Ohio Department of Transportation Research Project Fact Sheet

Innovative Evaluation of Precast, Prestressed Adjacent Box Beam Bridges

Researcher(s)	Yugesh Maharjan Suraj Dhungel Dr. Serhan Guner			
Agency	The University of Toledo			
Report Date	June 2025			
Project Number	120635			

BACKGROUND

- Ohio has approximately 30,000 bridges, about 8,000, or 27% of which are precast, prestressed adjacent box beam bridges (Figure 1).
- Accurate load rating of these bridges is essential for determining safe load-carrying capacities, posting requirements, and making informed permit decisions.
- Load rating these bridges is complex and timeconsuming due to the lack of user-friendly tools, the large number of sections used over the years, and the extensive calculations required.

Figure 1 Typical cross-section of an adjacent box beam bridge.

RESEARCH CONTEXT

- Develop a user-friendly computer tool, named 'AD-BOX,' which stands for Adjacent Box Beam Bridge Analysis and Rating.
- Develop using Visual Basic for Applications (VBA) and include in a Microsoft Excel spreadsheet to reduce the learning curve.
- Enable fast and automated load rating of simply supported precast, prestressed adjacent box beam bridges according to AASHTO LRFD (2024), AASHTO MBE (2018), and ODOT BDM (2020).
- Develop an optional feature to generate moment and shear envelopes due to the selected vehicle type on any single span simply supported bridges.

RESEARCH APPROACH

- Develop an automated computer tool with approximately 3,000 lines of VBA coding and include in a Microsoft Excel spreadsheet.
- Thoroughly test, debug, and verify AD-BOX to ensure its accuracy and reliability.
- Load rate all 15 vehicle types as required by Ohio BDM and a custom vehicle (Figure 2).

Figure 2 Vehicle types included in AD-BOX for load rating.

• Generate moment and shear envelopes due to the selected vehicle type from the list of 15 vehicle types and a custom vehicle on the simply supported bridge in both tabular and chart format.

Ohio Department of Transportation Research Project Fact Sheet

RESEARCH APPROACH

• Verify the accuracy of AD-BOX using independent hand calculations and assess its reliability by comparing it with AASHTOWare BrR for 18 sample bridges located in Ohio (Table 1).

Table 1 Verification of AD-BOX with independent hand calculations and AASHTOWare BrR for the design vehicle HL-93 (Inventory).

Non-Skewed Bridges								
No.	AD-	Hand	Ratio	BrR	Ratio			
	BOX(a)	calcs. (b)	(a/b)	(c)	(a/c)			
Single-cell Box Beam Bridges								
1	1.703	1.703	1.000	1.645	1.035			
2	1.546	1.546	1.000	1.546	1.000			
3	1.036	1.036	1.000	1.039	0.997			
4	2.258	2.258	1.000	2.275	0.993			
5	1.495	1.495	1.000	1.434	1.043			
6	1.183	1.183	1.000	1.189	0.995			
7	1.395	1.395	1.000	1.392	1.002			
		Mean	1.000		1.009			
		CV	0.01%		2.05%			

Skewed Bridges								
No.	AD-	Hand	Ratio	BrR	Ratio			
	BOX(a)	calcs. (b)	(a/b)	(c)	(a/c)			
Single-cell Box Beam Bridges								
8	1.639	1.639	1.000	1.655	0.990			
9	1.004	1.003	1.001	0.999	1.005			
10	1.004	1.003	1.001	1.004	1.000			
11	0.341	0.341	1.000	0.361	0.945			
12	1.718	1.718	1.000	1.632	1.053			
13	3.473	3.473	1.000	3.541	0.981			
14	3.314	3.313	1.000	3.271	1.013			
15	2.032	2.032	1.000	1.950	1.042			
16	1.001	1.002	0.999	1.057	0.947			
		Mean	1.000		0.997			
		CV	0.01%		3.72%			
Multicell Box Beam Bridges								
17	1.159	1.158	1.000	1.191	0.973			
18	1.428	1.428	1.000	1.492	0.957			
		Mean	1.000		0.965			
		CV	0.03%		1.17%			

 A mean of approximately 1.0 with a coefficient of variation (CV) of nearly equal to 0% for the rating factor (RF) ratios of AD-BOX divided by hand calculations confirms the accuracy of AD-BOX.

• A mean of approximately 1.0 with a CV of up to 3.72% for RF ratios of AD-BOX divided by BrR confirms the reliability of AD-BOX.

RESEARCH FINDINGS AND RECOMMENDATIONS

- A computer tool named 'AD-BOX,' is developed using VBA and is included in a user-friendly Microsoft Excel spreadsheet to reduce the cost and time required for learning sophisticated software.
- AD-BOX can load rate 15 vehicle types as required by ODOT BDM, including permit vehicles and a custom vehicle with up to 35 axles.
- AD-BOX provides more accurate load rating factors, obtained by the calculation of maximum moment and shear at the exact location on the bridge rather than using the conventional one-tenth-of-the-span method (Figure 3).
- AD-BOX contains the capability to load rate the older box beam sections with multicell configurations.
- AD-BOX contains an optional tab to generate moment and shear envelopes due to the selected vehicle type on any single span simply supported bridges to use in independent analysis.
- AD-BOX facilitates learning the load rating process and making more accurate decisions.

Figure 3 Location for the maximum moment due to HL-93 truck on a bridge.

RESEARCH BENEFITS

- Simple and user-friendly interface for both input and output.
- Entire load rating process in less than thirty minutes.
- Load rating of longer vehicles with axles extending beyond the bridge span.
- Moment and shear envelopes in both tabular and chart formats.
- Error and warning messages to reduce the likelihood of input errors.

