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ABSTRACT

Current analysis procedures for new reinforced concrete structures are typically based on
linear-elastic principles. However, under certain conditions, it may be necessary to analyze
a structure to more accurately predict its structural behaviour. Such an analysis can be
performed using nonlinear analysis procedures which typically require specialized
software. This type of software is limited in number and most available programs do not
adequately capture shear-related influences, potentially severely overestimating strength

and ductility in shear-critical structures.

The purpose of this study is to develop and verify an analytical procedure for the nonlinear
analysis of frame structures with the aim of capturing shear-related mechanisms as well as
flexural and axial effects. A previously developed analysis program, VecTor5, is further
developed for this purpose. Originally formulated in the early 1980s at the University of
Toronto, VecTor5 is based on the Modified Compression Field Theory (MCFT) and is
capable of performing nonlinear frame analyses under temperature and monotonic loading
conditions. Although providing generally satisfactory simulations, there are a number of

deficiencies present in its computational algorithms.

This study consists of three major parts: improvement of the original analysis procedure for
monotonic loading conditions, expansion of the procedure for general loading conditions

including the special cases of cyclic and reversed-cyclic loading, and further development
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of the procedure for dynamic loading conditions including time-varying base accelerations,
impulse, impact and blast forces, initial mass velocities, and constant mass accelerations.
Each part is supported by verification studies performed on a large number and variety of
previously tested structures available in the literature. In addition, considerations in
nonlinear modelling are discussed with the aim of providing guidelines for general

modelling applications.

Analyses of 63 previously tested structures, half of which are shear-critical, demonstrate
that the developed analytical procedure is highly successful in simulating the experimental
responses in terms of load-deflection response, reinforcement strains, crack widths, failure
mode, failure displacement, total energy dissipation, displacement ductility ratio, and post-

peak vibrational characteristics.
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CHAPTER 1
INTRODUCTION

1.1 Need for Advanced Analysis Procedures
1.1.1 Analysis of Reinforced Concrete Structures

Over the past few decades, intensive research activity in structural engineering has
greatly increased our knowledge of the behaviour of concrete structures under both shear
and flexure. As a result, new analysis and design procedures have been developed and
incorporated into design codes such as CSA A23.3-04 (Design of Concrete Structures)
and NBCC 2005 (National Building Code of Canada).

Occurring at the same time, advancements in computing technology have enabled
structural engineers to analyze and design structures according to the new design codes
quickly and easily. The analysis procedures are typically based on linear-elastic
principles. Even though linear-elastic analyses cannot accurately predict all aspects of
structural behaviour, such as cracking of concrete and deformations under service loads,
they are deemed sufficient if the structure is designed according to code. As a result, the
structure will satisfy strength and serviceability requirements. The reinforcement is
detailed so that the structure exhibits ductile behaviour with a flexural failure mode.
Currently, there are numerous easy-to-use software programs which can perform such

analyses and designs reasonably well.

1.1.2 Nonlinear Analysis of Reinforced Concrete Structures
It may be necessary, in some situations, to analyze a structure so as to more accurately
predict its structural behaviour. Such an analysis may be required for:
(1) strength, safety and integrity assessment of
a. damaged or deteriorated structures,

b. structures which were designed and built 20 to 30 years ago based on

previous codes, standards or practices considered deficient today,



(2) performance assessment of planned structures,

(3) accurate assessment of large, atypical or unique structures such as nuclear

containment structures and offshore platforms,
(4) assessing the expected behaviour of retrofitted structures,

(5) investigating and selecting a rational retrofit or repair alternative among several

alternatives,

(6) addressing questions or problems that arise after construction of a new building,

or due to the change of use or function of the existing structure,

(7) forensic analyses in cases of structural failure or collapse.

For these cases, structural engineers may need to assess the maximum load capacity,
ultimate displacement capacity, ductility, deficient members/parts and failure mechanism
of the structure. Such an analysis can be performed using nonlinear analysis procedures

which typically require specialized software.

For a structure whose behaviour is dominated by flexural mechanisms, there are a
number of software programs such as SAP2000 (CSI, 2000) that can perform such an
analysis with reasonable accuracy in most cases. Therefore, the nonlinear analysis and
design of flexure-critical structures is generally considered to be a solved problem in
terms of strength calculation. However, for structures whose behaviour is affected by
shear-related mechanisms, there is a scarcity of software and the accuracy of the
programs that do exist is of great concern. The reason for this is that the shear behaviour
of reinforced concrete is still not very well understood; therefore, the accurate modelling
of this behaviour remains elusive with many conflicting theoretical approaches and

constitutive models being proposed.

1.1.3 Case Study - a Clinker Preheater Tower

To further clarify the need for advanced analysis procedures, consider a clinker preheater
tower build in a seismically active zone of El Salvador, Central America, in the late

1990s. Designed according to ACI code specifications, the tower spans one bay in each



orthogonal direction in plan and is seven storeys in elevation as shown in Figure 1.1.
Following its construction, subsequent design reviews revealed some deficiencies
including: inadequate shear reinforcement in some of the beams, as shown in Figure
1.2(b), which may prevent the beams from developing their full flexural capacity,
inadequate lateral confining reinforcement in some of the lower storey columns, as shown
in Figure 1.2(a), which may lead to the violation of the strong-column and weak-beam
seismic design principle, and inadequate penetration of the beam longitudinal
reinforcement into the columns, which violates seismic detailing provisions. It was also
determined that the behaviour of the frame in the short direction is more critical. It is now
desired to analyze this frame structure to assess its safety during a probable earthquake.
More specifically, its load and displacement capacity, failure mode, and any deficient

members are to be determined.
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For analysis purposes, three software programs were used: SAP2000 (CSI, 2000),
RUAUMOKO (Carr, 2005) and TEMPEST (Vecchio, 1987; Vecchio and Collins, 1988).
The frame was modelled using only default options and models which were readily built
into the programs, i.e., default hinges and all default material behaviour models. All three
models were created using the same geometry, material and support conditions. The
analyses were performed in a force-controlled mode under monotonically increasing
static storey shear forces which were calculated by the linear dynamic response spectrum

method.

As a result of this analysis, unacceptably different results were obtained (Table 1.1).
SAP2000 and RUAUMOKO predicted that the frame will fail in flexure, while
TEMPEST predicted a sudden shear failure in some of the beams. The largest
discrepancy was in the ductility predictions for the frame; SAP2000 predicted
approximately 5.6 times greater displacement for the peak load capacity than did

TEMPEST (Figure 1.3).

Table 1.1 Comparison of Analysis Results for Clinker Preheat Tower

SAP2000 |RUAUMOKO|TEMPEST
Failure Load (kN) 7343 7783 7213
Failure Disp. (m) 2.64 1.11 0.47
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Figure 1.3 Load-Deflection Responses for Clinker Preheat Tower

In Figure 1.3, the highly ductile load-deflection prediction obtained from SAP2000
resulted from the assumption of purely flexural behaviour. In other words, the influence
of shear-related effects was completely neglected in the SAP2000 model by the use of
default moment hinges. A similar flexure-dominated behaviour was obtained from the
RUAUMOKO model. In the TEMPEST analysis, on the other hand, the default material
behaviour models considered inelastic shear-related effects and predicted shear failures
for the upper storey beams, thereby providing the least ductile response. During the
TEMPEST analysis, however, deteriorating convergence factors and large unbalanced
shear forces became apparent beyond a base shear force of 6300 kN. This situation raised
questions about the validity of the load-deflection curve at the later load stages. More

details of this analysis are presented in Section 4.10.

Anticipating a shear-dominated behaviour before the analyses, it is possible to create
user-defined custom shear hinges in SAP2000 and RUAUMOKO models as exemplified
in Section 2.3.6 when analyzing a shear-critical frame. However, such an analysis

requires expert knowledge on the shear-behaviour of reinforced concrete, specialized



supporting software, such as Response-2000 (Bentz, 2000), and may take significant

engineering time and effort as discussed in detail in Section 2.3.7.

The apparent difficulty with accurately modelling strength and ductility of this frame
exemplifies the need for advanced yet practical analysis procedures which inherently
include shear-related influences as well as flexure and axial related ones, thereby

capturing all possible failure mechanisms.

1.2 Background Development
1.2.1 Modified Compression Field Theory (MCFT)

Over the last 30 years at the University of Toronto, research has focused on improving
analysis procedures for shear-critical reinforced concrete structures with an emphasis on

simple but realistic material behaviour models for reinforced concrete.

Research efforts led to the formulation of the MCFT (Vecchio and Collins, 1986) as a
rational model for predicting the response of reinforced concrete under shear and normal
stresses. The MCFT is essentially a fully rotating, smeared crack model that represents
cracked concrete as an orthotropic material with its own stress and strain characteristics.
Equilibrium, compatibility and stress-strain relationships (constitutive relationships) are
formulated in terms of average stresses and average strains. Directions of principal
stresses and principal strains are assumed to be coincident. The constitutive relationships
in the theory resulted from tests of over 200 reinforced concrete panels, using the panel
element tester and shell element tester of the University of Toronto as shown in Figure

1.4, under pure shear or combinations of shear and normal stresses.

In the formulation, cracked concrete is treated as fundamentally different from uncracked
plain concrete. During the tests of panel elements, it was observed that cracked concrete,
when under high tensile strain in the direction normal to the compression, exhibited
reduced compression strength and stiffness. As a result, a realistic compression softening
relation was incorporated into the theory. In addition, a tension stiffening relation was

introduced to take account of the presence of post-cracking tensile stresses in the concrete



between cracks. Finally, consideration was given to the local stress conditions at crack
locations to predict reinforcement stresses and strains and shear stresses at the crack

interface.

(a) Panel Element Tester (b) Shell Element Tester

Figure 1.4 Concrete Panel Tests at the University of Toronto (Vecchio and Collins, 1986)

Following its formulation, the MCFT was implemented into various design code
procedures and advanced analysis tools. The general design method for shear of the 1994
and 2004 Canadian Concrete Design Code was also based on the MCFT. Meantime,
various nonlinear finite element computer programs were developed incorporating the
MCFT. Over the last 20 years, the MCFT has been applied to the analysis of numerous
reinforced concrete structures and found to provide accurate simulations of behaviour.

The formulations of the MCFT will be presented in Chapter 3.

1.2.2 Computer Program TEMPEST

To apply the MCFT to the analysis of reinforced concrete plane frames, computer
program TEMPEST (Vecchio, 1987; Vecchio and Collins, 1988) was developed at the
University of Toronto in the late 1980s. The program was able to analyze frame or frame-
related structures including single beam and column elements under mechanical (axial

load, shear force, bending moment) and temperature loads.



The nonlinear frame analysis procedure in TEMPEST was based on a total load, iterative,
secant stiffness formulation. The calculation procedure consisted of two interrelated
analyses. First, a global frame analysis was performed to obtain internal member forces;
then, sectional analyses were performed using the calculated member end actions. An
iterative analysis procedure was implemented according to the following sequence: Using
uncracked gross section properties, an initial linear-elastic frame analysis was performed
to obtain the first estimate of the resultant internal member forces caused by imposed
mechanical or thermal loads. Sectional analyses were then performed for each member, at
various sections along its length. In this calculation, top and bottom fibre strains were
iteratively determined to equilibrate the internal member forces calculated by the global
frame analysis. A linear-elastic frame analysis was repeated using the updated section
properties and fixed end forces. Convergence factors were calculated from unbalanced
forces, effective stiffnesses and effective areas. The iteration was carried on in a similar

fashion until adequate convergence was achieved.

The sectional analyses were based on a layered section approach in which a cross section
was divided into a number of concrete layers, longitudinal reinforcing bar elements and
longitudinal prestressing steel elements. Each concrete layer and steel element was then
analyzed individually based on the MCFT, although sectional compatibility and sectional
equilibrium was satisfied as a whole. The only sectional compatibility requirement was
that plane sections must remain plane, while sectional equilibrium requirements included
balancing the axial force, shear force and bending moment calculated by the global frame

analysis.

Originally, TEMPEST was able to perform three different types of shear analyses: multi-
layer analysis, single-layer analysis, and modified single-layer analysis. All of the options
were based on shear-stress-based analysis in force controlled mode. Accordingly, it was
only possible to carry out analyses up to the peak load. In other words, it was not possible

to obtain the post-peak behaviour of the structure being analyzed.

In a later study (Fulop, 1992), TEMPEST’s computational capabilities were expanded to

include shear-strain-based analysis and deformation-controlled analysis. The new



formulation allowed for (1) displacement controlled analysis in the post-peak regime, (2)
faster execution time, (3) more stable calculations, all of which significantly improved

the capability of the program.

In the late 1990s, the name of the program was changed from TEMPEST to VecTor5 in
order to be consistent with the other nonlinear analysis programs developed at the
University of Toronto (e.g., VecTorl, VecTor2, VecTor3, VecTor4, and VecTor6).
While many of the other VecTor programs have undergone further development in the

ensuing years, program VecTor5 remained essentially unchanged.

1.2.3 Sectional Analysis of Structures

Analysis of structures can be performed using a wide range of approaches. Among them
are graphical methods such as strut-and-tie models, nonlinear finite element methods, and
sectional methods. Graphical methods provide rational results but they are labour
intensive and are therefore limited in the range of applicability. Multi-purpose nonlinear
finite element methods are quite powerful but their complexity necessitates a computer,
specialized software and experience with finite element modelling. In addition, the
complex calculations performed by a computer are difficult if not impossible to check by

simple means such as hand calculations.

In the middle ground lie sectional analyses which combine desirable features of both
methods. They are simple enough to be understood yet powerful enough to provide
acceptably accurate results. Calculations are performed at a specific location along the
member for internal forces such as the axial force, shear force and bending moment

calculated from the global analysis of the structure. VecTorS5 is based on this approach.

1.2.4 Assumptions in the Sectional Analysis of TEMPEST and VecTor5

To model a reinforced concrete member with reasonable accuracy using a sectional
method, the member should be relatively slender. As the member becomes deeper (i.e. as
the span to depth ratio decreases), the longitudinal flexural stress distribution becomes

nonlinear which violates the engineering beam assumption made. It can be stated that



sectional analysis should be performed for members with span-to-depth ratios greater
than at least 2. If a deeper member is analyzed by sectional procedures, the results will be

typically overly conservative.

In the application of sectional analysis techniques in VecTorS5, it was assumed that there
will be no net stress in the transverse direction. However, it is known that high transverse
stresses are present at locations where the load is introduced or where a support is
present. These stresses locally increase the strength of the member; therefore, sectional
analysis should be performed at a distance away from the load or support. Otherwise, the
predictions will be conservative. A more detailed discussion of this assumption can be
found in Section 1.5 of Bentz (2000). In VecTor5, this phenomenon is approximately
accounted for by the newly implemented shear protection algorithm which artificially
increases the shear strengths of sections within a certain distance from applied loads,

supports and frame joints. Details of this algorithm are given in Chapter 3.11.

It is assumed that ‘plane sections remain plane’. This conveniently permits the calculation
of the longitudinal strain in each layer of concrete, reinforcing steel and prestressing steel

as a function of the top and bottom fibre strains.

In the shear-strain-based analysis, which is the favoured analysis option throughout this
thesis, two simple shear strain distributions were assumed. The first option is a parabolic
shear strain distribution which is based on experience that has shown that shear strain
through a section often varies in a nearly parabolic fashion, although it is highly
dependent on the loading conditions and section details (Vecchio and Collins 1988). The
second option is a constant shear strain distribution across the height of the section. Both
approaches are approximate and will not exactly reflect the actual shear strain distribution
of cracked reinforced concrete section. They are, however, preferred over theoretically
more accurate shear-stress-based analysis for the following reasons: (1) they do not
require a double iterative procedure and therefore are much faster, (2) they do not possess
the inherent instability of shear-stress-based analysis, thereby giving problem-free
operation, (3) they can capture post-peak behaviour while shear-stress-based analyses

terminate at the peak load, and (4) it is seen that they are able to capture the behaviour of
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test specimens reasonably well. Detailed discussions regarding this issue can be found in

Vecchio and Collins (1988).

1.2.5 Deficiencies in TEMPEST

TEMPEST was a valuable analysis tool for predicting the behaviour of reinforced

concrete plane frames under monotonically increasing loads or deformations. The

program was capable of capturing shear-related influences as well as several second-

order effects. However, there were a number of deficiencies in the computational

algorithm and the analytical results.

In terms of predicting load-deflection response:

(1)

(2)

3)

4)

()

(6)

The program was occasionally producing large unbalanced shear and axial forces
especially prior to reaching the load capacity of the structure being analyzed. This
situation tended to require the user to check the output files to determine the

validity of the load-deflection response around the peak load point.

In the case of a shear-critical structure, the analyses may continue with large
unbalanced shear forces into the post-peak regime, providing a response

resembling a shear-flexure response.

The program was generally predicting slightly stiffer responses, especially in the
initial stages of the analyses, than was typically obtained from experiments and
from VecTor2, a nonlinear finite element analysis program for membrane

structures based on the MCFT.

The peak load prediction was generally lower than the experimental results for

the structures containing little shear reinforcement.

The ultimate displacement predictions tended to be higher than the experimental

results especially for shear-critical structures.

The program was incapable of predicting the response of large beams with no
transverse reinforcement. It was typically predicting much higher strengths than

what was experimentally observed.
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(7) The program was incapable of predicting the ductility of flexure-critical
structures. The load-deflection responses were typically diminishing after the
peak load due to shear-related effects even thought the structure was purely

flexure-critical.

In terms of computational capabilities:

(1) The program was only capable of performing analyses under statically increasing

deformations or loads.

(2) In the shear-stress controlled mode, the program would occasionally stop the

analysis by becoming idle, or stop converging before the peak load was attained.

(3) In the shear-stress controlled mode, the analysis frequently became unstable just

at the peak load or shortly afterwards.

(4) In all modes, there was a possibility of termination of analysis because of
‘floating point divide by zero’ error, which meant there was a zero division

somewhere in the computation.

(5) The analysis would occasionally not start due to such input errors as ‘bad

character in input field” or “end of file”. It was difficult to find such input errors.

(6) The maximum number of load stages that could be handled was 99. If 100 or

more load stages were specified, the analysis was terminated.

1.2.6 Disturbed Stress Field Model (DSFM)

Since its formulation, the MCFT (Vecchio and Collins, 1986) has been found to provide
consistently reliable predictions of the response of reinforced concrete with an accuracy
that is acceptable in most engineering situations. However, some deficiencies have been
revealed for certain structures under specific loading scenarios. In lightly reinforced
elements, it is noted that the rotation of principal stress field tends to lag behind the
rotation of principal strain field. For such an element, the MCFT generally overestimates
the strength and stiffness due to its enforced alignment of principal strain and principal

stress fields. Conversely, for heavily reinforced elements, where no or little rotation of
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principal strain and principal stress fields occurs, the MCFT underestimates the strength

and stiffness due to its overly softened compression response.

The Disturbed Stress Field Model (DSFM) was proposed by Vecchio (2000) to address
these two main weaknesses of the MCFT by extending the MCFT in several aspects.
Most importantly, in its compatibility relationships, it includes slip deformations at crack
locations caused by shear stresses being not necessarily zero at the crack surface. This
allows for the deviation of the principal stress field from the principal strain field. In
addition, the inclusion of crack slip deformations also removes the complex crack shear
check which is required by the MCFT. It also includes refined constitutive relationships
for concrete and reinforcement. The formulations of the DSFM will be presented in

Chapter 3.

1.3 Objectives of this Study

In addition to providing a critical look at the current state-of-the-art, the objectives of this
study can be summarized into three main categories: improvement of the original
analysis procedure (VecTor5) for monotonic loading conditions, further development of
the procedure for general loading conditions, and further development of the procedure
for dynamic loading conditions. Each part will be supported by verification studies
performed on a large number and variety of structures previously tested. In addition,
considerations in nonlinear modelling will be discussed with the aim of providing
guidelines for the general modelling applications. A more detailed summary of the

research objectives is as follows:

(1) Improve the existing program VecTor5 for monotonic loading conditions:

a. Completely rewrite the sectional analyses algorithm with an emphasis on

shear behaviour based on the MCFT (Vecchio and Collins, 1986).

b. Include refinements in the underlying theories that have occurred in the

past two decades such as the DSFM (Vecchio, 2000).

c. Correct all the deficiencies listed in Section 1.2.5.
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d. Include additional second-order effects such as dowel action, concrete
dilatation, concrete prestrains, concrete tension softening, and concrete

crack slip check.

e. Implement a shear protection algorithm to approximately account for the

increased strengths of D-regions.

f. Implement a shear failure check algorithm to detect sudden shear failures
of members in cases where the specified maximum number of iterations is

inadequate for the structure being analyzed.
g. Implement a variable crack spacing calculation.
h. Improve the existing dynamic averaging scheme.
1. Include confinement effects in the out-of-plane direction.
j. Include strain hardening behaviour of transverse reinforcement.
k. Include reinforcement stress and strain calculations at a crack.

1. Increase the total number of elements, concrete layers, steel layers, and

detailed member output which can be handled by the program.
m. Include a more comprehensive warning mechanism for input errors.
n. Provide a more detailed output for advanced users.

0. Reduce computation time and improve stability and convergence.

(2) Develop analysis capabilities for general loading conditions:
a. Include concrete and reinforcement strain histories for general loading.
b. Implement concrete hysteresis models such as
i. The Vecchio model with linear unloading (Vecchio, 1999),
ii. The Vecchio model with nonlinear unloading (Vecchio, 1999),
iii. The Palermo model with decay (Palermo and Vecchio, 2003).

c. Implement steel hysteresis models such as
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i. The Seckin Model with Bauschinger effect (Seckin, 1981),
ii. The elastic-plastic model with strain hardening,

iii.  The elastic-plastic model.

(3) Develop analysis capabilities for dynamic loading conditions:
a. Consider masses in the modelling process.
b. Implement direct integration schemes such as
1. Newmark’s average acceleration method (1959),
ii. Newmark’s linear acceleration method (1959),
iii. Wilson’s Theta Method (1976).
c. Include viscous damping mechanisms such as
1. Rayleigh Damping (1878),
ii. Alternative Damping (Clough and Penzien, 1993).

d. Consider strain rate effects for both concrete and reinforcement, to account

for the strength gained under dynamic loading conditions, based on

1. CEB-FIP (1988 and 1990) formulations,

ii. Malvar and Crawford (1998) formulations.

e. Consider dynamic loads such as

1. Ground accelerations,

ii. Impulse or blast loads,

iii. Impact loads,

iv. Initial mass velocities,

v. Constant mass accelerations.

f. Implement a modal analysis algorithm to calculate mode shapes and

frequencies.
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g. Implement algorithms to calculate the mass matrix and dynamic load

vectors.

(4) Verify the analytical predictions with a large number and variety of structures
which were tested previously and reported in the literature and correct any

shortcomings of the developed procedure.

(5) Aim at producing a fast, easy-to-use yet reliable tool which is suitable for

everyday use by both researchers and office design engineers:

a. Use “default material models” only to show the applicability of the
procedure developed in general modelling of frame structures and shear

walls.

b. Do not require decisions regarding the expected behaviour, failure mode

or selection of appropriate parameters prior to the analyses.

(6) Discuss the appropriate use of newly implemented options and appropriate

selection of several parameters when necessary.

(7) Discuss important considerations in the nonlinear modelling to provide guidelines

for the general modelling process.

1.4 Organization of Thesis

This thesis focuses on (1) describing the theory and formulations which were
implemented into VecTor5, (2) validating the analytical tool developed through the
analyses of structures previously tested, and (3) providing modelling guidelines for frame

structures and shear walls with the analytical tool developed.

Chapter 2 contains two main parts: a literature review of previous works on the analysis
of reinforced concrete frames; a critical look at the nonlinear analysis capabilities of the

current state-of-the-art software related to frame structures.
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Chapter 3 describes the theory and formulations for nonlinear analysis of reinforced
concrete plane frames subjected to monotonic loading conditions and their

implementation into VecTor5.

Chapter 4 discusses the application of the developed nonlinear static analysis procedure
to previously tested structures to verify the newly implemented algorithms. Important

considerations in nonlinear modelling are also discussed.

Chapter 5 describes the theoretical principles for nonlinear analysis of reinforced concrete
frames subjected to general loading conditions and their implementation into the

analytical procedure developed for monotonic loading conditions.

Chapter 6 discusses the application of the nonlinear analysis procedure developed for
general loading conditions to previously tested structures to verify the newly
implemented algorithms. Important considerations in nonlinear modelling are also
discussed through the use of practical examples to provide guidelines for general

modelling applications.

Chapter 7 describes the theoretical principles for nonlinear analysis of reinforced concrete
frames subjected to dynamic loading conditions and their implementation into the

analytical procedure developed for general loading conditions.

Chapter 8 discusses the application of the newly implemented nonlinear dynamic analysis
algorithms to previously tested structures to verify the new algorithms. In addition,
guidelines for modelling of reinforced concrete frame-related structures, particularly

those subjected to impact loads, are provided.

Chapter 9 includes the summary of the thesis and discusses the final conclusions and

recommendations for future research.

In the appendices, additional comparison graphs for the dynamic analyses performed in

Chapter 8 and the introduction to the user’s manual of VecTor5 are presented.
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CHAPTER 2

NONLINEAR ANALYSIS OF REINFORCED CONCRETE FRAMES

2.1 Chapter Layout

This chapter is organized in two main parts. In the first part (Section 2.2), a brief review
of previous studies on the nonlinear analysis of reinforced concrete frames is presented.
The nonlinear models developed to date are categorized into three main groups: global
models, discrete finite member models and microscopic finite element models. Several
examples of each approach are provided. Discrete finite member models are further
divided into two categories: lumped nonlinearity models and distributed nonlinearity
models. Limitations of the lumped nonlinearity models are emphasized. Being the main
focus of this thesis, distributed nonlinearity models are explored in greater detail. Fibre

models and the consideration of shear effects are given particular attention.

In the second part (Section 2.3), three simple structures are analyzed using some currently
available software in order to gain some insight into current analysis capabilities.
Previously tested at the University of Toronto laboratories, the structures are subjected to
monotonically increasing loads until failure. The analysis results are compared to simple
hand calculations and experimental results. Deficiencies in the analytical predictions are
identified. SAP2000 (CSI, 2000) and RUOUMOKO (Carr, 2005) were selected as the
software because of their wide availability and use by office design engineers and
researchers. In addition, Response-2000 (Bentz, 2000) was used to check hand

calculations and provide additional input required by the software being used.

Section 2.3 starts with introductory information on the software used with an emphasis on
their analysis capabilities, ease of use, general modelling steps, and the applicability of
analysis results to understanding the failure mechanism. It then follows with details of the
structures, analytical modelling, and comparison of the results. The section continues
with a discussion of the difficulties and possible courses of action available when
modelling reinforced concrete frames. Finally, the section concludes with an emphasis on

what is needed for better modelling and analysis of reinforced concrete frames.
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2.2 Review of Previous Studies

Significant effort has been devoted, in the last several decades, to developing models for
accurate simulation of the behaviour of reinforced concrete frame elements. One of the
earliest motivations for this was the desire to simulate the behaviour of reinforced
concrete elements subjected to seismic excitations. In some cases, it was the desire to
assess the remaining capacity of a structure after a strong ground motion. It was known
in the 1960s that reinforced concrete structures would not elastically respond to the
maximum earthquake expected during the life of the structures (Blume et al., 1961). The
determination of the behaviour of structural components was essential for the assessment
of the inelastic response of the complete structure. The initial stiffness, ultimate capacity
and ductility demand were some of the parameters needed for this purpose. Due to
complex interactions between various components of real structures, it was not possible
to determine the dynamic characteristics only from dynamic tests of scale models.
Furthermore, the cost of such tests was often substantial especially for large-scale

specimens (Taucer et al., 1991).

These difficulties have largely been overcome by static tests on structural components
(e.g., beams, columns and shear walls) and small-scale structural subassemblies (e.g.,
beam-column joints) under cyclic load reversals. Results from these tests have been used
to develop and calibrate analytical models. These analytical models have then been used
to evaluate the nonlinear response of complete structures consisting of similar
components for which the models were developed. Since the computational cost for data
processing and storage was prohibitive, such analytical assessments could only be done
for simple models. However rapid advancements in computing power in the last two
decades has permitted the use of more complex nonlinear models, thereby reducing

dependence on tests of scale models and simple analytical models.

Several models have been proposed to date for the simulation of the nonlinear behaviour
of reinforced concrete frame structures. These range from simple nonlinear springs which
lump the behaviour of an entire storey into a one degree-of-freedom system to complex

three-dimensional finite element formulations that describe the structural behaviour by
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integrating the stress-strain relationships of the constituent materials (Filippou and Issa,
1988). These nonlinear models can be categorized, in a more broad sense, into three

categories:

(1) Global Models: These models constitute the simplest form of all nonlinear models,
requiring the least computational power. In these models, the nonlinear behaviour of the
entire structure is concentrated at selected degrees of freedom. For example, a building
structure can be modelled with only one lateral degree-of-freedom located at each storey
level. In this case, each degree-of-freedom represents the interstorey shear-lateral drift
behaviour which is developed and calibrated by tests of small-scale structures with
similar details. These models are useful for preliminary analyses and for rough estimates
of the interstorey drifts and ductility demands. An accurate representation of the
structural response should not be expected through the use these models; the accurate
determination of internal member forces from the limited degrees of freedom is
practically impossible (Taucer et al., 1991). The accuracy of these models can
significantly be improved by considering more degrees of freedom. Some of the
analytical tools for nonlinear analysis in this category are SAP2000 (CSI, 2000) and
RUAUMOKO (Carr, 2005).

(2) Discrete Finite Member Models: These models possess more advanced
formulations compared to global models, and require more computational power. In these
models, the structure is represented by an assemblage of interconnected elements that
describe the nonlinear behaviour of reinforced concrete members. The nonlinearity in the
constituent materials is introduced either at the element level in an average sense or at the
section level as a more advanced case. Consequently, two types of element formulations
are possible with the discrete finite member models: lumped nonlinearity member model,
and distributed nonlinearity member model. As an example, SAP2000 (CSI, 2000) and
RUAUMOKO (Carr, 2005) can be used as a lumped nonlinearity model; TEMPEST
(Vecchio, 1987; Vecchio and Collins, 1988), Response-2000 (Bentz, 2000) and
DRAIN2DX (Prakash, 1992) are based on distributed nonlinearity formulations. Being
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the main focus of this thesis, discrete finite member models are presented in more detail

in Sections 2.2.1 and 2.2.2.

(3) Microscopic Finite Element Models: These models possess the most advanced
formulations developed to date for nonlinear analyses, requiring significant
computational power and analysis time. In these models, members and joints are
discretized into a large number of finite elements. Constitutive and geometric
nonlinearity are typically accounted for at the stress-strain level or averaged over a finite
region. Bond modelling between concrete and reinforcement, interface friction at the
cracks, creep, relaxation, thermal effects and geometric crack discontinuities are among
the physical nonlinearities usually considered by this class of models. The use of these
models is still limited to the analysis of critical regions such as beam-column joints or, at
most, small structures consisting of one or two bays and one or two storeys. Some of the
analytical tools in this class are VecTor2 (Vecchio et al., 2004), UC-Win/WCOMD
(Okamura and Maekawa, 1991), and ATENA (Cervenka, 2000).

Discrete finite member models represent the best compromise between simplicity and
accuracy in the nonlinear analysis of reinforced concrete frame structures. They are the
simplest class of model allowing significant insight into the nonlinear response at both
the member and structure level (Taucer et al., 1991). This thesis concentrates on discrete
finite member models; therefore, a brief review of previous studies in this realm is

presented below.

2.2.1 Lumped Nonlinearity Models

The nonlinear behaviour of reinforced concrete frames tends to be concentrated at the
ends of beams or columns in the case of seismic loading conditions and at the midspans
in the case of static loading conditions. Therefore, an early means of modelling this
behaviour was through the use of zero length plastic hinges as nonlinear springs located
at the critical locations and connected by linear-elastic elements. Depending on the
formulation, these models may incorporate a number of springs connected in series or in

parallel.
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Clough and Johnston (1966) introduced the earliest parallel component model allowing
for a bilinear moment-rotation (M-@) relation. As depicted in Figure 2.1(a), this element
consists of two parallel elements: one elastic-perfectly plastic to simulate yielding and the
other perfectly elastic to represent strain-hardening. Takizava (1976) generalized this

model to multilinear monotonic behaviour to take account of the cracking of the concrete.

Giberson (1967) formally introduced the series model although it had been reportedly
used earlier. As shown in Figure 2.1(b), this model consists of a linear-elastic element
with one equivalent nonlinear rotational spring attached to each end in which the inelastic
deformations of the member are lumped. This model is more versatile than the original

Clough model because more complex hysteretic behaviour can be described.

Nonlinear Rotational Springs
M. M: A\ \
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Figure 2.1 Lumped Plasticity Elements: (a) Parallel Model (Clough and Johnston, 1966);
(b) Series Model (Giberson, 1967) (Figure Adopted from Taucer et al. (1992))

Several lumped plasticity constitutive models have been proposed to date. Such models
include cyclic stiffness degradation in flexure and shear (Clough and Benuska, 1967;
Takeda et al. 1970; Brancaleoni et al., 1983), pinching under reversal (Banon et al., 1981;
Brancaleoni et al., 1983) and fixed-end rotations at the beam-column joint interface due
to bar pull-out (Otani, 1974; Filippou and Issa, 1988). Ozdemir (1981) provided
continuous hysteretic relations for the nonlinear springs. An extensive discussion of
mathematical functions for such models is presented by Iwan (1978). Ciampi and
Nicoletti (1986) used an algorithm to ensure a least squares fit between analytical results
and experimental data in a formal system identification method; this was done for a

selection of parameters for the moment-curvature relation proposed by Brancaleoni et al.
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(1983). To overcome some of the limitations of classical plasticity theory for the
interaction between axial force and bending moments, Lai et al. (1984) proposed a fibre
hinge model. This model is made up of a linear-elastic element spanning through the
entire length of the member and one inelastic element at each end. To overcome the
limitation of the yield surface of the stress resultant being a function of a reference strain
that couples the corresponding displacement component, El-Tawil and Deierlein (2001)
developed a bounding surface plasticity model implemented in the stress-resultant space.
More details of the above mentioned models and their limitations can be found in Taucer

etal. (1991).

Although practical and computationally effective, oversimplification of certain important
aspects of hysteretic behaviour of reinforced concrete limits the applicability of the

lumped plasticity models proposed to date. Some of the limitations are:

(1) Their inability to consider gradual spread of inelastic deformations into the
member as a function of loading history as demonstrated by Charney and Bertero

(1982) and Bertero et al. (1984).

(2) Their restrictive assumptions for the determination of the spring parameters prior
to the analysis. Anagnostopoulos (1981) demonstrated a strong dependence of model
parameters, imposed loading pattern and level of inelastic deformations, all of which

are likely to change during a seismic event.

(3) Their inability to adequately consider the deformation softening behaviour typical

of reinforced concrete members.

(4) Their applicability to only well-detailed flexure-critical members with large

inelastic deformation capacity at the critical regions.

The nonlinear behaviour of reinforced concrete frames can be more accurately simulated

through the use of distributed nonlinearity models, which is the focus of this thesis.
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2.2.2 Distributed Nonlinearity Models

In distributed nonlinearity models, material nonlinearity can take place at any element
section. The element behaviour is formulated from weighted integration of the sectional
responses. Element integrals are evaluated numerically; therefore, only the behaviour of
selected sections along the integration points is monitored. The primary unknowns of the
model are either the element deformations or the element forces, which are determined
through proper interpolation functions from the global element displacements or forces,
respectively. Discrete cracks are treated as smeared over a finite length. The constitutive
behaviour of the cross section is either formulated according to classical plasticity theory
or is explicitly derived by discretization of the cross section into fibres, as in the case of

the spread plasticity models.

Frame models are usually based on either the Hooke-Euler-Bernoulli beam theory
(Hooke, 1678 and Bernoulli, 1705) or the Timoshenko beam theory (Gere and
Timoshenko, 1991). In the Hooke-Euler-Bernoulli beam theory, plane sections are
assumed to remain plane and normal to the longitudinal axis of the beam; no shear
deformations arise as shown in Figure 2.2(a). In the Timoshenko beam theory, plane
sections remain plane but not normal to the longitudinal axis; the difference between

normal and the plane section rotations is the shear deformation as shown in Figure 2.2(b).

y Cross section y
A rotation due to

bending \

Cross section Cross section

A rotation due to _ rotation due to

shear R 7' bending
9

Deformed

\ Total cross

Total cross

Undeformed . section rotation Undeformed . section rotation
8 > X >
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(a) (b)
Figure 2.2 Assumptions: (a) Hooke-Euler-Bernoulli Beam Theory; (b) Timoshenko Beam
Theory (FIB, 2008)

24



Both Hooke-Euler-Bernoulli beam elements and Timoshenko beam elements can be
formulated in the context of either displacement-based or force-based approaches.
Defined in terms of the nodal displacements, displacement-based approach uses classical
finite element formulations to derive the element stiffness matrix and the element
restoring force vector. This approach is used widely as it can be conveniently
implemented into a general purpose finite element framework. However, in the case of
reinforced concrete frames where material nonlinearities are considered, the
displacement-based approach is approximate, requiring refined meshes for satisfactory

simulation of the frame response.

Force-based formulations, on the other hand, provide exact solutions regardless of the
variations in the beam cross section and material nonlinearity. Computing element
resisting forces, however, is a much more complex issue in force-based formulations,
arising from the impossibility of directly relating section resisting forces and element
resisting forces, as in the case of the displacement-based approach. An iterative method
proposed by Spacone et al. (1996) can be used for this purpose. Although there are more
computations involved in a force-based approach than in the displacement-based
approach, the precision of the force-based approach permits the use of a single element
per structural member, thereby giving way to significant reductions in the global degrees

of freedom of the structure.

2.2.2.1 Fibre Models Neglecting Shear Effects

Fibre models constitute the most advanced formulation in distributed nonlinearity
models. In these models, the element is subdivided into longitudinal fibres as shown in
Figure 2.3. The fibre location in the local y, z reference system and the fibre area Ay, are
geometric characteristics of the cross section. The governing compatibility relationship is
based on the “plane sections remain plane” hypothesis (Hooke, 1678; Bernoulli, 1705;
Navier, 1826), which forms the basis of the engineering beam theory used in the sectional
analysis of concrete members. Equilibrium is satisfied through integrating the responses

of the fibres and equating them to the required sectional forces. Appropriate stress-strain
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relationships are used for the constituent materials so as to determine the stress

distribution on the section for a given strain profile.

te f

Concrete

: Reinforecing Steel y

Unconfined

(@) (b)

Figure 2.3 Fibre Element: (a) Distribution of Control Sections; (b) Section Subdivision
into Fibres (Taucer et al, 1991)

The first force-based fibre element model, proposed by Kaba and Mahin (1984), takes
into account only uniaxial bending. In this model, the sectional deformations are
computed from the element deformations through the use of flexibility-dependent
deformation shape functions. Fibre strains are then calculated using sectional
deformations, through which fibre stresses and stiffnesses are determined. The section
stiffness matrix is assembled and inverted to obtain the flexibility matrix. Although
yielding promising results, this model is reported to have convergence problems (Taucer,
1991) and is unable to consider element softening. Zeris and Mahin (1988 and 1991)
extended the formulation of Kaba and Mahin (1984) to the biaxial bending case.

The above mentioned models are only able to consider flexural effects. In other words,
the accurate simulation of reinforced concrete members dominated by shear or shear-
flexure cannot be achieved through these models. It is known, however, that several older
structures built according to previous design codes and practices lack sufficient shear
reinforcement to guarantee that the flexural capacity of the structure is reached before the

shear capacity.
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2.2.2.2 Consideration of Shear Effects

Many studies have been carried out to develop analytical models to consider shear
effects. Some of the most widely used models are strut-and-tie models and rational

theories based on experimental tests.

Strut-and-tie models (Ritter, 1899; and Morsh 1902) define the flow of forces and stress
fields, idealizing a reinforced concrete member as a series of diagonal compression struts
(concrete) and tension ties (reinforcement). Although applicable to any structural
member, the relative advantage of this method arises only in applications to areas of
discontinuity or D-regions, as defined in Section 3.11, where the strain distribution is
significantly nonlinear violating the basic assumption (plane sections remain plane) of
fibre analysis. Derived from the theory of plasticity, strut-and-tie models represent a
design method for complex structural details (FIB, 2008). The strut-and-tie model
development for a reinforced concrete member is a subjective and iterative process;
different models can be developed for the same member. Following the principles of
minimum strain energy, Schlaich et al. (1987) proposed that the model with the least and
shortest amount of ties is the most appropriate after cracking, assuming that cracked
concrete struts will deform little as compared to the steel-reinforced ties. FIB (1998)
stated, however, that this ultimate model may not be valid when evaluating service
conditions. As a result, the designer should use his or her judgement in selecting an

appropriate geometry when using the strut-and-tie models.

Empirical formulations and rational theories have been developed based on the results of
experimental investigations. Arakawa (1969) proposed an empirical approach to
determine the ultimate shear strength of reinforced concrete columns and beams. Collins
and Mitchell (1980) developed the Compression Field Theory (CFT) for members under
torsion and shear, applying Wagner’s (1929) tension field approach to reinforced
concrete. The CFT treats cracked concrete as a new material with its own stress-strain
characteristics, considering cracks as smeared and fully rotating. Equilibrium,
compatibility and stress and strain relationships are formulated in terms of average

stresses and average strains. Following a comprehensive experimental study, Vecchio and
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Collins (1986) proposed the Modified Compression Field Theory (MCFT), which takes
into account tensile stresses in the cracked concrete and employs experimentally verified
average stress-average strain relationships for cracked concrete. Consideration is also
given to the local crack conditions. The MCFT has proven to be a simple yet powerful
tool in predicting the load-deformation response of reinforced concrete beams with
different amounts of longitudinal and transverse reinforcement (Vecchio, 2000). The
formulation of the MCFT is presented in detail in Section 3.2. Okamura and Maekawa
(1991) proposed nonlinear models for in-plane shear elements based on similar concepts
as the MCFT except for the adoption of the smeared fixed-crack approach. This method
has provided successful simulations of the behaviour of reinforced concrete elements as
indicated by Mostafaei (2006). Vecchio (2000) proposed the Disturbed Stress Field
Model (DSFM) to address the reduced accuracy of the MCFT under specific conditions
by extending the MCFT in several aspects. Most importantly, in its compatibility
relationships, it includes slip deformations at crack locations caused by shear stresses
being not necessarily zero at the crack surface. It also includes refined constitutive
relationships for concrete and reinforcement. The Formulation of the DSFM is presented
in detail in Section 3.3. Bentz et al. (2005) recently proposed the Simplified Modified
Compression Field Theory (SMCFT) to predict the shear strength of reinforced concrete

elements for “back of the envelope” calculations.

2.2.2.3 Fibre Models Considering Shear Effects

For considering shear effects, various computation algorithms have been developed based
on fibre models. Vecchio and Collins (1988) proposed a fibre model based on the MCFT
to predict the response of reinforced concrete beams loaded in combined shear, moment
and axial force. In this model, a reinforced or prestressed concrete cross section is
discretized into a series of concrete and reinforcing and prestressing steel fibres. A
longitudinal strain distribution is assumed for the section based on the engineering beam
theory of “plane sections remain plane”. A shear stress distribution is assumed for the
section such that the sum of the shear stresses in each fibre will be equal to the externally
applied shear. Using the longitudinal strain and shear stress present at each fibre,

equilibrium and compatibility conditions are satisfied in computing the longitudinal
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compressive stress at each fibre. The resultant stresses must balance the applied sectional
forces N, M and V, as defined by Eq. 3.103, Eq. 3.104 and Eq. 3.105. Vecchio (1987)
implemented this algorithm, as a force-controlled approach into an existing frame
analysis procedure resulting in the computational tool TEMPEST. Fulop (1992)
expanded the analysis capabilities of TEMPEST by implementing a displacement-

controlled approach.

Pentrangeli et al. (1999) proposed a fibre section model incorporating shear
deformations. Each fibre in this model has basically three deformations: axial strain,
transverse strain (in the direction of stirrups) and shear deformations. Given the section
deformations, the axial strain and shear deformations of each fibre are calculated through
compatibility. In addition, the stress in the transverse direction is assumed to be zero (i.e.,
no clamping stresses are considered). The corresponding axial stress, shear stress and
vertical deformation are then calculated to find the stiffnesses of each fibre. The sectional
stiffness is then determined from the calculated fibre stresses and stiffnesses. The

constitutive law for concrete in this force-based model is based on the microplane theory.

Martino et al. (2000) proposed a fibre model incorporating a nonlinear law to describe the
shear force-shear deformation response. Although the shear response is decoupled from
the axial and bending responses, the implementation of this model into a force-based

element permits coupling between axial and bending responses at the element level.

Bentz (2000) proposed a fibre model based on the MCFT to predict the response of
reinforced concrete beams, as presented in Section 2.3.2. In this method, he introduced a
rigorous longitudinal stiffness method to more accurately determine the nonlinear shear
stress distribution on the cross section, as compared to the fibre model of Vecchio and
Collins (1988). The full version of the program, Response-2000, is available, free of

charge, at www.ecf.utoronto.ca/~bentz.

Bayrak and Sheikh (2001) proposed a plastic hinge analysis technique that can be
implemented into a fibre analysis framework to incorporate buckling of longitudinal bars

in the analysis. This method includes slightly different displacement compatibility
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requirements in addition to equilibrium and constitutive relations to predict the plastic

hinge response of tied columns.

Shirai et al. (2001) proposed a macro-element approach to simulate the monotonic and
cyclic behaviour of shear-dominated reinforced concrete columns. In this model, the total
deformation of the column is decomposed into flexural and shear components. The
flexural behaviour is simulated by the fibre element model and the shear behaviour by the
so-called shear element model. The model was shown to reproduce the monotonic and
cyclic responses of shear-dominated columns tested at the University of California at San

Diego (Shirai et al., 2001).

This current study is concerned with the further development and verification of the
analytical tool TEMPEST (Vecchio, 1987; Vecchio and Collins, 1988) for the nonlinear
analysis of frame structures, with a capability of predicting the post-peak behaviour,
based on the DSFM (Vecchio, 2000). The detailed description of the objectives of this

study is summarized in Section 1.3.

2.3 Review of State-of-the-Art
2.3.1 Review of Modelling and Analysis with SAP2000

SAP2000 © (CSI, 2005) is a comprehensive analysis package from Computers and
Structures Inc. for structural analysis and design. It is probably the most widely used
analysis tool among immediately and easily available analysis software. It can perform
linear-elastic static, dynamic and time-history analyses for virtually every material with
known engineering properties, as well as nonlinear static and time-history analyses as
either a lumped nonlinearity or global model. It possesses a versatile and user-friendly
graphical interface as well as a fast and powerful analysis engine. Both structure creation
and the result visualization are conveniently done through the graphical interface.

Therefore, it is highly suited for practical everyday use by office design engineers.

To perform a nonlinear static analysis of a reinforced concrete frame with SAP2000
v.9.0.3, a model of the structure is first created as if it were a linear-elastic static analysis

problem. If automatic hinges are to be used, longitudinal reinforcement details should be
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defined including bar sizes, locations, and yield strengths. However, for the shear
reinforcement, only the yield stress is required as input; neither the reinforcement ratio

nor the tie or stirrup spacing is required.

The next step is to assign hinges to desired locations. This is one of the most critical
phases in the nonlinear modelling process with SAP2000. Both hinge locations and
selected hinge properties have great influence on the response computed. For the moment
hinges, the use of a hinge length in the range of cross section depth, h, is a generally
accepted approach (CSI, 2005); therefore, a hinge length of h is used for the moment
hinges throughout this study as shown in Figure 2.4. For the selection of the shear hinge
length, on the other hand, there is much less information available in the literature. In this
study, 1.5 times of the cross section depth is used for the shear hinge lengths. This length
1s assumed based on CSA A23.3-04 where the term d, x cot 0 is used to determine the
length of a shear crack on the longitudinal projection. Assuming an effective shear depth
dy of 0.80 x h, and a shear crack inclination angle of 29 to 35° corresponding to the
conditions at ultimate, a shear hinge length of 1.5 x h is found. The selection of larger
inclination angles (in the range of 35 to 40°) will result in shorter hinge lengths (in the
range of h) and more conservative results. End offsets are also used to account for
overlapping cross sections at all connections. The use of rigid or semi-rigid end offsets

reduces displacements as they limit rotations of the connecting beams and columns.
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Figure 2.4 Hinge Locations Assumed in Typical Frame Elements
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There are six default hinge options available in version 9.0.3: Axial (P), Torsion (T),
Moment (M2 or M3), Shear (V2 or V3), Coupled (P-M2-M3), and Coupled Fibre (P-M2-
M3). The hinge properties are calculated by the program for the cross section and
reinforcement details provided. For moment hinges, SAP2000 (CSI, 2005) uses Tables 6-
7 and 6-8 of FEMA 356 (2000).

The behaviour response assumed by SAP2000 for moment hinges (moment-curvature or
moment-rotation relationship) and shear hinges (shear force-shear deformation
relationship) is given in Figure 2.5. Based on this curve, no plastic deformation occurs
until point B where the hinge yields. This is followed by a yield plateau or strain
hardening behaviour until point C which represents the ultimate capacity of the hinge.
After point C, the hinge’s force capacity immediately drops to point D which corresponds
to the residual strength of the hinge. Point E represents the ultimate displacement
capacity of the hinge after which total failure of the hinge is reached at point F (CSI,
2005). There are three stages marked between point B and C for information purposes:

10 corresponds to immediate occupancy, LS to life safety, and CP to collapse prevention.

0 LS CP

Force
o
m

Displacement

Figure 2.5 Hinge Behaviour Curve (Figure Adopted from CSI, 2005)

If there is no reinforcement defined and if no design is requested, the program uses the
minimum allowable reinforcement ratios for the generation of automatic hinge properties.
Generated hinge properties can be explicitly viewed and modified, if desired. For
advanced users, user-defined hinges can be created. In this case, the complete flexural or

shear hinge behaviour of all hinges defined should be manually supplied to the program.
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When using default hinges, the automatically calculated behaviour of the shear hinge
raises some questions about its accuracy because no information about the shear
reinforcement is required in the modelling process except the yield stress. The shear yield
force calculation used by SAP2000 is presented in Eq. 2.1 (CSI, 2005). The notation for
this equation is not defined in CSI (2005); the following definitions were provided by the
CSI technical support team: A; is the shear area of the cross section in inch?, typically
assumed by SAP2000 as 5/6 times the gross cross-sectional area for rectangular cross
sections, f’. 1s the compressive strength of concrete in psi, f, is the yield stress of the
shear reinforcement in psi, 4;, is the cross-sectional area of the shear reinforcement per
unit length in inch, and d is the shear reinforcement spacing in inch. In this case, the

resulting shear yield force V), becomes in psi.
V,=2xA x\[f!+ f,x A4, xd (2.1)

The next step is to define the load application procedure and nonlinear parameters. Load
application can either be force or displacement-controlled. Nonlinear parameters include
the selection of small or large displacements and P-A effects. The hinge unloading
method is also selected here. The ‘unload entire structure’ option is recommended by CSI
(2005) and thus used in this study. Based on this assumption, when a hinge drops its load
(i.e., reaches Point D in Figure 2.5), the entire structure is unloaded until that hinge
reaches its load immediately before the load drop (i.e., Point C in Figure 2.5). The
program then reverts to increasing the applied load on the whole structure; other parts of
the structure may now pick up the load that was removed from the unloaded hinge. There
are other options such as ‘apply local redistribution’ and ‘restart using secant stiffnesses’,
which are recommended by CSI (2005) if the “unload entire structure’ option could not

find a solution. This phenomenon was not encountered in this study.

After the analysis, the load versus deflection curve can be visualized through the
graphical interface or can be printed out in a data file. In addition, the hinge conditions
(B, 10, LS, CP, D, and E) may be seen at each load stage using the graphical interface,

which is useful when evaluating the failure mechanism of the structure.
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2.3.2 Review of Modelling and Analysis with Response-2000

Developed at the University of Toronto as a distributed nonlinearity fibre model
specifically for reinforced concrete, Response-2000 (Bentz, 2000) is a nonlinear sectional
analysis program for beam-columns based on the MCFT (Vecchio and Collins, 1986).
The program allows for axial force, bending moment, shear force, thermal and shrinkage
strains, as well as time-dependent creep strains to be applied to the cross section. It is also
capable of performing pushover analyses of simply supported beams up to the peak load.
The program performs a rigorous dual-section analysis to determine the shear stress
distribution on the cross section by the axial stiffness method developed by Bentz (2000).
In sectional analysis mode, the program can predict a wide range of responses including
moment-curvature, shear force-shear strain and moment-axial force interaction responses,
all of which are used herein either to check hand calculations performed or to supply
necessary input for SAP2000 and RUAUMOKO. The program has a user-friendly
interface for both the model creation and results visualization, which provides ample
information, encouraging more detailed investigation of the analysis results.

Consequently, it is a convenient tool for both structural engineers and researchers.

In order to perform a sectional analysis, cross section details including both the
longitudinal and transverse reinforcement configurations as well as the reinforcement and
concrete properties are input using the graphical interface. When the model is finalized,

the analysis can be initiated through the solve menu.

When the analysis is complete, the program immediately switches to a display of the
analysis results. All relevant graphs can be seen in detail on the screen, and data for
desired graphs can be acquired easily for further manipulation, for example, in a
spreadsheet program. Also notable is the graphical representation of crack orientation and
crack widths which may help the user understand the dominant behaviour of the cross

section or beam member.
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2.3.3 Review of Modelling and Analysis with RUAUMOKO

Developed at the University of Canterbury, RUAUMOKO (Carr, 2005) is an analysis
program mainly intended for buildings and bridges subjected to earthquake and other
dynamic excitations. Based on either a lumped nonlinearity or a global model, the
program is capable of performing nonlinear static and dynamic analyses for a wide range
of materials including steel, reinforced concrete, timber, masonry and soil. With the
version dated 14 February 2006, the structure creation and result visualization is done

using standard text-editors such as Microsoft Windows Notepad.

In order to model a structure for analysis with RUAUMOKO, one input text file is
usually required which includes principal analysis options, frame control parameters,
output intervals and plotting control parameters, iteration control and wave velocities,
nodal points and member incidence list, section properties, lumped nodal weights,
external static loads, dynamic load factors, earthquake accelerograms and so on. The text
input file has to be prepared from nil based on the structure being analyzed, analysis type,
and loading conditions; therefore, the users’ manuals should be carefully studied and
necessary input parameters should be carefully selected out of a large number of possible

values and options. This is a complex process and caution should be exercised.

It is necessary to calculate the complete axial force (N) versus moment (M) interaction
diagram for each cross section used and to supply six predetermined (N, M) data points to
the program as input. This calculation can be quite laborious; therefore, it usually
requires the use of other software such as Response-2000. In addition, if there are forces
acting on the span of the members, fixed end forces for each member have to be
calculated and supplied to the program manually. As a result, the input text file creation

for RUAUMOKO may take considerable time depending on the structure being analyzed.

It is necessary to select one of the fifty-two available hysteresis models for the material
used. The more comprehensive the model, the more input related to the selected model is
required. In Figure 2.6, one of the complex hysteresis rules and required input parameters

is presented.
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(Carr, 2005)

In this study, one of the simpler models, the elasto-plastic hysteresis, is selected as it does

not require any additional input (Figure 2.7).
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Figure 2.7 Elasto-plastic Hysteresis (Carr, 2004)

One of the most important decisions in the modelling process is whether to include
inelastic shear deformations or not. This decision is directly related to the structural
behaviour and if shear-dominated behaviour is expected, inelastic shear deformations
should be included. However, such an inclusion requires additional input as shown in
Figure 2.8 and Table 2.1. There are several uncertainties and difficulties associated with
the calculation of the required values. One relates to the interaction of axial force and
shear yield force. It is known that the presence of axial compression force generally

increases the shear yield force and therefore should be considered in such a calculation.
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Another is that the shear yield force may be dependent on the ratio of bending moment to
shear, depending on the theory used for the consideration of shear strength. Therefore,
dependent on the applied load, the shear hinge properties should change which will
require an iterative process until the peak load is reached. In addition, the SINA
hysteresis required (Figure 2.8) will likely be different at each hinge location (at each end
of each member used) due to the changing M/V ratio and axial forces, which may require
significant pre-calculations for the definition of the SINA hysteresis. For these reasons, it

is very difficult and laborious to consider inelastic shear behaviour in the model.
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Figure 2.8 SINA Hysteresis for the Consideration of Inelastic Shear Behaviour (Carr, 2005)

Table 2.1 Input Parameters for the Consideration of Inelastic Shear Behaviour (Carr, 2005)

Vy Shear yield strength (>0.0)

Ver  Shear cracking strength (>0.0)

Vee Shear crack closing coree (> 0.0)

Alfa  Bi-linear factor, cracking to yield (R < Alfa<0.0)
R Tri-linear factor after yield (> 0.01)

Duct1 Shear ductility where strength degradation starts
If less than 1.0 then no shear strength degradation
Duct2 Shear ductility where shear strength degradation stops (> Duct1)
Vres Residual shear strength as proportion of Vy (0.01 < Vres < 1.0)
Phi1 Flexural ductility where shear strength degradation starts
If less than 1.0 then no shear strength degradation

Phi2 Flexural ductility where shear strength degradation stops (>Phi1)

Pres Residual shear strength as proportion of Vy (0.01 < Pres < 1.0)
(Note: Vres*Pres*Vy must be somewhat greater than Vcr)

Ido =0 In-elastic shear yield may occur (default)

=1 Retrofit assumed, message printed, shear remains elastic.
=2 Failure assumed, message printed, analysis terminated.
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Another important consideration in the modelling process is whether to include degrading
material strengths. It was shown by Vecchio and Collins (1986) that the compression
response of cracked concrete is characterized by significant degrees of softening arising
from the effects of transverse cracking. This behaviour will likely be an important
mechanism when loading the structure to failure or when performing a cyclic or reversed
cyclic analysis. Therefore, modelling of the degrading strength should be included in the
model. However, such an inclusion requires additional input as shown in Figure 2.9 and
Table 2.2.
Multiplier on

Yield Force
A

1.0

DUC3=0 or blank

RDUCT [+-sesresreobosseansanc

1X1) SRR e S :

; p» Ductility
DUCTI DUCT2 DUCT3 (or cycle number)
21.0

Figure 2.9 Strength Reduction Variation (Carr, 2005)

Table 2.2 Input Parameters for the Consideration of Strength Reduction (Carr, 2005)

DUCT1 Ductility at which degradation begins (>1.0)

DUCT2 Ductility at which degradation stops (> DUCT1)
RDUCT Residual strength as a fraction of the initial yield strength

DUCT3 Ductility at 0.01 initial strength ( blank or> DUCT2)

RCYC % reduction of strength per cycle of inelastic behaviour (ILOS =4, 5, 6 or 7 only)

There are uncertainties and difficulties in the calculation of the strength reduction
parameters. One of them is that the principal tensile strain in the concrete affects this
degradation and should be considered. For this reason, it is very difficult, if not
impossible, to consider degrading material strength behaviour in the model as it depends

on the strain state.
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In this study, due to the reasons mentioned above, neither inelastic shear behaviour nor

strength degradation is considered in the RUAUMOKO models used.

When the input file is complete, an analysis can be initiated by running
RUAUMOKO2D.exe and answering additional questions interactively. When the
analysis is complete, the deflected shape of the structure is displayed momentarily on the
screen. The program creates a single text file which includes member end actions and
maximum member ductilities for each of the load stage considered. Other than member
end forces and ductilities, however, the program does not provide information on member
conditions which may help in understanding the failure mechanism of the structure. Load

versus deflection curves can be obtained by help of the data extraction program provided.

In the author’s view, to perform a pushover analysis of a reinforced concrete frame,
RUAUMOKO requires a certain level of experience in nonlinear modelling of frame
structures and a good understanding of material behaviour so that the appropriate
behaviour models can be selected. The user will probably need secondary software to

obtain the input values required by RUAUMOKO.

To illustrate the use of the software described above and to compare the analytical results
to hand calculations, three simple structures, previously tested at the laboratories of the

University of Toronto, are examined in the following sections.

2.3.4 Nonlinear Analysis of a Flexure-Critical Beam

The beam in consideration was taken from an experimental study which was carried out
at the University of Toronto in 2003 to investigate the long term structural performance
of shear- and flexure-critical reinforced concrete beams (Aguilera, 2003). Having a 270 x
400 mm cross section, Beam B1 was simply supported and spanned a clear distance of
3.65 m between two roller supports, leaving 350 mm overhang on each side (Figure
2.10). The loading involved the application of two point loads in a displacement-

controlled mode. The concrete strength was determined from standard cylinders. The
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longitudinal and transverse reinforcem ent properties were found fr om standard coupon

tests, as shown in Table 2.3.

P/2 P2
350 1300 ‘ 1050 ‘ 1300 1350 | 2 - #3
- - e - s B
% % S N A
= L L % LVDT = ‘
e _a o
P/2 |
i 3-20M
Y% o 270
Stirrup #3
-P/2 Dimensions: mm
WMMMMHH M
0.65xP
Figure 2.10 Details of Beam B1
Table 2.3 Material Properties of the Beam B1
Reinforcement Concrete

A dy fy fu Es Esn Esh &y fe & E. G, H
(mm?) | (mm) | (MPa) [ (MPa)| (MPa) | (MPa)| (x10%) | (x10%) || (MPa)| (x10?)| (MPa) | (vPa)
20M | 300 | 19.5( 429 | 621 |206000] 1605{ 9.3 |128.9| 33.8 | 2.00* | 26200*| 10917*[ 0.2*
#3 71 | 9.5 [ 507 | 779 (199000 2433| 9.5 [121.3 *assumed

2.3.4.1 Hand Calculation
Cracking Load

The load which causes first crack ing at the bo ttom face of the beam at the m idspan was

calculated based on transformed section properties (A  and I;). The crac king stress was
assumed tobe f, =0.33x,/f ' =1.92 MPa as suggested by CSA A23.3-04. Based on

this calculation, the cracking load w as found to be 24.6 kN, while the cracking curvature
was 0.76 x 10° /mm based on an effective stiffness value of 0.5xEI, as suggested by Table

6.5 of FEMA 356 (2000).
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Moment-Curvature Relationship

The moment-curvature relationship was calculated through the use of rectangular stress
blocks, with the assumption of a parabolic stress-strain curve, in Eq. 2.2 and Eq. 2.3,
where ¢ is the strain at the top of the cross section and ¢, is the strain corresponding to the

peak stress of concrete (Collins and Mitchell, 1991).

4—¢ /¢
= 470 2.2
A 6-2x¢, /¢, @2)
1 2
a, x p, =ﬂ——><(i] (2.3)
g 3 \g,

In order to verify the calculations, Response-2000 was used. A similar response was
obtained up to the yield strain of the tensile steel; afterwards, Response-2000 predicted
higher moment values (Figure 2.11). This difference was caused by the assumption of a
parabolic stress strain curve in the rectangular stress block approach. However, based on
a layer-by-layer sectional analysis approach, Response-2000 uses a more general stress-
strain response for concrete, which keeps the analysis continuing with the strain
hardening behaviour of steel (Bentz, 2000). For consistency, the hand-calculated

moment-curvature response is used in the following calculations.
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N

n ~ o

o (&) o
I I I

Moment (kNm)

—e— Response-2000
Hand Calculation

N
(¢}

o
»
®,
-

Curvature (x10°® /mm)

o

20 40 60 80 100 120

o

Figure 2.11 Moment-Curvature Response of Beam B1

Based on the response shown on Figure 2.11 (hand calculation), the yield moment and
yield curvature are 122.9 kNm and 8.4 x 10 /mm, while ultimate moment and ultimate

curvature are 131.2 kNm and 54.4 x 10 /mm.

41



Midspan Deflection

The midspan deflection, J, calculation was carried out usin g the elastic for mula of Eq.
2.4, based on the effective stiffness value of 0.5 xEI as suggested by Table 6.5 of FEMA
356 (2000). In Eq. 2.4, Pisthelo ad in N, E is the m odulus of elasticity of concrete in
MPa and I is the moment of inertia of the beam section in mm®. For the ultimate load of P

=201.8 kN, the ultimate deflection was calculated to be 9.75 mm.

5=Mx109 (mm) (2.4)
05xEx1

2.3.4.2 Analysis with SAP2000

In the SAP2000 m odelling of the be am, the cr oss section was defined with exactly the
same m aterial prop erties as us ed in the h and calculation. The concrete shear area was
input as 0.09 m?, being 5/6 times the gross-sectional area as recommended by CSI (2005).
One default mom ent hinge was placed at the midspan of the beam and the analysis was
performed in the displacem ent-controlled m ode (Figure 2.12) . It should be noted that
neither the spacing or the percentage of the shear reinforcement nor the s train hardening

properties of the longitudinal reinforcement are required by the program.

Disp. Disp. '2 - #3. l
lMoment Hingel
. hl =
o =+
~ 1300 _‘_ 525 ,‘_ 525 _‘j 1300 777
[ I | | 1 » - - F
3 -20M
Figure 2.12 SAP2000 Model of Beam B1 o 270

At the end of analysis, the SAP2000 output in  dicated that the default hinge properties
were calculated to be M | =127.5kNm and M, =127.6 kNm.
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2.3.4.3 Analysis with RUAUMOKO

For the RUAUMOKO model, a bending moment - axial force interaction diagram is
required for the cross section of the beam, for which Response-2000 was used. The

resultant graph is presented in Figure 2.13.

-200 -150

1
N

50

Axial Force (kN)

Moment (kNm)

Figure 2.13 Moment-Axial Force Interaction Response of Beam B1

The model used for the RUAUMOKO analysis was essentially the same as the SAP2000
model (Figure 2.12). The only difference was that three members were used with a
moment hinge at each end. The hinge length was assumed to be the same as the depth of

the cross section; that is, 400 mm. It was noted that changing the hinge length had no

influence on the results.

From the RUAUMOKO analysis, the beam’s ultimate moment capacity was calculated to

be 137.5 kNm, which was obvious from the input interaction diagram for zero axial load.

2.3.4.4 Comparison of the Analytical and Experimental Results

As seen in Table 2.4, the cracking load of the beam was predicted reasonably well by
hand calculation. However, it was not possible to determine the cracking load by either
SAP2000 or RUAUMOKO, as these programs use linear-elastic calculations until the

yield point of the hinge is reached without considering the cracking of concrete.
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Both computer programs and hand calculations produced similar yield loads for the beam
with a maximum deviation of 6% from the experimental value for the hand calculation.
As for the ultimate load, similar predictions were obtained with a maximum deviation of

11% from the experimental value in the SAP2000 calculation.

The stiffness of the beam was overestimated even though an effective stiffness value of
0.5 x EI was used; the yield displacement was predicted by all three calculations to be

slightly more than half of the experimental value.

The failure modes were found to be reasonably consistent with the experimental
observations. As defined in the modelling process, both programs predicted flexural

yielding of the hinges.

Table 2.4 Comparison of Analytical and Experimental Results for Beam B1

Hand Calc. | SAP2000 [ Ruaumoko| Experiment

2 |Load (kN) 26.4 n/a n/a 31.0°

§ Curvature (rad/km) 0.76 n/a n/a n/r

O |Midspan Disp. (mm) 0.6 n/a n/a 1.0"

o Load (kN) 189.1 196.1 211.5 200.0

% Curvature (rad/km) 8.4 n/a n/a n/r

> |Midspan Disp. (mm) 9.1 9.5 10.2 17.2

& [Load (kN) 201.8 196.2 211.5 218.0

_E Curvature (rad/km) 54.4 n/a n/a 48.0

§ Midspan Disp. (mm) 9.8 32.3 n/a >50

Behaviour Flexure Flexure Flexure Flexure

n/a: not available n/r: not reported " estimated

Based on Figure 2.14, neither of the programs was able to predict the displacement
capacity of the beam with reasonable accuracy. SAP2000 estimated the failure of the
beam occurring at a significantly less midspan displacement than that of the experiment.
As for the RUAUMOKO analysis, it was not possible to determine the ultimate
displacement; the same load was returned by the program while midspan displacement
was increasing. This behaviour occurred due to the elastic-plastic hinge assumption

made. It should be noted that the experimental graph reported in Aguilera (2003) was
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terminated at a 50 mm lateral displacement; the experimental failure displacement of the

beam was likely higher than 50 mm.

250
3
200 -
Z
= 150 -
°
(5]
o
|
s 100 -
2
Experiment
50 - ——SAP2000
—s— RUAUMOKO
=—&— Hand Calculation
0 T T T T T

0 10 20 30 40 50 60
Midspan Displacement (mm)

Figure 2.14 Comparison of Load-Deflection Responses for Beam B1

It is obvious from Figure 2.14 that both SAP2000 and RUAUMOKO performed a linear-
elastic analysis until the yielding of the midspan hinge. After that point, SAP2000
conservatively neglected the strain hardening effects of the reinforcement and returned
the same load value until the plastic deformation capacity of the hinge was reached and
the hinge dropped load (Point F in Figure 2.5). RUAUMOKO, on the other hand,

continued with the analysis, predicting the same yield load under increasing midspan

displacement.
In conclusion, both the first yielding and the ultimate load capacity of this flexure-critical

simply supported beam were predicted accurately. As for the failure displacement, a

reasonable estimate was not achieved.
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2.3.5 Nonlinear Analysis of a Flexure-Critical Frame

A one-span, two-storey, flexure- critical reinforced concrete frame was tested by Vecchio
and Em ara (1992) to gain further insight in ~ to the m agnitude and influence of shear
deformations in flexure-critical frame structur es and to asses s the accura cy of analytical

procedures developed.

The frame was constructed with a centre-to-c entre span of 3500 mm, a storey height of
2000 mm a nd an overall height of 4600 mm a s shown in Figure 2.15. All beam s and
columns were 300 mm wide and 400 mm deep, while the base was 800 mm wide and 400
mm deep. The fram e was built in tegral with a la rge, heavily reinforced concrete base to
create an essentially fixed foundation. The base was fixed to the lab floor using ten pairs
of bolts which were post-tensioned to preven t slip. Material properties were determ ined

from concrete cylinder tests and steel coupon tests, as summarized in Table 2.5.
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Figure 2.15 Details of Vecchio and Emara Frame
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Table 2.5 Material Properties of Vecchio and Emara Frame

Reinforcement Concrete

As db fy fu Es Esh &sh &, f'c € Ec Gc M
(mm?)| (mm)| (MPa)| (MPa)| (MPa) [(MPa)| (x10®) | (x10?)[|(MPa)| (x10?)| (MPa) | (MPa)

No.20| 300 | 19.5| 418 | 596 |192500( 3100| 9.5 | 66.9 || 30 | 1.85 |23674| 9864*|0.2*

No.10| 100 | 11.3| 454 | 640 |20000013100*| 9.5 | 69.5 * estimated

The testing of the frame involved applying an axial load of 700 kN to each column,
maintained constant throughout the test, while monotonically applying a lateral load to
the second storey beam until the ultimate capacity of the frame was reached. The column
loads were provided by two pairs of 450 kN capacity hydraulic jacks, applied through
two transverse beams in the force-controlled mode. The lateral load was provided by a
1000 kN capacity actuator, mounted laterally against a reacting strong wall, in a

displacement mode.

2.3.5.1 Hand Calculation

As there were significant axial forces acting, the hand calculation was done in an iterative
manner in order to take account of the change in the axial force values as the lateral force
on the frame increased. First, the ultimate moment capacities of cross sections were
determined using stress block factors. In this calculation, the initial axial forces of
members were used; that is, 700 kN axial compression for the columns and no axial force
for the beams. The beam ultimate moment capacity was calculated to be 174 kNm by
hand calculation and 206 kNm by Response-2000. As Response-2000 includes strain
hardening of steel and considers a more general concrete stress-strain response, its
prediction of 206 kNm is used as the ultimate capacity. Then, using linear-elastic frame
analyses, a lateral load was determined which would cause the acting moment inside the
clear span of one of the members to reach the corresponding calculated flexural capacity.
In this calculation, the effective stiffness values recommended by FEMA 356 (2000)
were used as shown in Figure 2.16. Corresponding to that lateral load, the axial force
values for each member were determined and the ultimate moment capacities of the cross
sections were re-calculated accordingly. A new estimate of lateral load was determined

and the same procedure was carried on in an iterative manner.
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2.3.5 Nonlinear Analysis of a Flexure-Critical Frame

A one-span, two-storey, flexure-critical reinforced concrete frame was tested by Vecchio
and Emara (1992) to gain further insight into the magnitude and influence of shear
deformations in flexure-critical frame structures and to assess the accuracy of analytical

procedures developed.

The frame was constructed with a centre-to-centre span of 3500 mm, a storey height of
2000 mm and an overall height of 4600 mm as shown in Figure 2.15. All beams and
columns were 300 mm wide and 400 mm deep, while the base was 800 mm wide and 400
mm deep. The frame was built integral with a large, heavily reinforced concrete base to
create an essentially fixed foundation. The base was fixed to the lab floor using ten pairs
of bolts which were post-tensioned to prevent slip. Material properties were determined

from concrete cylinder tests and steel coupon tests, as summarized in Table 2.5.
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