influence of bar arrangement on ultimate strength of four-pile caps. Transactions of the Japan Concrete Institute, 20, 195-202.

Suzuki, K., Otsuki, K., and Tsubata, T., 2000. Influence of edge distance on failure mechanism of pile caps. Transactions of the Japan Concrete Institute, 22: 361-67. Retrieved from https://ci.nii.ac.jp/naid/10007467724/

Suzuki, K., and Otsuki, K., 2002. Experimental study on corner shear failure of pile caps. Transactions of the Japan Concrete Institute, 23: 303-10. Retrieved from https://ci.nii.ac.jp/naid/10007251043/
Tortola, L.M., Pallares, L., and Miguel, P.F, 2018. Punching shear failure in three-pile caps: Influence of the shear span-depth ratio and secondary reinforcement. Engineering Structures, 155: 127-143. https://doi.org/10.1016/j.engstruct.2017.10.077

Vecchio, F.J., and Collins, M.P., 1986. The modified compression field theory for reinforced concrete elements subject to shear. ACI Journal, 83(2): 219-231. https://doi.org/10.14359/10416

Vecchio, F.J., 2000. Disturbed stress field model for reinforced concrete: formulation. Journal of Structural Engineering, 126(8): 1070-1077. https://doi.org/10.1061/(asce)07339445(2000)126:9(1070)

VTAG, 2019. VecTor2: Nonlinear finite element analysis software for reinforced concrete structures. VecTor Analysis Group (VTAG) Version 2.9 (Online), Retrieved from http://vectoranalysisgroup.com

Vickars, R. A., and Clemence, S. P., 2000. Performance of helical piles with grouted shafts. Proceedings of the new technological and design developments in deep foundations, american society of civil engineers, denver, co, 327-341. https://doi.org/10.1061/40511(288)2

Wong P.S., Vecchio F.J., and Trommels H., 2013. VecTor2 and formworks user's manual. Technical Report, Department of Civil Engineering, University of Toronto, ON, Canada, 347 p. Retrieved from http://www.vectoranalysisgroup.com/user manuals/manual1.pdf

Xiao, Y., and Chen, L., 2013. Behavior of model steel H-pile-to-pile-cap connections. Journal of Constructional Steel Research, 80: 153-162. https://doi.org/10.1016/i.jcsr.2012.09.008

Youssef, M.A., El Naggar, M.H., and Ahmed, M., 2006. Monotonic and cyclic load behaviour of helical pile connectors in the vertical direction. Canadian Journal of Civil Engineering, 18(1996): 10-18. https://doi.org/10.1139/l05-074

Appendix A Nonlinear Finite Element Analysis of Single Bracket Anchorages

In this appendix, the following simulation results are presented: the nonlinear load vs. deflection responses, the peak loads, the failure displacement, the initial stiffnesses, the failure mechanisms and the influence of the bracket zone.

Subjected to Monotonic Tension

a / d ratio $=1.68, \rho_{x}=0.2 \%$

Figure A-1: Numerical model and crack pattern-single bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.2 \%$.

Table A-1: Comparison of numerical simulation-single bracket type-monotonic tension - a/d

h_{e}	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	$\begin{gathered} \mathbf{P}_{u} \\ (\mathbf{k N}) \end{gathered}$	$\mathrm{P}_{\mathrm{uT} / \text { / } / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta^{\text {uTT/B }}$	$\delta_{u-m / B}$	$\begin{gathered} \text { Stiff } \\ (\mathrm{kN} / \mathrm{mm}) \end{gathered}$	Failure Mode	Bracket Infl.
T	1.68	496	1.01	1.01	1.19	1.00	1.00	1350	Flexural	None
M		496			1.19			1350	Flexural	None
B		493			1.19			1350	Splt-brkt	High

Figure A-2: Load-displacement response-single bracket type-monotonic tension $-a / d$ ratio $=$ $1.68, \rho_{x}=0.2 \%$.

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.
- Dominant anchorage cracks are seen for the bottom h_{e}.
a / d ratio $=1.68, \rho_{x}=0.4 \%$

h_{e}	Numerical Model	Crack Pattern
Top (T)		
Middle (M)		
Bottom (B)		

Figure A-3: Numerical model and crack pattern-single bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.4 \%$.

Table A-2: Comparison of numerical simulation-single bracket type-monotonic tension - a / d $=1.68, \rho_{x}=0.4 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ \text { (KN) } \end{gathered}$	$\mathrm{P}_{\mathrm{u}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {u-T/B }}$	$\delta_{u-M / \mathrm{B}}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
T	1.68	670	1.14	1.14	1.40	1.40	1.40	1420	Flexural	None
M		670			1.40			1420	Flexural	None
B		588			1.00			1420	Splt-brkt	High

Figure A-4: Load-displacement response-single bracket type-monotonic tension $-a / d$ ratio $=$ $1.68, \rho_{x}=0.4 \%$.

- The load capacities increase by 14% when the h_{e} is changed from bottom to middle.
- The displacement capacities increase by 40% when the h_{e} is changed from bottom to middle.
- Dominant anchorage cracks are seen for the bottom h_{e}.
a / d ratio $=1.68, \rho_{x}=0.8 \%$

Figure A-5: Numerical model and crack pattern-single bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.8 \%$.

Table A-3: Comparison of numerical simulation-single bracket type-monotonic tension - a / d

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ \text { (KN) } \end{gathered}$	$\mathrm{P}_{\mathrm{u}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {u-T/B }}$	$\delta_{u-m / B}$	Stiff (KN/mm)	Failure Mode	Bracket Infl.
T	1.68	879	1.35	1.35	1.40	1.75	1.75	1505	Flexural	None
M		876			1.40			1505	Flexural	None
B		650			0.80			1505	Splt-brkt	High

Figure A-6: Load-displacement response-single bracket type-monotonic tension - a / d ratio $=$ $1.68, \rho_{x}=0.8 \%$.

- The load capacities increase by 35% when the h_{e} is changed from bottom to middle.
- The displacement capacities increase by 75% when the h_{e} is changed from bottom to middle.
- Dominant anchorage cracks are seen for the bottom h_{e}.

Figure A-7: Numerical model and crack pattern-single bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.2 \%$.

Table A-4: Comparison of numerical simulation-single bracket type-monotonic tension - a/d ratio $=1.42, \rho_{x}=0.2 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{u}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{uT} \text { T/B }}$	$\mathrm{P}_{\mathrm{u}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {u-T/B }}$	$\delta_{u-m / B}$	Stiff (KN/mm)	Failure Mode	Bracket Infl.
T	1.42	623	1.06	1.06	1.15	1.21	1.21	1650	Flexural	None
M		622			1.15			1650	Flexural	None
B		587			0.95			1650	Splt-brkt	High

Figure A-8: Load-displacement response-single bracket type- monotonic tension $-a / d$ ratio $=$ $1.42, \rho_{x}=0.2 \%$.

- The load capacities increase slightly by 6% when the h_{e} is changed from bottom to middle.
- The displacement capacities increase by 21% when the h_{e} is changed from bottom to middle.
- Dominant anchorage cracks are seen for the bottom h_{e}.
a / d ratio $=1.42, \rho_{x}=0.4 \%$

Figure A-9: Numerical model and crack pattern-single bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.4 \%$.

Table A-5: Comparison of numerical simulation-single bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.4 \%$.

h_{e}	$\begin{gathered} \hline a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \hline \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{u}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {u-T/B }}$	$\delta^{u-M / B}$	$\begin{gathered} \text { Stiff } \\ (\mathrm{KN} / \mathrm{mm}) \end{gathered}$	Failure Mode	Bracket Infl.
T	1.42	810	1.25	1.25	1.15	1.53	1.53	1720	Flexural	Low
M		809			1.15			1720	Flexural	Low
B		647			0.75			1720	Splt-brkt	High

Figure A-10: Load-displacement response-single bracket type-monotonic tension $-a / d$ ratio $=$ $1.42, \rho_{x}=0.4 \%$.

- The load capacities increase by 25% when the h_{e} is changed from bottom to middle.
- The displacement capacities increase by 53% when the h_{e} is changed from bottom to middle.
- Dominant anchorage cracks are seen for the bottom h_{e}.
a / d ratio $=1.42, \rho_{x}=0.8 \%$

h_{e}	Numerical Model	Crack Pattern
Top (T)		
Middle (M)		
Bottom (B)		

Figure A-11: Numerical model and crack pattern-single bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.8 \%$.

Table A-6: Comparison of numerical simulation-single bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.8 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathbf{P}_{u} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{uT} / \mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {u-T/B }}$	$\delta_{u-M / \mathrm{B}}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
T	1.42	1025	1.54	1.52	1.35	1.78	1.78	1805	Flexural	Low
M		1010			1.35			1805	Flexural	Low
B		667			0.76			1805	Splt-brkt	High

Figure A-12: Load-displacement response-single bracket type-monotonic tension - a / d ratio $=$ $1.42, \rho_{x}=0.8 \%$.

- The load capacities increase by 52% when the h_{e} is changed from bottom to middle.
- The displacement capacities increase by 78% when the h_{e} is changed from bottom to middle.
- Dominant anchorage cracks are seen for the bottom h_{e}.
a / d ratio $=1.11, \rho_{x}=0.2 \%$

Figure A-13: Numerical model and crack pattern-single bracket type-monotonic tension $-a / d$ ratio $=1.11, \rho_{x}=0.2 \%$.

Table A-7: Comparison of numerical simulation-single bracket type-monotonic tension - a / d

Figure A-14: Load-displacement response-single bracket-monotonic tension- a / d ratio $=1.11, \rho_{x}$ = 0.2\%.

- The load capacities increase by 30% when the h_{e} is changed from bottom to middle.
- The displacement capacities increase by 22% when the h_{e} is changed from bottom to middle.
- Dominant anchorage cracks are seen for the bottom h_{e}.

Figure A-15: Numerical model and crack pattern-single bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.4 \%$.

Table A-8: Comparison of numerical simulation-single bracket type-monotonic tension -a/d ratio $=1.11, \rho_{X}=0.4 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} P_{u} \\ (K N) \end{gathered}$	$\mathrm{P}_{\mathrm{uT} \text { - } / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {u-T/ }}$	$\delta_{u-m / B}$	$\begin{gathered} \text { Stiff } \\ (\mathrm{KN} / \mathrm{mm}) \end{gathered}$	Failure Mode	Bracket Infl.
T	1.11	1025	1.49	1.48	1.14	2.38	2.04	2095	Flexural	Low
M		1016			1.14			2095	Flexural	Low
B		687			0.56			2095	Splt-brkt	High

Figure A-16: Load-displacement response-single bracket type-monotonic tension $-a / d$ ratio $=$ 1.11, $\rho_{x}=0.4 \%$.

- The load capacities increase by 48% when the h_{e} is changed from bottom to middle.
- The displacement capacities increase by 104% when the h_{e} is changed from bottom to middle.
- Dominant anchorage cracks are seen for the bottom and middle h_{e}.
a / d ratio $=1.11, \rho_{x}=0.8 \%$

Figure A-17: Numerical model and crack pattern-single bracket type-monotonic tension-a/d ratio $=1.11, \rho_{x}=0.8 \%$.

Table A-9: Comparison of numerical simulation-single bracket type-monotonic tension - a / d
ratio $=1.11, \rho_{x}=0.8 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathbf{P u}_{u} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{uT} \text { - } / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta^{u-T / B}$	$\delta_{u-m / \mathrm{B}}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
T	1.11	1205	1.66	1.61	1.33	2.38	2.04	2160	Flexural	Low
M		1172			1.14			2160	Flexural	Low
B		727			0.56			2160	Splt-brkt	High

Figure A-18: Load-displacement response-single bracket type-monotonic tension $-a / d=1.11, \rho_{x}$ $=0.8 \%$.

- The load capacities increase by 61% when the h_{e} is changed from bottom to middle.
- The displacement capacities increase by 104% when the h_{e} is changed from bottom to middle.
- Dominant anchorage cracks are seen for the bottom and middle h_{e}.

Subjected to Monotonic Compression
a / d ratio $=1.68, \rho_{x}=0.2 \%$

Figure A-19: Numerical model and crack pattern-single bracket type-monotonic compression a / d ratio $=1.68, \rho_{x}=0.2 \%$.

Table A-10: Comparison of numerical simulation-single bracket type-monotonic compression -
a / d ratio $=1.68, \rho_{x}=0.2 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{uT} \text { T/B }}$	$\mathrm{P}_{\mathrm{u}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta^{u-T / B}$	$\delta_{u-m / B}$	$\begin{array}{\|c\|} \hline \text { Stiff } \\ (\mathrm{KN} / \mathrm{mm}) \end{array}$	Failure Mode	Bracket Infl.
T	1.68	924	1.00	1.00	1.99	1.00	1.00	1595	Flexural	None
M		923			1.99			1595	Flexural	None
B		925			1.99			1595	Flexural	None

Figure A-20: Load-displacement response-single bracket type-monotonic compression - a / d ratio $=1.68, \rho_{x}=0.2 \%$.

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.
- No dominant anchorage cracks are seen for all h_{e}.
a / d ratio $=1.68, \rho_{x}=0.4 \%$

Figure A-21: Numerical model and crack pattern-single bracket type-monotonic compression a / d ratio $=1.68, \rho_{x}=0.4 \%$.
Table A-11: Comparison of numerical simulation-single bracket type-monotonic compression a / d ratio $=1.68, \rho_{x}=0.4 \%$.

h_{e}	a/d ratio	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathbf{u}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\delta^{u-T / B}$	$\delta_{u-M / B}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
T	1.68	1127	0.99	0.99	1.79	1.00	1.00	1650	Flexural	None
M		1137			1.79			1650	Flexural	None
B		1143			1.79			1650	Flexural	None

Figure A-22: Load-displacement response-single bracket type-monotonic compression - a / d ratio $=1.68, \rho_{x}=0.4 \%$.

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.
- No dominant anchorage cracks are seen for all h_{e}.
a / d ratio $=1.68, \rho_{x}=0.8 \%$

Figure A-23: Numerical model and crack pattern-single bracket type-monotonic compression a / d ratio $=1.68, \rho_{x}=0.8 \%$.

Table A-12: Comparison of numerical simulation-single bracket type-monotonic compression a / d ratio $=1.68, \rho_{x}=0.8 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathbf{u - T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {uTT/B }}$	$\delta^{\mathrm{u}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \text { Stiff } \\ (\mathrm{KN} / \mathrm{mm}) \end{gathered}$	Failure Mode	Bracket Infl.
T	1.68	1493	0.99	0.99	1.79	1.00	1.00	1715	Flexural	None
M		1493			1.79			1715	Flexural	None
B		1508			1.79			1715	Flexural	None

Figure A-24: Load-displacement response-single bracket type-monotonic compression - a / d ratio $=1.68, \rho_{x}=0.8 \%$.

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.
- No dominant anchorage cracks are seen for all h_{e}.

Figure A-25: Numerical model and crack pattern-single bracket type-monotonic compression a / d ratio $=1.42, \rho_{x}=0.2 \%$.

Table A-13: Comparison of numerical simulation-single bracket type-monotonic compression -
a / d ratio $=1.42, \rho_{x}=0.2 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathbf{u T} / \mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\delta_{\text {u-T/ } / \mathrm{B}}$	$\delta^{u-M / B}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
T	1.42	1083	1.00	1.00	1.34	1.00	1.00	2030	Flexural	None
M		1084			1.34			2030	Flexural	None
B		1081			1.34			2030	Flexural	None

Figure A-26: Load-displacement response-single bracket type-monotonic compression - a / d ratio $=1.42, \rho_{x}=0.2 \%$.

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.
- No dominant anchorage cracks are seen for all h_{e}.
a / d ratio $=1.42, \rho_{x}=0.4 \%$

h_{e}	Numerical Model	Crack Pattern
Top (T)		
Middle (M)		
Bottom (B)		

Figure A-27: Numerical model and crack pattern-single bracket type-monotonic compression a / d ratio $=1.42, \rho_{x}=0.4 \%$.

Table A-14: Comparison of numerical simulation-single bracket type-monotonic compression a / d ratio $=1.42, \rho_{x}=0.4 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{LT} / \mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\delta_{\text {UTT/B }}$	$\delta_{u-M / B}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \\ \hline \end{gathered}$	Failure Mode	Bracket Infl.
T	1.42	1426	0.99	1.00	1.34	1.00	1.00	2080	Flexural	None
M		1431			1.34			2080	Flexural	None
B		1435			1.34			2080	Flexural	None

Figure A-28: Load-displacement response-single bracket type-monotonic compression - a / d ratio $=1.42, \rho_{x}=0.4 \%$.

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.
- No dominant anchorage cracks are seen for all h_{e}.
a / d ratio $=1.42, \rho_{x}=0.8 \%$

Figure A-29: Numerical model and crack pattern-single bracket type-monotonic compression a / d ratio $=1.42, \rho_{x}=0.8 \%$.

Table A-15: Comparison of numerical simulation-single bracket type-monotonic compression -
a / d ratio $=1.42, \rho_{x}=0.8 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{u}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\text {u-M/B }}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta^{u-T / B}$	$\delta^{u-M / B}$	Stiff (KN/mm)	Failure Mode	Bracket Infl.
T	1.42	1800	0.99	0.99	1.34	1.00	1.00	2155	Flexural	None
M		1800			1.34			2155	Flexural	None
B		1810			1.34			2155	Flexural	None

Figure A-30: Load- displacement response-single bracket type-monotonic compression - a/d ratio $=1.42, \rho_{x}=0.8 \%$.

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.
- No dominant anchorage cracks are seen for all h_{e}.

Figure A-31: Numerical model and crack pattern-single bracket type-monotonic compression a / d ratio $=1.11, \rho_{x}=0.2 \%$.

Table A-16: Comparison of numerical simulation-single bracket type-monotonic compression -

$$
a / d \text { ratio }=1.11, \rho_{x}=0.2 \% .
$$

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathbf{u}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {u-T/B }}$	$\delta^{\mathrm{U}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \text { Stiff } \\ (\mathrm{KN} / \mathrm{mm}) \end{gathered}$	Failure Mode	Bracket Infl.
T	1.11	1545	0.99	1.00	0.94	1.00	1.00	2595	Flexural	None
M		1554			0.94			2595	Flexural	None
B		1552			0.94			2595	Flexural	None

Figure A-32: Load-displacement response-single bracket type-monotonic compression - a/d ratio $=1.11, \rho_{x}=0.2 \%$.

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.
- No dominant anchorage cracks are seen for all h_{e}.
a / d ratio $=1.11, \rho_{x}=0.4 \%$

Figure A-33: Numerical model and crack pattern-single bracket type-monotonic compression a / d ratio $=1.11, \rho_{x}=0.4 \%$.

Table A-17: Comparison of numerical simulation-single bracket type-monotonic compression a / d ratio $=1.11, \rho_{x}=0.4 \%$.

h_{e}	a / d ratio	$\begin{gathered} P_{u} \\ (K N) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{uT} \text { / } / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {H-T/B }}$	$\delta^{\mathrm{U}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \text { Stiff } \\ (\mathrm{KN} / \mathrm{mm}) \end{gathered}$	Failure Mode	Bracket Infl.
T	1.11	1830	0.98	0.99	1.12	1.00	1.00	2630	Shear	None
M		1841			1.12			2630	Shear	None
B		1864			1.12			2630	Shear	None

Figure A-34: Load-displacement response-single bracket type-monotonic compression - a / d ratio $=1.11, \rho_{x}=0.4 \%$.

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.
- No dominant anchorage cracks are seen for all h_{e}.
a / d ratio $=1.11, \rho_{x}=0.8 \%$

Figure A-35: Numerical model and crack pattern-single bracket type-monotonic compression a / d ratio $=1.11, \rho_{x}=0.8 \%$.

Table A-18: Comparison of numerical simulation-single bracket type-monotonic compression a / d ratio $=1.11, \rho_{x}=0.8 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{LT} / \mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{u}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\delta^{u-T / B}$	$\delta^{u-M / B}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
T	1.11	2133	0.98	0.98	1.12	1.00	1.00	2675	Shear	None
M		2144			1.12			2675	Shear	None
B		2180			1.12			2675	Shear	None

Figure A-36: Load-displacement curve-single bracket type-monotonic compression - a / d ratio $=$ $1.11, \rho_{x}=0.8 \%$.

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.
- No dominant anchorage cracks are seen for all h_{e}.

Subjected to Reversed-Cyclic Loads

a / d ratio $=1.68, \rho_{x}=0.2 \%$

h_{e}	Numerical Model	Crack Pattern
Top (T)		
Middle (M)		
Bottom (B)		

Figure A-37: Numerical model and crack pattern-single bracket type-reversed-cyclic - a/d ratio $=$ $1.68, \rho_{x}=0.2 \%$.

Figure A-38: Load-displacement response-single bracket type-reversed-cyclic $-a / d$ ratio $=1.68$,

$$
\rho_{x}=0.2 \% .
$$

Table A-19: Comparison of numerical simulation-single bracket type-reversed-cyclic $-a / d$ ratio $=$ $1.68, \rho_{x}=0.2 \%$.

h_{e}	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	Tensile Component						Compression Component						Failure Mode	Bracket Infl.
		$\begin{gathered} P_{t} \\ (K N) \end{gathered}$	$\mathrm{P}_{\mathrm{t}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{t}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{t} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\delta_{\text {t-M/B }}$	$\begin{gathered} P_{t} \\ (K N) \end{gathered}$	$\mathrm{P}_{\text {c-T/ } / \mathrm{B}}$	$\mathrm{P}_{\mathrm{C}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{c} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T }}$	$\delta_{\text {c-M/B }}$		
T	1.68	490	1.00	1.00	2.50	0.83	0.83	872	0.91	0.91	2.24	1.13	1.13	Flexural	None
M		490			2.50			870			2.24			Flexural	None
B		491			3.00			955			1.99			Splt-brkt	High

Tensile component's result

- The load capacities for all h_{e} are the same.

Compression component's result

- The load capacities decreased slightly by 9% when the h_{e} is changed from bottom to middle.

Bracket influence

- Bottom h_{e} gives splitting of concrete around anchorage bracket zone.
a / d ratio $=1.68, \rho_{x}=0.4 \%$

Figure A-39: Numerical model and crack pattern-single bracket type-reversed-cyclic - a / d ratio $=$ 1.68, $0.4 \rho_{x} \%$.

Figure A-40: Load-displacement response-single bracket type-reversed-cyclic $-a / d$ ratio $=1.68$,

$$
\rho_{x}=0.4 \% .
$$

Table A-20: Comparison of numerical simulation-single bracket type-reversed-cyclic $-a / d$ ratio $=$ $1.68, \rho_{x}=0.4 \%$.

h_{e}	a / d ratio	Tensile Component						Compression Component						Failure Mode	Bracket Infl.
		$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \\ \hline \end{array}$	$\mathrm{P}_{\text {t- } / \mathrm{B}}$	$\mathrm{P}_{\mathrm{t}-\mathrm{M} /}$	$\begin{gathered} \delta_{t} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/ }}$	$\delta_{\text {t-m/B }}$	$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{array}$	$\mathrm{P}_{\mathrm{C}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{C}-\mathrm{N}}$	$\begin{gathered} \delta_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/ } / \mathrm{B}}$	$\delta_{\text {c-M/ } / \mathrm{B}}$		
T	1.68	660	1.11	1.11	2.00	1.00	1.00	1102	0.98	0.99	1.74	1.00	1.00	Flexural	None
M		659			2.00			1106			1.74			Flexural	None
B		595			2.00			1121			1.74			Splt-brkt	High

Tensile component's result

- The load capacities increase slightly by 11% when the h_{e} is changed from bottom to middle.
- The displacement capacities for all h_{e} are the same.

Compression component's result

- The load capacities for all h_{e} are the same.
- The displacement capacities for all h_{e} are the same.

Bracket influence

- Bottom h_{e} gives splitting of concrete around anchorage bracket zone.
a / d ratio $=1.68, \rho_{x}=0.8 \%$

Figure A-41: Numerical model and crack pattern-single bracket type-reversed-cyclic $-a / d$ ratio $=$ $1.68, \rho_{x}=0.8 \%$.

Figure A-42: Load-displacement response-single bracket type-reversed-cyclic $-a / d$ ratio $=1.68$,

$$
\rho_{x}=0.8 \%
$$

Table A-21: Comparison of numerical simulation-single bracket type-reversed-cyclic $-a / d$ ratio $=$ $1.68, \rho_{x}=0.8 \%$.

h_{e}	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	Tensile Component						Compression Component						Failure Mode	Bracket Infl.
		$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{t}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{t}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{t} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\delta_{\text {t-m/B }}$	$\begin{gathered} P_{t} \\ (K N) \end{gathered}$	$\mathrm{P}_{\mathrm{c}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{C}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$	$\boldsymbol{\delta}_{\mathrm{C}-\mathrm{T} / \mathrm{B}}$	$\delta_{\text {c-M } / \mathrm{B}}$		
T	1.68	852	1.34	1.32	2.00	1.00	1.00	1453	0.98	0.99	1.74	1.00	1.00	Flexural	None
M		844			2.00			1454			1.74			Flexural	None
B		638			2.00			1476			1.74			Splt-brkt	High

Tensile component's result

- The load capacities increase by 34% when the h_{e} is changed from bottom to middle.
- The displacement capacities for all embedment depths are the same.

Compression component's result

- The load capacities decreased slightly by 9% when the h_{e} is changed from bottom to middle.

Bracket influence

- Bottom h_{e} gives splitting of concrete around anchorage bracket zone.
a / d ratio $=1.42, \rho_{x}=0.2 \%$

Figure A-43: Numerical model and crack pattern-single bracket type-reversed-cyclic - a / d ratio $=1.42, \rho_{x}=0.2 \%$.

Figure A-44: Load-displacement response-single bracket type-reversed-cyclic $-a / d$ ratio $=1.42$, $\rho_{x}=0.2 \%$.

Table A-22: Comparison of numerical simulation-single bracket type-reversed-cyclic $-a / d$ ratio $=$ $1.42, \rho_{x}=0.2 \%$.

h_{e}	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	Tensile Component						Compression Component						Failure Mode	Bracket Infl.
		$\begin{array}{c\|} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{array}$	$\mathrm{P}_{\text {t-T/ }}$	$\mathrm{P}_{\mathrm{t}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{t} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\delta_{t-M / B}$	$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\text {c.T/ } / \mathrm{B}}$	$\mathrm{P}_{\mathrm{C}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \boldsymbol{\delta}_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/B }}$	$\delta_{\text {c-M/ } / \mathrm{B}}$		
T	1.42	623	1.05	1.05	2.02	1.01	1.01	1138	0.98	0.99	1.44	1.00	1.00	Flexural	None
M		623			2.02			1144			1.44			Flexural	None
B		594			2.00			1161			1.44			Splt-brkt	None

Tensile component's result

- The load capacities for all h_{e} are similar.
- The displacement capacities for all embedment depths are the same.

Compression component's result

- The load capacities for all h_{e} are similar.
- The displacement capacities for all h_{e} are the same.

Bracket influence

- Bottom h_{e} gives splitting of concrete around anchorage bracket zone.
a / d ratio $=1.42, \rho_{x}=0.4 \%$

Figure A-45: Numerical model and crack pattern-single bracket type-reversed-cyclic - a / d ratio

$$
=1.42, \rho_{x}=0.4 \%
$$

Figure A-46: Load-displacement response-single bracket type-reversed-cyclic $-a / d$ ratio $=1.42$,

$$
\rho_{x}=0.4 \%
$$

Table A-23: Comparison of numerical simulation-single bracket type-reversed-cyclic $-a / d$ ratio $=$ $1.42, \rho_{x}=0.4 \%$.

h_{e}	a / d ratio	Tensile Component						Compression Component						Failure Mode	Bracket Infl.
		$\begin{gathered} P_{t} \\ (K N) \end{gathered}$	$\mathrm{P}_{\mathrm{t}-\mathrm{T} / \mathrm{B}}$	$\mathbf{P}_{\text {t-M/B }}$	$\begin{gathered} \delta_{t} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\delta_{\text {t-m/B }}$	$\begin{gathered} \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{C}-\mathrm{T} / \mathrm{B}}$	$\mathrm{Pa}_{\mathrm{c}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \boldsymbol{\delta}_{\mathrm{c}} \\ \mathrm{~mm}) \end{gathered}$	$\boldsymbol{\delta}_{\mathrm{C}-\mathrm{T} / \mathrm{B}}$	$\delta_{\text {c-M/B }}$		
T	1.42	789	1.22	1.22	2.02	1.01	1.01	1466	0.99	0.98	1.42	0.99	0.99	Flexural	None
M		785			2.02			1460			1.42			Flexural	None
B		646			2.00			1485			1.44			Splt-brkt	High

Tensile component's result

- The load capacities increase by 22% when the h_{e} is changed from bottom to middle.
- The displacement capacities for all h_{e} are the same.

Compression component's result

- The load capacities for all h_{e} are similar.
- The displacement capacities for all h_{e} are the same.

Bracket influence

- Bottom h_{e} gives splitting of concrete around anchorage bracket zone.
a / d ratio $=1.42, \rho_{x}=0.8 \%$

Figure A-47: Numerical model and crack pattern-single bracket type-reversed-cyclic - a / d ratio

Figure A-48: Load-displacement response-single bracket type-reversed-cyclic $-a / d$ ratio $=1.42$, $\rho_{x}=0.8 \%$.

Table A-24: Comparison of numerical simulation-single bracket type-reversed-cyclic $-a / d$ ratio $=$ $1.42, \rho_{x}=0.8 \%$.

h_{e}	a / d ratio	Tensile Component						Compression Component						Failure Mode	Bracket Infl.
		$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{array}$	$\mathrm{P}_{\text {t-T/ }}$	$\mathrm{P}_{\mathrm{t}-\mathrm{m} / \mathrm{B}}$	$\begin{gathered} \delta_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\delta_{\text {t-M/B }}$	$\begin{array}{\|c} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{array}$	$\mathrm{P}_{\text {c-T/ } / \mathrm{B}}$	$\mathrm{P}_{\mathrm{c} \text { c-M }}$	$\begin{gathered} \boldsymbol{\delta}_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/ } / \mathrm{B}}$	$\delta_{\text {c-m/ }}$		
T	1.42	1009	1.45	1.44	2.03	1.02	1.02	1852	0.99	0.99	1.43	1.00	1.00	Flexural	None
M		1005			2.03			1848			1.43			Flexural	Low
B		696			2.00			1862			1.43			Splt-brkt	High

Tensile component's result

- The load capacities increase by 44% when the h_{e} is changed from bottom to middle.
- The displacement capacities for all h_{e} are the same.

Compression component's result

- The load capacities for all h_{e} are similar.
- The displacement capacities for all h_{e} are the same.

Bracket influence

- Bottom h_{e} gives splitting of concrete around anchorage bracket zone.
a / d ratio $=1.11, \rho_{x}=0.2 \%$

Figure A-49: Numerical model and crack pattern-single bracket type-reversed-cyclic - a / d ratio $=$ $1.11, \rho_{x}=0.2 \%$.

Figure A-50: Load-displacement response-single bracket type-reversed-cyclic $-a / d$ ratio $=1.11$,

$$
\rho_{x}=0.2 \%
$$

Table A-25: Comparison of numerical simulation-single bracket type-reversed-cyclic $-a / d$ ratio $=$ $1.11, \rho_{x}=0.2 \%$.

h_{e}	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	Tensile Component						Compression Component						Failure Mode	Bracket Infl.
		$\begin{gathered} \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\text {t-T/ }}$	$\mathrm{P}_{\mathrm{t}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\delta_{\text {t-M/B }}$	$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{CT} \text { T/ }}$	$\mathrm{P}_{\mathrm{C}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/ } / \mathrm{B}}$	$\delta_{\text {c-M/B }}$		
T	1.11	836	1.27	1.27	1.47	0.74	0.74	1486	0.99	0.99	0.94	0.65	0.65	Flexural	Low
M		836			1.47			1488			0.94			Flexural	Low
B		659			2.00			1501			1.44			Splt-brkt	High

Tensile component's result

- The load capacities increase by 27% when the h_{e} is changed from bottom to middle.

Compression component's result

- The load capacities for all h_{e} are similar.

Bracket influence

- Bottom h_{e} gives splitting of concrete around anchorage bracket zone.

Figure A-51: Numerical model and crack pattern-single bracket type-reversed-cyclic -a/d ratio = $1.11, \rho_{x}=0.4 \%$.

Figure A-52: Load- displacement response-single bracket type-reversed-cyclic -a/d ratio = 1.11,

$$
\rho_{x}=0.4 \% .
$$

Table A-26: Comparison of numerical simulation-single bracket type-reversed-cyclic -a/d ratio $=$ $1.11, \rho_{x}=0.4 \%$.

h_{e}	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	Tensile Component						Compression Component						Failure Mode	Bracket Infl.
		$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{array}$	$\mathrm{P}_{\text {t- } / \text { / }}$	$\mathrm{P}_{\mathrm{t}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\delta_{t-M / B}$	$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\text {c-T/ } / \mathrm{B}}$	$\mathrm{P}_{\mathrm{C}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{c} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/ } / \mathrm{B}}$	$\delta_{\text {c-m/B }}$		
T	1.11	1000	1.44	1.44	1.45	0.97	0.97	1756	0.99	0.99	0.94	1.00	1.00	Flexural	Low
M		1000			1.45			1757			0.94			Flexural	Low
B		695			1.49			1771			0.94			Splt-brkt	High

Tensile component's result

- The load capacities increase by 44% when the h_{e} is changed from bottom to middle.
- The displacement capacities for all h_{e} are the same.

Compression component's result

- The load capacities for all h_{e} are similar.
- The displacement capacities for all h_{e} are the same.

Bracket influence

- Bottom h_{e} gives splitting of concrete around anchorage bracket zone.
a / d ratio $=1.11, \rho_{x}=0.8 \%$

Figure A-53: Numerical model and crack pattern-single bracket type-reversed-cyclic -a/d ratio = $1.11, \rho_{x}=0.8 \%$.

Figure A-54: Load-displacement response-single bracket type-reversed-cyclic $-a / d$ ratio $=1.11$,

$$
\rho_{x}=0.8 \% .
$$

Table A-27: Comparison of numerical simulation-single bracket type-reversed-cyclic-a/d ratio $=$ $1.11, \rho_{x}=0.8 \%$.

h_{e}	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	Tensile Component						Compression Component						Failure Mode	Bracket Infl.
		$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{t}-\mathrm{T} / \mathrm{B}}$	$\mathrm{P}_{\mathrm{t} \text { - } / \mathrm{B}}$	$\begin{gathered} \delta_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\delta_{\text {t-M/B }}$	$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\text {CTT/ }}$	$\mathrm{P}_{\mathrm{C}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/ } / \mathrm{B}}$	$\delta_{\text {c-M/B }}$		
T	1.11	1140	1.56	1.55	1.44	0.97	0.99	2045	0.89	0.97	0.94	0.80	1.00	Shear	Low
M		1128			1.46			2228			1.17			Shear	Low
B		730			1.48			2291			1.17			Splt-brkt	High

Tensile component's result

- The load capacities increase by 55% when the h_{e} is changed from bottom to middle.
- The displacement capacities for all h_{e} are the same.

Compression component's result

- The load capacities decrease slightly by 8% when the h_{e} is changed from middle to top.

Bracket influence

- Bottom h_{e} gives splitting of concrete around anchorage bracket zone.

Appendix B Nonlinear Finite Element Analysis of Double Bracket Anchorages

In this appendix, the following simulation results are presented: the nonlinear load vs. deflection responses, the peak loads, the failure displacements, the initial stiffnesses, the failure mechanisms and the influence of the bracket zone.

Subjected to Monotonic Tension

a / d ratio $=1.68$

Figure B-1: Numerical model and crack pattern-double bracket type-monotonic tension - a / d ratio $=1.68$.

Table B-1: Comparison of numerical simulation-double bracket type-monotonic tension - a/d ratio $=1.68$.

$\rho_{x} \%$	$\begin{aligned} & \text { a/d } \\ & \text { ratio } \end{aligned}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ (\mathrm{KN} / \mathrm{mm}) \end{gathered}$	Failure Mode	Bracket Infl.
0.2	1.68	497	1.19	1369	Flexural	None
0.4		671	1.39	1437	Flexural	None
0.8		878	1.39	1523	Flexural	None

Figure B-2: Load-displacement response-double bracket type-monotonic tension $-a / d$ ratio $=$ 1.68: (a) $\rho_{x}=0.2 \%$, (b) $\rho_{x}=0.4 \%$ \& (c) $\rho_{x}=0.8 \%$.

- The load capacities increase by 35% and 31% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively.

Figure B-3: Numerical model and crack pattern-double bracket type-monotonic tension - a / d ratio $=1.42$.

Table B-2: Comparison of numerical simulation-double bracket type-monotonic tension - a / d ratio $=1.42$.

$\rho_{x} \%$	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathbf{P}_{u} \\ (K N) \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	Stiff (KN/mm)	Failure Mode	Bracket Infl.
0.2	1.42	623	1.15	1788	Flexural	None
0.4		814	1.15	1864	Flexural	None
0.8		1026	1.35	1941	Flexural	None

Figure B-4: Load-displacement response-double bracket type-monotonic tension $-a / d$ ratio $=$ 1.42: (a) $\rho_{x}=0.2 \%$, (b) $\rho_{x}=0.4 \%$ \& (c) $\rho_{x}=0.8 \%$.

- The load capacities increase by 31% and 26% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively.

a / d ratio $=1.11$

Figure B-5: Numerical model and crack pattern-double bracket type-monotonic tension $-a / d=$ 1.11.

Table B-3: Comparison of numerical simulation-double bracket type-monotonic tension - a / d ratio $=1.11$.

$\rho_{x} \%$	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
0.2	1.11	830	0.93	2238	Flexural	None
0.4		1004	0.93	2286	Flexural	None
0.8		1125	1.34	2357	Flexural	None

Figure B-6: Load-displacement response-double bracket-monotonic tension $-a / d$ ratio $=1.42$:
(a) $\rho_{x}=0.2 \%$, (b) $\rho_{x}=0.4 \%$ \& (c) $\rho_{x}=0.8 \%$.

- The load capacities increase by 21% and 12% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively.

Subjected to Monotonic Compression

a / d ratio $=1.68$

Figure B-7: Numerical model and crack pattern-double bracket type-monotonic compression a / d ratio $=1.68$.

Table B-4: Comparison of numerical simulation- double bracket type-monotonic compression a / d ratio $=1.68$.

$\rho_{x} \%$	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
0.2	1.68	925	1.99	1610	Flexural	None
0.4		1135	1.79	1662	Flexural	None
0.8		1507	1.79	1742	Flexural	None

Figure B-8: Load-displacement response-double bracket type-monotonic compression - a / d

$$
\text { ratio }=1.68: \text { (a) } \rho_{x}=0.2 \% \text {, (b) } \rho_{x}=0.4 \% \text { \& (c) } \rho_{x}=0.8 \%
$$

- The load capacities increase by 23% and 33% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively.

Figure B-9: Numerical model and crack pattern-double bracket type-monotonic compression a / d ratio $=1.42$.

Table B-5: Comparison of numerical simulation-double bracket type-monotonic compression a / d ratio $=1.42$.

$\rho_{x} \%$	$\begin{gathered} \text { a/d } \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
0.2	1.42	1082	1.34	2110	Flexural	None
0.4		1436	1.34	2162	Flexural	None
0.8		1808	1.34	2235	Flexural	None

Figure B-10: Load-displacement response-double bracket type-monotonic compression - a / d ratio $=1.42$: (a) $\rho_{x}=0.2 \%$, (b) $\rho_{x}=0.4 \%$ \& (c) $\rho_{x}=0.8 \%$.

- The load capacities increase by 33% and 26% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively.

a / d ratio $=1.11$

Figure B-11: Numerical model and crack pattern-double bracket type-monotonic compression a / d ratio $=1.11$.

Table B-6: Comparison of numerical simulation-double bracket type-monotonic compression a / d ratio $=1.11$.

$\rho_{x} \%$	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	Stiff (KN/mm)	Failure Mode	Bracket Infl.
0.2	1.11	1545	0.94	2715	Flexural	None
0.4		1857	1.12	2747	Shear	None
0.8		2167	1.12	2795	Shear	None

Figure B-12: Load-displacement response-double bracket type-monotonic compression - a / d ratio $=1.11$: (a) $\rho_{x}=0.2 \%$, (b) $\rho_{x}=0.4 \%$ \& (c) $\rho_{x}=0.8 \%$.

- The load capacities increase by 20% and 17% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively.

Subjected to Reversed-Cyclic Loads

a / d ratio $=1.68$

Figure B-13: Numerical model and crack pattern-double bracket type-reversed-cyclic - a / d ratio $=1.68$.

Table B-7: Comparison of numerical simulation-double bracket type-reversed-cyclic $-a / d$ ratio $=$ 1.68.

$\boldsymbol{\rho}_{\mathrm{x}} \%$	a / d ratio	Tensile Component		Compression Component		Failure Mode	Bracke Infl.
		$\overline{P_{t}}$ (KN)	$\begin{gathered} \delta_{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\begin{gathered} \delta_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$		
0.2	1.68	491	2.50	868	2.24	Flexural	None
0.4		660	2.00	1113	1.74	Flexural	None
0.8		849	2.00	1443	1.74	Flexural	Non

Figure B-14: Load-displacement response-double bracket type-monotonic compression - a / d

$$
\text { ratio }=1.68: \text { (a) } \rho_{x}=0.2 \% \text {, (b) } \rho_{x}=0.4 \% \text { \& (c) } \rho_{x}=0.8 \%
$$

- The load capacities increase by 34% and 29% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively subjected to cyclic tension.
- The load capacities increase by 28% and 30% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively subjected to cyclic compression.
a / d ratio $=1.42$

Figure B-15: Numerical model and crack pattern-double bracket type-reversed-cyclic - a/d ratio $=1.42$.

Table B-8: Comparison of numerical simulation- double bracket type-reversed-cyclic - a / d ratio $=1.42$.

$\rho_{x} \%$	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	Tensile Component		Compression Component		Failure Mode	Bracket Infl.
		$\begin{gathered} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{gathered}$	$\begin{gathered} \delta_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\begin{gathered} \delta_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$		
0.2	1.42	626	2.01	1146	1.44	Flexural	None
0.4		794	2.02	1472	1.42	Flexural	None
0.8		1018	2.03	1865	1.43	Flexural	None

Figure B-16: Load-displacement response-double bracket type-monotonic compression - a / d ratio $=1.42$: (a) $\rho_{x}=0.2 \%$, (b) $\rho_{x}=0.4 \%$ \& (c) $\rho_{x}=0.8 \%$.

- The load capacities increase by 27% and 28% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively subjected to cyclic tension.
- The load capacities increase by 28% and 27% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively subjected to cyclic compression.
a / d ratio $=1.11$

$\rho_{x} \%$	Numerical Model	Crack Pattern
0.2		
0.4		
0.8		

Figure B-17: Numerical model and crack pattern-double bracket type-reversed-cyclic - a / d ratio $=1.11$.

Table B-9: Comparison of numerical simulation- double bracket type-reversed-cyclic - a / d ratio $=1.11$.

$\boldsymbol{\rho}^{\text {x } \%}$	a / d ratio	Tensile Component		Compression Component		Failure Mode	Bracket Infl.
		$\begin{gathered} \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \end{gathered}$	$\begin{gathered} \delta_{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} P_{t} \\ (K N) \end{gathered}$	$\begin{gathered} \delta_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$		
0.2	1.11	843	1.48	1490	0.94	Flexural	None
0.4		1011	1.45	1763	0.94	Flexural	None
0.8		1138	1.44	2043	0.94	Shear	None

Figure B-18: Load-displacement response-double bracket type-monotonic compression - a / d ratio $=1.11$: (a) $\rho_{x}=0.2 \%$, (b) $\rho_{x}=0.4 \%$ \& (c) $\rho_{x}=0.8 \%$.

- The load capacities increase by 20% and 13% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively subjected to cyclic tension.
- The load capacities increase by 18% and 16% when the ρ_{x} is increased from 0.2 to 0.4% and 0.4 to 0.8% respectively subjected to cyclic compression.

Appendix C Nonlinear Finite Element Analysis of Studded Bracket Anchorages

In this appendix, the following simulation results are presented: the nonlinear load vs. deflection responses, the peak loads, the failure displacements, the initial stiffnesses, the failure mechanisms and the influence of the bracket zone.

Subjected to Monotonic Tension

a / d ratio $=1.68, \rho_{x}=0.2 \%$

Figure C-1: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.2 \%$.

Table C-1: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d

ratio $=1.68, \rho_{x}=0.2 \%$							
$\boldsymbol{h}_{\boldsymbol{e}}$	$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $(\mathbf{K N})$	$\boldsymbol{\delta}_{\mathbf{u}}$ $(\mathbf{m m})$	Stiff $(\mathbf{K N} / \mathbf{m m})$	Failure Mode	Bracket Infl.	
\mathbf{M}	1.68	496	1.19	1363	Flexural	None	
		1.19	1369	Flexural	None		

Figure C-2: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.68, \rho_{x}=0.2 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-3: Numerical model and crack pattern-studded bracket type-monotonic tension -a/d ratio $=1.68, \rho_{x}=0.4 \%$.

Table C-2: Comparison of numerical simulation-studded bracket type-monotonic tension -a/d ratio $=1.68, \rho_{x}=0.4 \%$.

$\boldsymbol{h}_{\boldsymbol{e}}$	$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $\mathbf{(K N)})$	$\boldsymbol{\delta}_{\mathbf{u}}$ $(\mathbf{m m})$	Stiff (KN/mm)	Failure Mode	Bracket Infl.
\mathbf{T}	1.68	670	1.39	1432	Flexural	None
		1.39	1437	Flexural	None	

Figure C-4: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.68, \rho_{x}=0.4 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-5: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.8 \%$.

Table C-3: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.8 \%$.

$\boldsymbol{h}_{\boldsymbol{e}}$	$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $\mathbf{(K N)})$	$\boldsymbol{\delta}_{\mathbf{u}}$ $(\mathbf{m m})$	Stiff $(\mathbf{K N} / \mathbf{m m})$	Failure Mode	Bracket Infl.
\mathbf{T}	1.68	876	1.39	1518	Flexural	None
		1.39	1523	Flexural	None	

Figure C-6: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.68, \rho_{x}=0.8 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-7: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.2 \%$.

Table C-4: Comparison of numerical simulation- studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.2 \%$.

$\boldsymbol{h}_{\boldsymbol{e}}$	$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $(\mathbf{K N})$	$\boldsymbol{\delta}_{\boldsymbol{u}}$ $(\mathbf{m m})$	Stiff $(\mathbf{K N} / \mathbf{m m})$	Failure Mode	Bracket Infl.
\mathbf{T}	1.42	623	1.15	1783	Flexural	None
		1.15	1788	Flexural	None	

Figure C-8: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.42, \rho_{x}=0.2 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-9: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.4 \%$.

Table C-5: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.4 \%$.

$\boldsymbol{h}_{\boldsymbol{e}}$	$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $\mathbf{(K N)})$	$\boldsymbol{\delta}_{\mathbf{u}}$ $(\mathbf{m m})$	Stiff $(\mathbf{K N} / \mathbf{m m})$	Failure Mode	Bracket Infl.
\mathbf{T}	1.42	809	1.15	1843	Flexural	None
		1.15	1864	Flexural	None	

Figure C-10: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.42, \rho_{x}=0.4 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-11: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.8 \%$.

Table C-6: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d

h_{e}	$\begin{aligned} & \text { (} a / d \text {) } \\ & \text { ratio } \end{aligned}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
T	1.42	1010	1.14	1935	Flexural	None
B		1004	1.35	1941	Flexural	None

Figure C-12: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.42, \rho_{x}=0.8 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-13: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.2 \%$.

Table C-7: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d

h_{e}	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ \text { (KN) } \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
T	1.11	825	0.93	2232	Flexural	None
B		806	1.14	2243	Flexural	None

Figure C-14: Load-displacement response- studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.11, \rho_{x}=0.2 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-15: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.4 \%$.

Table C-8: Comparison of numerical simulation-studded bracket-monotonic tension- $a / d=1.11$, $\rho_{x}=0.4 \%$.

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
T	1.11	1016	1.14	2275	Flexural	None
B		988	1.34	2291	Flexural	None

Figure C-16: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.11, \rho_{x}=0.4 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-17: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.8 \%$.

Table C-9: Comparison of numerical simulation- studded bracket type-monotonic tension - a / d

$\boldsymbol{h}_{\boldsymbol{e}}$		$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $(\mathbf{K N})$	$\boldsymbol{\delta}_{\mathbf{u}}$ $(\mathbf{m m})$	Stiff $(\mathbf{K N} / \mathbf{m m})$	Failure Mode
Bracket Infl.						
\mathbf{T}	1.11	1192	1.34	2333	Flexural	None
		1.34	2357	Flexural	None	

Figure C-18: Load-displacement response-studded bracket-monotonic compression- $a / d=1.11$,

$$
\rho_{x}=0.8 \% .
$$

- The load and the displacement capacities remain the same for all the h_{e}.

Subjected to Monotonic Compression

a / d ratio $=1.68, \rho_{x}=0.2 \%$

Figure C-19: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.2 \%$.

Table C-10: Comparison of numerical simulation-studded bracket type-monotonic tension $-a / d$

$\boldsymbol{h}_{\boldsymbol{e}}$		$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $(\mathbf{K N})$	$\boldsymbol{\delta}_{\mathbf{u}}$ $(\mathbf{m m})$	Stiff $(\mathbf{K N} / \mathbf{m m})$	Failure Mode
\mathbf{M}	1.68	923	1.99	Bracket Infl.		
\mathbf{M}		1.99	1601	Flexural	None	
\mathbf{B}			Flexural	None		

Figure C-20: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.11, \rho_{x}=0.2 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-21: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.4 \%$.

Table C-11: Comparison of numerical simulation-studded bracket type-monotonic tension $-a / d$

h_{e}	a / d ratio	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ (\mathrm{KN} / \mathrm{mm}) \end{gathered}$	Failure Mode	Bracket Infl.
M	1.68	1128	1.79	1652	Flexural	None
B		1138	1.79	1657	Flexural	None

Figure C-22: Load-displacement response-studded bracket type-monotonic tension - a / d ratio $=$ $1.68, \rho_{x}=0.4 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-23: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.8 \%$.

Table C-12: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d

h_{e}	a/d ratio	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ \text { (KN) } \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ \text { (KN/mm) } \end{gathered}$	Failure Mode	Bracket Infl.
M	1.68	1493	1.79	1733	Flexural	None
B		1507	1.79	1742	Flexural	None

Figure C-24: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.68, \rho_{x}=0.8 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-25: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.2 \%$.

Table C-13: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d

$\boldsymbol{h}_{\boldsymbol{e}}$		$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $(\mathbf{K N})$	$\boldsymbol{\delta}_{\mathbf{u}}$ $(\mathbf{m m})$	Stiff $(\mathbf{K N} / \mathbf{m m})$	Failure Mode
Bracket Infl.						
\mathbf{M}	1.42	1084	1.34	2099	Flexural	None
		1.34	2104	Flexural	None	

Figure C-14: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.42, \rho_{x}=0.2 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-27: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.4 \%$.

Table C-14: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d

$\boldsymbol{h}_{\boldsymbol{e}}$		$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $(\mathbf{K N})$	$\boldsymbol{\delta}_{\mathbf{u}}$ $(\mathbf{m m})$	Stiff $(\mathbf{K N} / \mathbf{m m})$	Failure Mode
Bracket Infl.						
\mathbf{M}	1.42	1427	1.34	2147	Flexural	None
		1.34	2156	Flexural	None	

Figure C-28: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.42, \rho_{x}=0.4 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-29: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.8 \%$.

Table C-15: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d

h_{e}	$\begin{gathered} a / d \\ \text { ratio } \end{gathered}$	$\begin{gathered} \mathbf{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ (\mathrm{KN} / \mathrm{mm}) \end{gathered}$	Failure Mode	Bracket Infl.
M	1.42	1798	1.34	2224	Flexural	None
B		1806	1.34	2234	Flexural	None

Figure C-30: Load-displacement response-studded bracket-monotonic compression- a / d ratio $=$ $1.42, \rho_{x}=0.8 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-31: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.2 \%$.

Table C-16: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d

$\boldsymbol{h}_{\boldsymbol{e}}$	$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $(\mathbf{K N})$	$\boldsymbol{\delta}_{\mathbf{u}}$ $(\mathbf{m m})$	Stiff $(\mathbf{K N} / \mathbf{m m})$	Failure Mode	Bracket Infl.
	1.11	1543	0.94	2700	Flexural	None
		0.94	2716	Flexural	None	

Figure C-32: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.11, \rho_{x}=0.2 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-33: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.4 \%$.

Table C-17: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d

$\boldsymbol{h}_{\boldsymbol{e}}$		$\boldsymbol{a} / \boldsymbol{d}$ ratio	$\mathbf{P}_{\mathbf{u}}$ $(\mathbf{K N})$	$\boldsymbol{\delta}_{\mathbf{u}}$ $(\mathbf{m m})$	Stiff $(\mathbf{K N} / \mathbf{m m})$	Failure Mode
Bracket Infl.						
\mathbf{T}	1.11	1844	1.13	2726	Shear	None
\mathbf{n}		1.13	2748	Shear	None	

Figure C-34: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.11, \rho_{x}=0.4 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-35: Numerical model and crack pattern-studded bracket type-monotonic tension $-a / d$ ratio $=1.11, \rho_{x}=0.8 \%$.

Table C-18: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d

h_{e}	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	$\begin{gathered} \mathrm{P}_{\mathrm{u}} \\ (\mathrm{KN}) \end{gathered}$	$\begin{gathered} \delta_{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Stiff } \\ (\mathrm{KN} / \mathrm{mm}) \end{gathered}$	Failure Mode	Bracket Infl.
T	1.11	2153	1.12	2779	Shear	None
B		2168	1.12	2795	Shear	None

Figure C-36: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.11, \rho_{x}=0.8 \%$.

- The load and the displacement capacities remain the same for all the h_{e}.

Subjected to Reversed-Cyclic Loads

a / d ratio $=1.68, \rho_{x}=0.2 \%$

Figure C-37: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.2 \%$.

Figure C-38: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.68, \rho_{x}=0.2 \%$.

Table C-19: Comparison of numerical simulation-studded bracket type-monotonic tension $-a / d$ ratio $=1.68, \rho_{x}=0.2 \%$.

h_{e}	a / d ratio	Tensile Component				Compression Component				Failure Mode	Bracket Inf.
		$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{array}$	$\mathrm{P}_{\mathrm{t}-\mathrm{M} / \mathrm{B}}$	$\begin{gathered} \delta_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-M/B }}$	$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{C}-\mathrm{M} / \mathrm{B}}$	$\begin{array}{\|c\|} \hline \delta_{c} \\ (\mathrm{~mm}) \end{array}$	$\delta_{C-M / B}$		
T	1.68	490	1.00	2.50	1.00	873	0.99	2.24	1.00	Flexural	None
B		491		2.50		878		2.24		Flexural	None

Tensile component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Compression component's result

- The load and the displacement capacities remain the same for all the h_{e}.
a / d ratio $=1.68, \rho_{x}=0.4 \%$

Figure C-39: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.4 \%$.

Figure C-40: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.68, \rho_{x}=0.4 \%$.

Table C-1: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.4 \%$.

h_{e}	a/d ratio	Tensile Component				Compression Component				Failure Mode	Bracket Inf.
		$\begin{gathered} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\text {t-T/ }}$	$\begin{gathered} \delta_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\begin{array}{\|c\|} \hline \mathbf{P t}_{\mathbf{t}} \\ (\mathrm{KN}) \end{array}$	$\mathrm{P}_{\text {c-T/ }}$	$\begin{gathered} \delta_{c} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {C-T/B }}$		
T	1.68	660	0.99	2.00	1.00	1100	0.98	1.74	1.00	Flexural	None
B		665		2.00		1120		1.74		Flexural	None

Tensile component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Compression component's result

- The load and the displacement capacities remain the same for all the h_{e}.
a / d ratio $=1.68, \rho_{x}=0.8 \%$

Figure C-41: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.68, \rho_{x}=0.8 \%$.

Figure C-42: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.68, \rho_{x}=0.8 \%$.

Table C-21: Comparison of numerical simulation-studded bracket type-monotonic tension $-a / d$ ratio $=1.68, \rho_{x}=0.8 \%$.

h_{e}	a/d ratio	Tensile Componen				Compression Component				Failure Mode	Bracket Inf.
		$\begin{gathered} \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{t} \text { - } / \text { / }}$	$\begin{gathered} \delta_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\mathrm{t}_{\mathrm{t}-\mathrm{T}}$	$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \\ \hline \end{array}$	$\mathrm{P}_{\mathrm{CT} \text { T/ }}$	$\begin{gathered} \delta_{c} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/ } / \mathrm{B}}$		
T	1.68	846	0.97	2.00	1.00	1438	0.99	1.74	1.00	Flexural	Non
B		870		2.00		1452		1.74		Flexural	Non

Tensile component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Compression component's result

- The load and the displacement capacities remain the same for all the h_{e}.

h_{e}	Numerical Model	Crack Pattern
Top (T)		
Bottom (B)		

Figure C-43: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.2 \%$.

Figure C-44: Load-displacement response-studded bracket type-monotonic tension $-a / d$ ratio $=$ $1.42, \rho_{x}=0.2 \%$.

Table C-22: Comparison of numerical simulation-studded bracket type-monotonic tension $-a / d$ ratio $=1.42, \rho_{x}=0.2 \%$.

h_{e}	a / d ratio	Tensile Component				Compression Component				Failure Mode	Bracket Inf.
		$\begin{array}{\|c\|} \hline P_{t} \\ (K N) \\ \hline \end{array}$	$\mathrm{P}_{\text {t-T/ }}$	$\begin{gathered} \delta_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{C} \text { - } / \text { / }}$	$\begin{gathered} \delta_{c} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/B }}$		
T	1.42	623	1.02	2.01	0.99	1137	0.99	1.45	1.00	Flexural	None
B		614		2.04		1146		1.44		Flexural	None

Tensile component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Compression component's result

- The load and the displacement capacities remain the same for all the h_{e}.
a / d ratio $=1.42, \rho_{x}=0.4 \%$

Figure C-45: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.4 \%$.

Figure C-46: Load-displacement response-studded bracket type-monotonic tension - a / d ratio $=$ $1.42, \rho_{x}=0.4 \%$.

Table C-23: Comparison of numerical simulation-studded bracket type-monotonic tension $-a / d$ ratio $=1.42, \rho_{x}=0.4 \%$.

h_{e}	a / d ratio	Tensile Component				Compression Component				Failure Mode	Bracket Inf.
		$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{array}$	$\mathrm{P}_{\mathrm{t}-\mathrm{T} / \mathrm{B}}$	$\begin{gathered} \boldsymbol{\delta}_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{CT} \text { T/ } / \mathrm{B}}$	$\begin{gathered} \hline \delta_{c} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/ } / \mathrm{B}}$		
T	1.42	786	1.00	2.02	1.00	1472	1.00	1.43	1.00	Flexural	None
B		783		2.02		1474		1.43		Flexural	None

Tensile component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Compression component's result

- The load and the displacement capacities remain the same for all the h_{e}.
a / d ratio $=1.42, \rho_{x}=0.8 \%$

Figure C-47: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.8 \%$.

Figure C-48: Load-displacement response-studded bracket type-monotonic tension - a / d ratio $=$ $1.42, \rho_{x}=0.8 \%$.

Table C-24: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d ratio $=1.42, \rho_{x}=0.8 \%$.

h_{e}	$\begin{aligned} & a / d \\ & \text { ratio } \end{aligned}$	Tensile Component				Compression Component				Failure Mode	Bracket Inf.
		$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{array}$		${ }_{B}^{\boldsymbol{\delta}_{\mathrm{t}}}(\mathrm{~mm})$	$\delta_{\text {t-T }}$	$\begin{gathered} \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{gathered}$	$\mathrm{P}_{\text {c-T/ } / \mathrm{B}}$	$\begin{gathered} \delta_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/ } / \mathrm{B}}$		
T	1.42	1006	1.02	2.04	1.00	1852	0.99	1.43	1.00	Flex	Non
B		99		2.03		1867		1.43		Flexural	Non

Tensile component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Compression component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Figure C-49: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.2 \%$.

Figure C-50: Load-displacement response-studded bracket type-monotonic tension - a / d ratio $=$ 1.11, $0.2 \rho_{x} \%$.

Table C-25: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.2 \%$.

h_{e}	a / d ratio	Tensile Component				Compression Component				Failure Mode	Bracket Inf.
		$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \\ \hline \end{array}$	$\mathrm{P}_{\mathrm{t} \text {-T }}$	$\begin{gathered} \delta_{t} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \end{array}$	$\mathrm{P}_{\mathrm{CT} \text { T/ }}$	$\begin{gathered} \delta_{c} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/B }}$		
T	1.11	835	1.03	1.48	1.02	1486	1.00	0.94	1.00	Flexural	None
B		810		1.46		1487		0.94		Flexural	None

Tensile component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Compression component's result

- The load and the displacement capacities remain the same for all the h_{e}.
a / d ratio $=1.11, \rho_{x}=0.4 \%$

Figure C-51: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.4 \%$.

Figure C-52: Load-displacement response-studded bracket type-monotonic tension - a / d ratio $=$ $1.11, \rho_{x}=0.4 \%$.

Table C-26: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.4 \%$.

h_{e}	a / d ratio	Tensile Component				Compression Component				Failure Mode	Bracket Inf.
		$\begin{array}{\|c\|} \hline \mathbf{P}_{\mathrm{t}} \\ (\mathrm{KN}) \end{array}$	$\mathbf{P}_{\text {t-T/B }}$	$\begin{gathered} \delta_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/ }}$	$\begin{gathered} \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{C} \text { - } / \text { / }}$	$\begin{gathered} \hline \delta_{\mathrm{c}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {c-T/ } / \mathrm{B}}$		
T	1.1	999	1.03	1.45	1.00	1754	0.99	0.94	1.00	exur	Non
B		970		1.44		176		0.94		xu	None

Tensile component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Compression component's result

- The load and the displacement capacities remain the same for all the h_{e}.
a / d ratio $=1.11, \rho_{x}=0.8 \%$

Figure C-53: Numerical model and crack pattern-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.8 \%$.

Figure C-54: Load-displacement response-studded bracket type-monotonic tension - a / d ratio $=$ $1.11, \rho_{x}=0.8 \%$.

Table C-27: Comparison of numerical simulation-studded bracket type-monotonic tension - a / d ratio $=1.11, \rho_{x}=0.8 \%$.

h_{e}	a / d ratio	Tensile Component				Compression Component				Failure Mode	Bracket Inf.
		$\begin{gathered} \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\text {t-T/ }}$	$\begin{gathered} \boldsymbol{\delta}_{\mathrm{t}} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {t-T/B }}$	$\begin{gathered} \mathbf{P}_{\mathbf{t}} \\ (\mathrm{KN}) \end{gathered}$	$\mathrm{P}_{\mathrm{CT} \text { / } / \mathrm{B}}$	$\begin{gathered} \delta_{c} \\ (\mathrm{~mm}) \end{gathered}$	$\delta_{\text {C-T/B }}$		
T	1.11	1176	1.05	1.44	1.00	2275	0.99	1.17	1.00	Shear	None
B		1117		1.44		2291		1.17		Shear	None

Tensile component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Compression component's result

- The load and the displacement capacities remain the same for all the h_{e}.

Appendix D Hand Calculation Details

Pile Cap Sizing by CRSI

Concrete Reinforcing Steel Institute (CRSI) publishes a design guide for pile system (CRSI 2015). Similar dimensions are used in this study. Tables D-1 and D-2 provide the pile cap parameters for 80 and 60 -ton piles respectively.

Table D-1: Minimum rebar \% for 80-Ton steel pile, $f_{c}^{\prime}=20.7 \mathrm{MPa}, f_{y}=414 \mathrm{MPa}$ (CRSI)

No. of Piles	Length $\mathbf{m m}($ in $)$	Breadth $\mathbf{m m}($ in $)$	Depth $\mathbf{m m}($ in $)$	Minimum Steel $\mathbf{m m}^{2}\left(\right.$ in $\left.^{2}\right)$	Rebar $\%$
2	$1980(77.95)$	$1070(42.13)$	$965.2(38)$	$2570(3.98)$	0.25

Table D-2: Minimum rebar \% for 60-Ton steel pile, $f_{c}^{\prime}=20.7 \mathrm{MPa}, f_{y}=414 \mathrm{MPa}$ (CRSI)

No. of Piles	Length $\mathbf{m m}(\mathrm{in})$	Breadth $\mathbf{m m}($ in $)$	Depth $\mathbf{m m}($ in $)$	Minimum Steel $\mathbf{m m}^{2}\left(\right.$ in $\left.^{2}\right)$	Rebar $\%$
2	$1680(66.14)$	$765(30.12)$	$1100(43.31)$	$1690(2.62)$	0.2

Minimum Longitudinal Reinforcement for One-way Slabs

Width of a pile $\operatorname{cap}(B)=800 \mathrm{~mm}$
Depth of a pile cap $(D)=600 \mathrm{~mm}$
Gross Area of pile cap $\left(A_{g}\right)=B \times D=480000 \mathrm{~mm}^{2}$
Minimum longitudinal reinforcement $\left(A_{s, \text { min }}\right)=0.002 \times A_{g} \quad(\mathrm{ACl} 318-19 \quad$ Cl.7.6.1.1 $)$

$$
=960 \mathrm{~mm}^{2}\left(1.49 \mathrm{in}^{2}\right)
$$

The minimum reinforcement is 0.2% of the gross sectional area for one-way slab.

Global Capacity Predictions using Design Codes

If the simulated results of the helical foundations are smaller than the global concrete foundation checks of the pile caps and the helical piles, it demonstrates that the connection capacity governs. The results from different prediction approaches (i.e., sectional method, one-way and two-way shear method, and STM) are compared with the simulation results to assess the influence of helical pile anchorages.

Diab's Foundation Specimens

Sectional Approach

The flexural capacity of the foundations is calculated according to ACI318-19. Detailed calculations are shown for the Diab foundation specimen T2. The h_{e} has no influence on the load capacity calculations in this method.

Width of a grade beam $(B)=500 \mathrm{~mm}$
Depth of a grade beam $(D)=500 \mathrm{~mm}$
Effective depth of the grade beam $(d)=450 \mathrm{~mm}$
Effective depth of the compression rebar (d^{\prime}) $=50 \mathrm{~mm}$
Area of tensile rebar $\left(A_{s}\right)=800 \mathrm{~mm}$
Area of compression rebar $\left(A_{s}^{\prime}\right)=400 \mathrm{~mm}$
Compressive stress of concrete $\left(f^{\prime}{ }_{c}\right)=30 M P a$
Yield strength of steel $\left(f^{\prime} y\right)=500 \mathrm{MPa}$
Elastic modulus of steel $\left(E_{s}\right)=200 \mathrm{GPa}$
Yield strain of tension steel $\left(\varepsilon_{s}\right)=2.07 \times 10^{-3}$
Yield strain of compression steel $\left(\varepsilon_{s}^{\prime}\right)=2.07 \times 10^{-3}$
Ultimate strain of concrete $\left(\varepsilon_{u}\right)=3 \times 10^{-3}$
Neutral axis (c) =?
$a=\beta \times c \quad$ where, $\beta=0.85$
Assuming the compressive bars don't yield, and the section is balanced,

$$
\begin{equation*}
C_{c}+C_{s}+T=0 \tag{D-1}
\end{equation*}
$$

where,
Compressive force of concrete $\left(C_{c}\right)=0.85 \times f^{\prime}{ }_{c} \times B \times a=10837.5 \times c$
Compressive strength of compression bar $\left(C_{s}\right)=A_{s}^{\prime} \times 200000 \times \frac{0.003(c-50)}{c}$
Tensile strength of $\operatorname{bar}(T)=A_{s} \times f^{\prime}{ }_{y}$
Substituting the values in Equation D-1 and solving, we get $c=42 \mathrm{~mm}$ (1.65") , a $=35.7 \mathrm{~mm}$ (1.40")

Checking the strain in the compression and the tension rebars
$\varepsilon_{s}^{\prime}=\frac{\left(\varepsilon_{u} \times\left(c-d^{\prime}\right)\right.}{c}=0.6 \times 10^{-3}<2.07 \times 10^{-3}$
(No yielding) [ok]
$\varepsilon_{s}=\frac{\left(\varepsilon_{u} \times(d-c)\right)}{c}=29 \times 10^{-3}<2.07 \times 10^{-3}$
(Yielding) [ok]
Taking moment about extreme compression fiber,
Ultimate Moment $\left(M_{u}\right)=C_{c} \times a / 2+C_{s} \times d^{\prime}+T \times d=174 \mathrm{kNm}$

The foundation experience maximum moment in the mid-span.
The ultimate load capacity $\left(P_{u}\right)=2 \times M / L=436 \mathrm{kN}$
where,
$L=$ span of beam $=800 \mathrm{~mm}$ (31.5")

One-Way and Two-Way Shear Approach

The one-way and two-way shear capacity of the foundations are calculated according to ACl 318 19.

One-way shear

The total nominal one-way shear capacity is the sum of the concrete and stirrup capacities, as per Equation D-2.

$$
\begin{equation*}
V_{n 1}=V_{c 1}+V_{s 1} \tag{D-2}
\end{equation*}
$$

where,
$\mathrm{V}_{\mathrm{n} 1}=$ Total nominal one-way shear capacity (in Ibs)
$\mathrm{V}_{\mathrm{c} 1}=$ Concrete contribution to the one-way shear capacity (in lbs)
$\mathrm{V}_{\mathrm{s} 1}=$ Stirrups contribution to the one-way shear capacity (in Ibs)
The contribution of nonprestressed normal-weight concrete is calculated as per Equation D-3.

$$
\begin{equation*}
V_{c 1}=2 \times \sqrt{f_{c}^{\prime}} \times B \times d \tag{D-3}
\end{equation*}
$$

where,
$f_{c}^{\prime}=$ Concrete compressive strength (in psi)
$B=$ Out-of-plane beam width (in inches)
$d=$ Beam depth (i.e. vertical distance from the top of the beam to the longitudinal reinforcement in inches)
The stirrups contribution is calculated as per Equation D-4.

$$
\begin{equation*}
V_{s 1}=\frac{A_{v} \times f_{y}^{\prime} \times d}{s} \tag{D-4}
\end{equation*}
$$

where,
$A_{v}=$ Total area of all vertical stirrup legs (in inches ${ }^{2}$)
$f_{y}^{\prime}=$ Yield strength of the stirrups (in psi)
$d=$ Beam depth (in inches)
$s=$ Stirrups spacing (in inches)

As an example, the calculation of one-way shear strength for the Diab foundations is carried out below. The values of all variables were converted to U.S. customary units to be used in the equations.

Using Equation D-3 and D-4,

One-way shear capacity of concrete $\left(V_{c 1}\right)=2 \sqrt{4351} \times 19.7 \times 17.7=46000 \mathrm{lbs}=205 \mathrm{kN}$
One-way shear capacity of stirrups $\left(V_{s 1}\right)=\frac{0.112 \times 76870 \times 17.7}{7.87}=19363 \mathrm{lbs}=86.2 \mathrm{kN}$
The total one-way shear capacity of the beam is calculated as Equation D-2.

$$
V_{n 1}=V_{c 1}+V_{s 1}=65.36 \text { kips }=291 \mathrm{kN}
$$

Load capacity $\left(P_{1-\text { way shear }}\right)=2 \times V_{n 1}=131$ kips $=582 \mathrm{kN}$

Two-way shear

The total nominal two-way shear capacity is the sum of the concrete and stirrup capacities, as per Equation D-5.

$$
\begin{equation*}
V_{n 2}=V_{c 2}+V_{s 2} \tag{D-5}
\end{equation*}
$$

where,
$V_{n 2}=$ Total nominal two-way shear capacity (in lbs)
$V_{c 2}=$ Concrete contribution to the two-way shear capacity (in Ibs)
$V_{s 2}=$ Stirrups contribution to the two-way shear capacity (in lbs) which is same as Equation D4.

The contribution of non-prestressed normal-weight concrete is calculated as the minimum of the three formulations in Equation D-6.

$$
V_{c 2}=\min . \text { of }\left\{\begin{array}{c}
\left(2+\frac{4}{\beta}\right) \lambda \times \sqrt{f_{c}^{\prime}} \times b_{o} \times d \tag{D-6}\\
\left(\frac{\alpha_{s *} d}{B}+2\right) \times \lambda \times \sqrt{f_{c}^{\prime}} \times b_{o} \times d \\
4 \times \lambda \times \sqrt{f_{c}^{\prime}} \times b_{o} \times d
\end{array}\right.
$$

where,
$\lambda=1$ for normal-weight concrete $\alpha s=40$ for interior column
$b_{o}=$ Perimeter of a rectangular section $\mathrm{d} / 2$ away from the edges of the column

As an example, the calculation of two-way shear strength for foundation with the ρ_{x} of 0.4% is carried out below. The values of all variables are converted to U.S. customary units to be used in the equations.

The foundations do not have shear stirrups; therefore, the shear strength of the beams are the shear resistance of the concrete.

Using governing Equation D-6,

Two-way shear capacity $\left(V_{c 2}\right)=4 \times \sqrt{4351} \times 4 \times(1.77+17.7) \times 17.7=363709 \mathrm{lbs}=$ 1619 kN

Two-way shear capacity of stirrups $\left(V_{s 2}\right)=\frac{0.112 \times 76870 \times 17.7}{7.87}=19363 \mathrm{lbs}=86.2 \mathrm{kN}$

The total one-way shear capacity of the beam is calculated as Equation D-5.

$$
V_{n 2}=V_{c 2}+V_{s 2}=383 \text { kips }=1705 \mathrm{kN}
$$

Load capacity $\left(P_{2 \text {-way shear }}\right)=2 \times V_{n 2}=766$ kips $=3410 \mathrm{kN}$

Strut and Tie Method (STM)

Strut and Tie Modelling (STM) is a simple method which represents complex stress patterns with truss models. STM has compression struts and tension ties. Sectional method underestimates the capacity of deep beams such as pile caps and grade beam, to which Euler-Bernoulli theorem does not apply. The foundations in this study are all deep in nature and the STM should be used to estimate their capacities, not the sectional method as discussed above. The STM is valid only for the compression loading because concrete does take tension, a conservative assumption. Detailed calculations are shown for the Diab foundation specimen T2 as shown in Fig D-1.

Figure D-1: Strut and Tie Model for one sample foundation.

Step 1: Find member forces

The truss member forces are drawn in Fig D-1. AB and BC members are in compression while AC member is in tension.

Step 2: Find the load capacity based on tie capacity
Using A23.3-14,
For tie AC,
$T=\emptyset_{s} \times A_{s} \times f^{\prime}{ }_{y}=1 \times 800 \times 500 / 1000$
where, $T=$ Tie capacity
$A_{s}=$ Bottom reinforcement $=800 \mathrm{~mm}^{2}$
$\emptyset_{s}=1$ (Ultimate Capacity)
or, $0.96 \times P=1 \times 800 \times 500 / 1000$
Therefore, $P=416 \mathrm{kN}$

Step 3: Check nodal zone stresses

Node B - Bearing Check
Bearing strength at node $\mathrm{B}\left(B_{\max }\right)=0.85 \times f^{\prime}{ }_{c} \times A_{\text {bracket }}=0.85 \times 30 \times 165 \times 165$

$$
=694 \mathrm{kN}>P \text { [ok] }
$$

where,
$A_{\text {beam }}=$ Cross-section of supporting beam $=260 \times 260$
Node A - Bearing Check

Bearing strength at node $\mathrm{A}\left(B_{\max }\right)=0.75 \times f^{\prime}{ }_{c} \times A_{\text {brac }}=0.75 \times 20.7 \times 260 \times 260$

$$
=1050 \mathrm{kN}>\mathrm{P} / 2 \text { [ok] }
$$

where,
$A_{\text {brac }}=$ Cross-section of bracket $=260 \times 260$
Compressive concrete strength in the nodal region $\mathrm{B}\left(s_{\max }\right)=0.75 \times f^{\prime} c \times A_{s m}$
where,
$A_{s m}=$ Beam width $\times(2 \times$ concrete cover $)=500 \times 140$
$s_{\max }=0.75 \times 30 \times 500 \times 140=1740 k N>0.96 P[\mathrm{ok}]$

Step 4: Check inclined strut capacity

The strut capacity is equated to the strut member force to obtain the strut capacity, as shown in Fig D-2 and the Equations D-7, D-8 and D-9.

Figure D-2: Strut dimensions to calculate its capacity.

$$
\begin{equation*}
\varepsilon_{s}=\frac{T}{A_{s} \times E_{s}} \tag{D-7}
\end{equation*}
$$

where,
$\varepsilon_{s}=$ tensile strength
$T=$ tie member force $=0.96 \times P$
$A_{s}=$ area of tie reinforcement $=800 \mathrm{~mm}^{2}$

$$
\begin{gather*}
\varepsilon_{1}=\varepsilon_{s}+\left(\varepsilon_{s}+2 \times 10^{-3}\right) \times \cot ^{2} 27.5 \tag{D-8}\\
f_{c u}=\text { limiting compressive strength }=\frac{f_{c}^{\prime}}{0.8+170 \times \varepsilon_{1}} \tag{D-9}
\end{gather*}
$$

$s_{\text {max }}=\emptyset_{c} \times A_{c u} \times f_{c u}=1.08 P$ (Strut capacity)
where,
$\emptyset_{c}=$ reduction factor $=1$ for ultimate capacity
$A_{c u}=L_{B} \times W_{B A}$
By equating Equations D-7, D-8 and D-9,
Shear load capacity $(P)=754 k N(179$ kips $)$
The minimum of the tie and strut capacities govern the ultimate capacity with flexure or shear/compression failure mode, respectively. Since flexure capacity is governing, the load capacity of the beam is 413 kN (92.9 kips).

Foundations in this Study

Sectional Approach

The flexural capacity of the foundations are calculated according to $\mathrm{ACl} 318-19$. Detailed calculations are shown for the foundation beam with a ρ_{x} of 0.4%, and an a / d ratio of 1.42. The h_{e} has no influence on the load capacity calculations in this method.

Width of a pile cap $(B)=800 \mathrm{~mm}$
Depth of a pile cap $(D)=600 \mathrm{~mm}$
Effective depth of the pile cap $(d)=530 \mathrm{~mm}$
Effective depth of the compression rebar (d^{\prime}) $=70 \mathrm{~mm}$
Area of tensile rebar $\left(A_{s}\right)=$ Area of compression rebar $\left(A_{s}^{\prime}\right)=1995 \mathrm{~mm}$
Compressive stress of concrete $\left(f^{\prime}{ }_{c}\right)=20.7 M P a$
Yield strength of steel $\left(f^{\prime} y\right)=414 M P a$
Elastic modulus of steel $\left(E_{s}\right)=200 G P a$
Yield strain of tension steel $\left(\varepsilon_{s}\right)=2.07 \times 10^{-3}$
Yield strain of compression steel $\left(\varepsilon_{s}^{\prime}\right)=2.07 \times 10^{-3}$
Ultimate strain of concrete $\left(\varepsilon_{u}\right)=3 \times 10^{-3}$
Neutral axis (c) = ?
$a=\beta \times c \quad$ where, $\beta=0.85$
Assuming the compressive bars don't yield, and the section is balanced,

$$
\begin{equation*}
C_{c}+C_{s}+T=0 \tag{D-10}
\end{equation*}
$$

where,
Compressive force of concrete $\left(C_{c}\right)=0.85 \times f^{\prime}{ }_{c} \times B \times a=11964.6 \times{ }_{c}$
Compressive strength of compression bar $\left(C_{s}\right)=A_{s}^{\prime} \times 200000 \times \frac{0.003(c-70)}{c}$
Tensile strength of $\operatorname{bar}(T)=A_{s} \times f^{\prime} y$
Substituting the values in Equation D-10 and solving, we get
$c=69.6 \mathrm{~mm}$ (2.74") , $\mathrm{a}=59.2 \mathrm{~mm}$ (2.33")
Checking the strain in the compression and the tension rebars
$\varepsilon_{s}^{\prime}=\frac{\left(\varepsilon_{u} \times\left(c-d^{\prime}\right)\right.}{c}=0.1 \times 10^{-3}<2.07 \times 10^{-3} \quad$ (No yielding) [ok]
$\varepsilon_{s}=\frac{\left(\varepsilon_{u} \times(d-c)\right)}{c}=28 \times 10^{-3}<2.07 \times 10^{-3} \quad$ (Yielding) [ok]
Taking moment about extreme compression fiber,
Ultimate Moment $\left(M_{u}\right)=C_{c} \times a / 2+C_{s} \times d^{\prime}+T \times d=416 \mathrm{kNm}$
The foundation experience maximum moment in the mid-span.

The ultimate load capacity $\left(P_{u}\right)=2 \times M / L=1616 k N$
where,
$L=$ span of beam $=515 \mathrm{~mm}$ (20.28")
Table D-3 gives the moment capacity of the pile caps for $0.2,0.4$ and $0.8 \rho_{x} \%$.
Table D-3: Moment capacity for different $\rho_{x} \%$

$\boldsymbol{\rho}_{x} \%$	Moment kN.m (kips.ft)
0.20	$220(162)$
0.40	$416(307)$
0.80	$772(570)$

One-Way and Two-Way Shear Approach

The one-way and two-way shear capacity of the foundations are calculated according to ACl 318 19. Detailed calculations are shown for one of the foundations below as an example. The shear capacities of all the foundations are similar because the capacity depends on the compressive strength of concrete, width of the beam and the effective depth of the reinforcement, which are essentially the same for all the cases.

One-way shear

As an example, the calculation of one-way shear strength for the foundation in ρ_{x} of 0.4% is carried out below. The values of all variables were converted to U.S. customary units to be used in the equations.

The foundations do not have shear stirrups; therefore, the shear strength of the beams are from the shear resistance of the concrete.

Using Equation D-2,

One-way shear capacity $\left(V_{c 1}\right)=2 \sqrt{3000} \times 31.5 \times 20.9=73292 \mathrm{lbs}=327 \mathrm{kN}$
Load capacity $\left(P_{1-\text { way shear }}\right)=2 \times V_{c 1}=146.80$ kips $=653 \mathrm{kN}$

Two-way shear

As an example, the calculation of two-way shear strength for foundation with the ρ_{x} of 0.4% is carried out below. The values of all variables are converted to U.S. customary units to be used in the equations.

The foundations do not have shear stirrups; therefore, the shear strength of the beams are the shear resistance of the concrete.

Using governing Equation D-6,
Two-way shear capacity $\left(V_{c 2}\right)=4 \times \sqrt{3000} \times 4 \times(19.69+20.89) \times 20.89=742901 \mathrm{lbs}$ $=3305 \mathrm{kN}$
Load capacity $\left(P_{2-\text { way shear }}\right)=2 \times V_{c 2}=1486$ kips $=6610 \mathrm{kN}$

Strut and Tie Method (STM)

Strut and Tie Modelling (STM) is a simple method which represents complex stress patterns with truss models. STM has compression struts and tension ties. Sectional method underestimates the capacity of deep beams such as pile caps and grade beam, to which Euler-Bernoulli theorem does not apply. The foundations in this study are all deep in nature and the STM should be used to estimate their capacities, not the sectional method as discussed above. The STM is valid only for the compression loading because concrete does take tension, a conservative assumption. Detailed calculations are shown for the foundation with ρ_{x} of 0.4%, and a / d ratio of 1.42 , as shown in Fig D-3.

Figure D-3: Strut and Tie Model for one sample foundation.

Step 1: Find member forces

The truss member forces are drawn in Fig D-3. AB, BD and CD members are in compression while AC member is in tension.

Step 2: Find the load capacity based on tie capacity

Using A23.3-14,
For tie AC,
$T=\emptyset_{s} \times A_{s} \times f^{\prime}{ }_{y}=1 \times 1995 \times 414 / 1000$
where, $T=$ Tie capacity
$A_{s}=$ Bottom reinforcement $=1995 \mathrm{~mm}^{2}$
$\emptyset_{s}=1$ (Ultimate Capacity)
or, $1.12 \times P=1 \times 1995 \times 414 / 1000$

Therefore, $P=748 \mathrm{kN}$
Total load $(2 P)=1496 k N(1486$ kips $)$

Step 3: Check nodal zone stresses

Node B - Bearing Check
Bearing strength at node $\mathrm{B}\left(B_{\max }\right)=0.85 \times f^{\prime}{ }_{c} \times A_{\text {col }}=0.85 \times 20.7 \times 500 \times 500$

$$
=4400 \mathrm{kN}>P \text { [ok] }
$$

where,
$A_{\text {col }}=$ Cross-section of column $=500 \times 500$

Compressive concrete strength in the nodal region $\mathrm{B}\left(s_{\max }\right)=0.85 \times f^{\prime} c \times A_{s m}$
where,
$A_{s m}=$ Beam width $\times(2 \times$ concrete cover $)=800 \times 140$
$s_{\max }=0.85 \times 20.7 \times 800 \times 140=1507 k N>1.12 P[o k]$
Node A - Bearing Check

Bearing strength at node $\mathrm{A}\left(B_{\max }\right)=0.75 \times f^{\prime}{ }_{c} \times A_{\text {brac }}=0.75 \times 20.7 \times 260 \times 260$ $=1050 \mathrm{kN}>P$ [ok]
where,
$A_{\text {brac }}=$ Cross-section of bracket $=260 \times 260$
Compressive concrete strength in the nodal region $\mathrm{A}\left(s_{\max }\right)=0.75 \times f^{\prime} c \times A_{s m}$
where,
$A_{s m}=$ Beam width $\times(2 \times$ concrete cover $)=800 \times 140$
$s_{\max }=0.75 \times 20.7 \times 800 \times 140=1740 \mathrm{kN}>1.12 P$ [ok]
Step 4: Check inclined strut capacity

The strut capacity is equated to the strut member force to obtain the strut capacity, as shown in Fig D-4 and the Equations D-7, D-8 and D-9.

Figure D-4: Strut dimensions to calculate its capacity.
By equating Equations D-7, D-8 and D-9,
Shear load capacity $(2 P)=1207 k N(271.34$ kips $)$
The minimum of the tie and strut capacities govern the ultimate capacity with flexure or shear/compression failure mode, respectively. Since strut capacity is governing, the load capacity of the beam is 1207 kN (271.34 kips).

