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Ohio Energy Facts
= Population ~12M, with GDP ~$680B (state rank #7)

= Ohio is the third-largest coal-consuming state after TX and IN
— ~ 90% of the coal is used for power generation

» Ohio’s two nuclear power plants, along Lake Erie, supplied _
about 15% of the state’s net generation in 2018 Ohio net electricity generation by source (EIA 2018)

» Rapid increase in Ohio's NG production (Utica shale)
— 28 times higher in 2018 than in 2012 N o wY P e B

= Ohio has the 7t largest crude oil-refining capacity
— Four refineries can process ~ 600,000 bpd

= Ohio is the 8% largest ethanol-producing state
— supplying about 550 million gallons per year
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Ohio Environmental Facts: significant reduction in CO,, SOx,
and NOx over time
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NOx emissions reduction control of NOx in power plants and vehicles , ,
Data are processed by Zifeng Lu @ ANL, based on April to September data 3



H2@Scale enables grid flexibility with more renewables,
while creating green opportunities across sectors*

Hydrogen
\ Vehicle

Battery

o =\ Synthetic
‘ | Fuels

Yy .
7 | A\ Upgrading
7\ r Qil/
/ Power / Biomass

! Generation
I .
| Ammonia/

Fertilizer

| .
\ Hydrogen

\ Generation

Metals
Refining

Electric Grid

“ Infrastructure
Fossil
~N
~
=~ ~ Other
e —
_— End Use
Heating
Gas H2@Scale of Fuel Cell Technology Office of DOE

Infrastructure
Argonne &

*llustrative examples, not comprehensive



Today, more than 10M metric tons of hydrogen are produced
in the U.S. annually

1600 mi of H, pipeline; 10 Liquefaction plants in North America
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Facility-level H, demand for US refineries (2017)

I PADD5 us
H, demand (MMT) 1.2 1.4 Y
H,/Crude (ft?/bbl) | 100 315 | 829 430 504 342

H2 demand for refineries
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» Estimated based on facilities’ crude distillation capacity and PADD H2/crude ratios
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Recently, H, demand for US refineries has increased
significantly

» H, demand has been increased due to increased diesel demand and more stringent regulations.

= H,/Crude ratio shows regional variation; H,/Crude increases over time.
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Estimation of future H, demand for US refineries

= H,/Crude will increase through 2030
» Crude capacity would increase 9% from 2015 to 2021 and remain stable for the subsequent years (EIA AEQO)
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POTENTIAL HYDROGEN DEMAND FOR AMMONIA
PRODUCTION

9 Argonne &



U.S. Ammonia Production 2016
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US domestic ammonia production and imports varied over

time while consumption keeps stable

= |f the amount of current imported ammonia is produced in the US, domestic production can be increased

by 43% without increment in ammonia demand
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Green ammonia reduces nitrogen fertilizer CO, emissions

Ammonia Production Pathways
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Green ammonia with current N fertilizer shares, reduces CI per ton
of N fertilizer from 3.4 ton COz2e to 1.3 ton CO2e, a 61% reduction
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E-fuels

SYNTHETIC FUEL PRODUCTION (H, +CO, ->LIQUID HC)
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Demand for synthetic fuel production-> CO2 sources

* 100 million MT of concentrated CO, produced annually (out of total ~5 GT CO,)
» 44 million MT from ethanol plants
v Current market supply capacity of 14 MMT, and demand of 11 MMT
» Remainder from hydrogen SMR (refineries) and ammonia plants

CO, + H, & Syngas - synfuels
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14 MMT of H, per year may need to be produced close to

CO, and synfuel production locations

H2 demand

for synfuel using CO2
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FT fuel WTW GHG emissions

= FT fuel (the mixture of naphtha, jet fuel, and diesel) production without H, recycle has the lowest WTW

GHG emissions of -11 g CO,,, /MJ @

= Based on carbon neutrality of fermentation CO, in ethanol plants, GHG emissions reductions of the
standalone FT fuel pathway are estimated to be 93% to 113% compared with petroleum pathways
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a GHG emissions are evaluated based on GREET 2018
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METAL REFINING
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Steel making via DRI and FIT can provide virgin feed to
electric arc steel production

« 106 million MT of steel consumed in the U.S. in 2017
v' 81 MMT produced (68% electric arc [EA], 32% blast furnace [BF])
» Scrap constitute ~15% of BF feed and most of EA feed

> Direct Reduction of Iron (DRI)? or Flash Ironmaking Technology (FIT)3
feedstock enables higher quality steel than scrap metal feedstock

v' 35 MMT imported*
v ~2 tons of CO, per ton of steel

« 60-100 kg of hydrogen is estimated to produce 1 MT of
hot iron with direct reduction iron (DRI) technology

v" 1 ton of H, can replace up to 7 tons of coke

USGS, 2017. Iron and Steel Statistics. January

Midrex

University of Utah Argﬁ?ﬂﬂsﬁ
Global Steel Monitor

Pob=



Steel making via DRI can induce large hydrogen demand
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Projected growth from 80 to 120 MMT ton CO,, per ton of steel
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Use of recycled scrap metal can reduce quality of steel produced by EA over time
DRI can provide virgin feed to EA furnaces to enable higher steel quality
430 kg of coke is required to produce 1 MT of hot iron in BF

v DRI using natural gas reduces CO, emissions by approximately 35% compared to BF
v H, for DRI can virtually eliminate CO, emissions from the iron-making process

DRI
(Nuclear H2)
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FUEL CELL VEHICLES
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MHDVs (Medium- and Heavy-Duty Vehicles)

» Medium- and Heavy-duty Vehicles (MHDVs)
— Have a wide range of vocations, e.g. pick-up & delivery, refuse, tractor-trailer, and sleeper cab

— Contributing significantly to critical air emissions, even though accounting for a small portion of
on-road transportation
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Drayage trucks for port application Argonne &
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IsSsions

Compared to diesel counterparts, medium- and heavy-duty (MHD)

hydrogen fuel cell vehicles create much less GHG em
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Low-carbon sources are key for sustainable H, production

LCA GHG Emissions [gCO,./mile]
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OHIO NUCLEAR PLANT EXAMPLE
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Potential annual hydrogen demand within 100 miles from the
Davis-Besse plant
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Potential annual hydrogen demand within 150 miles from the
Davis-Besse plant
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Points for discussion

« Competing/displacing SMR-H, is challenging
» due to low cost NG
» public support will be necessary in the transition

» Established applications (refineries and ammonia) are more likely in the near term compared to new
applications (e.g., synfuel production or DRI)

* New applications that may leverage existing infrastructure can readily absorb H, production at scale
» e.g., mixing H, with NG for power generation or industrial applications

« Markets will likely demand steady supply of H,
» H, storage will be necessary

* Nuclear-H, requires less storage compared to wind-H,
» storage cost can be significant

« Proximity of H, production to demand site is key to its economic potential in the energy system
» demand at volume or aggregating demand will reduce infrastructure cost per unit energy
delivered Argonne &
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aelgowainy@anl.gov
Visit us:

For Techno-Economic Analysis (TEA) of hydrogen infrastructure:
https.//hdsam.es.anl.qov/

For Environmental Life Cycle Analysis (LCA) of alternative fuel pathways:

https://qreet.es.anl.qov/
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