LWR IES INTERFACE TECHNOLOGY DEVELOPMENT & DEMONSTRATION

FUNDING ANNOUNCEMENT DE-FOA-0001817

PROJECT MANAGER - ALAN SCHEANWALD

WHY DAVIS-BESSE?

The objective is to diversify and increase the revenues of nuclear plants facing increased competition from renewables and low-cost natural gas. This project will demonstrate the technical feasibility and economic viability of a hybrid system in order to facilitate large scale commercialization.

- Benefits of operating at Davis-Besse Nuclear Power Station (DBNPS)
 - Electrical power is taken at plant output and prior to the switchyard (no grid tariffs applied reduces cost to power skid).
 - Inputs for hydrogen production are electricity and water (ability to scale up at DBNPS using existing utilities). Future scale-up activities could utilize a portion of the plant's thermal energy.
 - Plant's relative proximity to key markets are ideal for reducing transport distances (Toledo, I-80/I-90 Corridor, Detroit, Cleveland, Columbus, Cincinnati, Pittsburgh, etc.).
 - Hydrogen will be generated from a "carbon-free" source.

GRANT PROPOSAL STATUS

- Proposal was submitted to the Department of Energy (DOE) on 04/26/2019.
- Received notification to begin award negotiations on 09/10/2019.
- Received pre-award authorization of funding on 11/26/2019.
- Still in negotiations for complete award.
- Project Collaborators Include:
 - Idaho National Labs (INL)
 - Arizona Public Service Palo Verde
 - Xcel Energy Monticello & Prairie Island
- Project duration is 24 months from entry into the period of performance.

GRANT PROPOSAL STATUS (CONT.)

DBNPS Hydrogen Project - Proposed Schedule																							
ID		Task	WBS	Task Name				2020				2021				2022					2023		
	6	Mode			ter	4th Quar	ter	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	1st	Quarter	2nc	
1			1	Gain Approval to Start Project	34	gy inc	~		iai May	Jui		Jan w	hai May	- Jui - 3				Jul 3		14			
5	-	-					_															\square	
6			2	Issue Contract(s) to Vendor(s)		-						-											
19		-9																		\square			
20		4	3	Prepare Modifications					-														
29		4																					
30		4	4	Approve Modifications																			
35		4																					
36		-	5	Modification Implementation										-									
43		->																					
44		4	6	Install / Test 2 MW Skid									-										
48		4																					
49		-	7	Train Personel										_									
52		4																					
53			8	Operation & Verification																			
60																							
61			9	Project Scale Up Plan																	1		

HYDROGEN SKID SELECTION

- Equipment to be used is Low Temperature Electrolysis (LTE) using Polymer Electrolyte Membrane (PEM) technology.
 - Using a proven technology to minimize risk for the project.
- Equipment is to be containerized.

Hydrogen

- "Turn-key" solution will help to reduce additional engineering efforts and project risk.
- Requires roughly 2 MW of electricity and 2,400 gallons of water per day at maximum operating capacity.

Image taken from https://www.energy.gov/eere/fuelcells/

DESIGN & ANALYSIS

- <u>Analysis</u> Determine the effect the skid and supporting equipment will have on plant operation, design and the licensing basis.
- <u>Electrical Design</u> Develop the safest and most efficient means to connect the equipment to the plant's electrical distribution system.
- <u>Mechanical Design</u> Select and design for the optimal water source.
- <u>Civil Design</u> Design foundations, supports, and structures necessary for skid installation.

MODIFICATION IMPLEMENTATION

COMMISSIONING & TESTING

- Ensure no adverse effects on the plant, grid, or skid.
- Control software will be able to modulate H₂ output based on input variables.
- Control software will interface with Programmable Logic Computer (PLC) on vendor supplied H₂ skid.

Percent of Time at Specific ATSI Day Ahead LMP (\$/MW-hr) - 2 Year Lookback

Percent of Time ATSI Day Ahead LMP (\$/MW-hr) - Cumulative

TRANSPORT & CONSUMER BASE

"Need to identify existing and help cultivate emerging markets"

- INL Technical Economic Assessment (TEA)
 - Written for DBNPS by the Idaho National Laboratories (INL)
 - Discusses business case for bulk hydrogen distribution in the Toledo, Ohio area (fuel cell vehicles, petroleum refineries, iron-ore plants, fertilizer production facilities, etc.)
- Local/Regional Partnerships
 - Transportation costs are a significant portion of the expected price of our product. Reducing the transportation distances is important to the success of the project and future scale up activities.
 - Can leverage production facility's proximity to major transportation corridors and potential consumer base.

SCALE-UP / PROJECT CONCLUSION

At maximum operating capacity, the pilot plant is expected to produce 800- $1,000 \text{ kg-H}_2/\text{ day}$, and consume roughly 2 MWe.

DBNPS has a nominal output of 925 MWe (2,817 MWt).

Preliminary estimates show a positive return on investment if future scale-up activities are pursued.

QUESTIONS?

H₂

Alan Scheanwald ascheanwald@firstenergycorp.com Project Manager, Strategic Engineering Davis-Besse Nuclear Power Station